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ABSTRACT16

Metastatic cutaneous melanoma is an aggressive skin cancer with some progression-slowing treatments

but no known cure. The omics data explosion has created many possible drug candidates, however

filtering criteria remain challenging, and systems biology approaches have become fragmented with many

disconnected databases. Using drug, protein, and disease interactions, we built an evidence-weighted

knowledge graph of integrated interactions. Our knowledge graph-based system, ReDrugS, can be

used via an API or web interface, and has generated 25 high quality melanoma drug candidates. We

show that probabilistic analysis of systems biology graphs increases drug candidate quality compared

to non-probabilistic methods. Four of the 25 candidates are novel therapies, three of which have been

tested with other cancers. All other candidates have current or completed clinical trials, or have been

studied in in vivo or in vitro. This approach can be used to identify candidate therapies for use in research

or personalized medicine.
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1 INTRODUCTION29

Metastatic cutaneous melanoma is an aggressive cancer of the skin with low prevalence but very high30

mortality rate, with an estimated 5 year survival rate of 6 percent (Barth et al., 1995) There are currently no31

known therapies that can consistently cure metastatic melanoma. Vemurafenib is effective against BRAF32

mutant melanomas (Chapman et al., 2011) but resistant cells often result in recurrence of metastases (Le33

et al., 2013) Melanoma itself may be best approached based on the individual genetics of the tumor, as it34

has been shown to involve mutations in many different genes to produce the same disease (Krauthammer35

et al., 2015). Because of this, an individualized approach may be necessary to find effective treatments.36

Drug repurposing, or the discovery of new uses for existing approved drugs, can often lead to effective37

new treatments for diseases. A wide range of computational methods have been developed in support38

of drug repositioning. Computational approaches (Sanseau and Koehler, 2011) include topic modeling,39

(Bisgin et al., 2012, 2014) side effect similarity,(Yang and Agarwal, 2011; Ye et al., 2014) drug and/or40

disease similarity (Chiang and Butte, 2009; Gottlieb et al., 2011), genome-wide association studies41

(Kingsmore et al., 2008; Grover et al., 2014), and gene expression (Lamb et al., 2006; Sirota et al., 2011)42

Systems biology has also provided a number of network analysis approaches (Yang and Agarwal, 2011;43

Wu et al., 2013b; Cheng et al., 2012; Emig et al., 2013; Harrold et al., 2013; Wu et al., 2013a; Vogt et al.,44

2014) but the field has been limited by a fragmentation of databases. Most systems biology databases45
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are not aligned with each other, and typically leave out crucial information about how other biological46

entities, like drugs and diseases, interact with the systems biology graph. Further, while some interaction47

databases provide human curation and validation of pathway interactions, and others provide experimental48

evidence for the recorded interactions, there has not yet been, to our knowledge, a resource that combines49

the two approaches and quantifies the reliability of the evidence used to assert the interactions.50

A knowledge graph is a compilation of facts and figures that can be used to provide contextual meaning51

to searches. Google is using knowledge graphs to improve its search and to analyze the information graph52

of the web; Facebook is using them to analyze the social graph. We built our knowledge graph with the goal53

of unifying large parts of biomedical domain knowledge for both mining and interactive exploration related54

to drugs, diseases, and proteins. Our knowledge graph is enhanced by the provenance of each fragment of55

knowledge captured, which is used to compute the confidence probabilities for each of those fragments.56

Further, we use open standards from the World Wide Web Consortium (W3C), including the Resource57

Description Framework (RDF) (Klyne and Carroll, 2005), Web Ontology Language (OWL) (Group et al.,58

2009), and SPARQL (Harris et al., 2013). The representation of the knowledge in our knowledge graph59

is aligned with best practice vocabularies and ontologies from the W3C and the biomedical community,60

including the PROV Ontology (Lebo et al., 2013), the HUPO Proteomics Standards Initiative Molecular61

Interactions (PSI-MI) Ontology (Hermjakob et al., 2004), and the Semanticscience Integrated Ontology62

(SIO) (Dumontier et al., 2013). Use of these standards, vocabularies, and ontologies make it simple for63

ReDrugS to integrate with other similar efforts in the future with minimal effort.64

We proposed and built a novel computational drug repositioning platform, that we refer to as ReDrugS,65

that applies probabilistic filtering over individually-supported assertions drawn from multiple databases66

pertaining to systems biology, pharmacology, disease association, and gene expression data. We use our67

platform to identify novel and known drugs for melanoma.68

2 RESULTS69

We used ReDrugS to examine the drug-target-disease network and identify known, novel, and well70

supported melanoma drugs. The ReDrugS knowledge base contained 6,180 drugs, 3,820 diseases, 69,27971

proteins, and 899,198 interactions.72

Figure 1. Percentage approved drugs in each of the categories of the Anatomic Therapeutic

Classification (ATC) system.

We examined drug and gene connections that were 3 or less interaction steps from melanoma, and73

additionally filtered interactions with a joint probability greater or equal to 0.93. We identified 25 drugs in74

the resulting drug-gene-disease network surrounding melanoma as illustrated in Figure 2 .75

We then validated the set of 25 drugs by determining their position in the drug discovery pipeline for76
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Figure 2. The interaction graph of predicted melanoma drugs with a probability of 0.93 or higher and

have three or fewer intervening interactions between drug and disease. The “Explore” tab contains the

controls to expand the network in various ways, including the filtering parameters. Node and edge detail

tabs provide additional information about the selected node or edge, including the probabilities of the

edges selected. Users can control the layout algorithm and related options using the “Options” tab.

melanoma. Table 1 shows that nearly all drugs uncovered by ReDrugS were previously been identified77

as potential melanoma therapies either in clinical trials or in vivo or in vitro. Of the 25 drugs, 12 have78

been in Phase I, II, or III clinical trials, 5 have been studied in vitro, 4 in vivo, 1 was investigated as a case79

study, and 3 are novel.80

To further evaluate our system, we examined the impact of decreasing the joint probability or increasing81

the number of interaction steps. Figures 3 A and B show precision, recall, and f-measure curves while82

varying each parameter. Using these information retrieval performance curves we found that using a joint83

probability of 0.93 or greater with 3 or less interaction steps maximizes the precision and recall as shown84

in Figure 3.85

By performing a sampled literature search on hypothesis candidates with a joint probability of 0.586

or higher and 6 or fewer interaction steps, we were able to generate precision, recall, and f-measure87

curves for both cutoffs to find our cutoff of 0.93 with 3 or fewer interaction steps. The precision, recall,88

and f-measure curves are shown for varying joint probability thresholds in Figure 3 A and for varying89

interaction step counts in Figure 3 B.90

3 DISCUSSION91

We designed ReDrugS to quickly and automatically integrate and filter a heterogeneous biomedical92

knowledge graph to generate high-confidence drug repositioning candidates. Our results indicate that93

ReDrugs generates clinically plausible drug candidates, in which half are in various stages of clinical94

trials, while others are novel or are being investigated in pre-clinical studies. By helping to consolidate95

the three main datatypes - drug targets, protein interactions, and disease genes, ReDrugs can amplify96

the ability of researchers to filter the vast amount of information into those that are relevant for drug97

discovery.98
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Table 1. Drug discovery status for 25 drug candidates identified using ReDrugS. “Pathway” refers to the

target or pathway that the drug acts on. “Steps” is distance in number of interactions between the drug

and the disease, and “Joint p” is the joint probability that all of those interactions occur.

Status Drug Pathway Steps Joint p

Approved Vemurafenib (Chapman et al., 2011) BRAF 2 0.98

Phase III Dabrafenib (Hauschild et al., 2012) BRAF 2 0.98

Sorafenib (National Cancer Institute, 2005) BRAF 2 0.98

Vinblastine (Luikart et al., 1984) MAP kinase 3 0.93

Phase II Zidovudine (Humer et al., 2008) TERT 2 0.98

Trametinib (Kim et al., 2012) MAP kinase 2 0.98

Regorafenib (Istituto Clinico Humanitas, 2015) BRAF 2 0.98

Nadroparin (Nagy et al., 2009) MYC 3 0.97

Vinorelbine (Whitehead et al., 2004) MAP kinase 3 0.93

Irinotecan (Fiorentini et al., 2009) CDKN2A 3 0.93

Topotecan (Kraut et al., 1997) CDKN2A 3 0.93

Phase I Sodium stibogluconate (Naing, 2011) CDKN2A 3 0.93

Case Study Ingenol Mebutate (Mansuy et al., 2014) PRKCA/BRAF 3 0.95

In Vitro Bosutinib (Homsi et al., 2009) MAP kinase 2 0.98

Purvalanol (Smalley et al., 2007) MAP kinase/TP53 3 0.97

Ellagic Acid (Kim et al., 2008) PRKCA/BRAF 3 0.95

Albendazole (Patel et al., 2011) CDKN2A 3 0.93

Colchicine (Lemontt et al., 1988) MAP kinase 3 0.93

In Vivo Plerixafor (D’Alterio et al., 2012) CXCR4 3 0.97

Vincristine (Sawada et al., 2004) MAP kinase 3 0.93

L-Methionine (Clavo and Wahl, 1996) CDKN2A 3 0.93

Mebendazole (Doudican et al., 2008) CDKN2A 3 0.93

Novel Framycetin CXCR4 3 0.97

Lucanthone CDKN2A 3 0.93

Podofilox MAP kinase 3 0.93

(A) Information Retrieval by Probability Threshold(A) Information Retrieval by Probability Threshold(A) Information Retrieval by Probability Threshold

0.90.90.9 0.80.80.8 0.70.70.7 0.60.60.6

0.250.250.25

0.50.50.5

0.750.750.75

precisionprecisionprecision recallrecallrecall f­measuref­measuref­measure

 

(B) Information Retrieval by Network Expansion Step(B) Information Retrieval by Network Expansion Step(B) Information Retrieval by Network Expansion Step

333 444 555

0.250.250.25

0.50.50.5

0.750.750.75

precisionprecisionprecision recallrecallrecall f­measuref­measuref­measure

Figure 3. Precision, recall, and f-measure by (A) varying thresholds for joint probability and (B)

varying number of interaction steps. Precision is the percentage of returned candidates that have been

validated experimentally or have been in a clinical trial (a “hit”) versus all candidates returned. Recall is

the percentage of all known validated “hits”. F-measure is the geometric mean of precision and recall that

provides a balanced evaluation of the quality and completeness of the results.
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3.1 Candidate Significance99

Three drugs were identified that have not previously been studied for melanoma treatment. Framycetin, a100

CXCR4 inhibitor, has not previously been considered for melanoma treatment. While it is nephrotoxic101

when administered orally (Greenberg, 1965), is used topically as an antibacterial treatment. While it may102

not be of use for metastasis, it might serve as a simple, inexpensive prophylactic treatment after excision103

of primary tumors. Additionally, Lucanthone and Podofilox were identified as having potential effects on104

melanoma through CDKN2A and MAP kinase, respectively.105

One drug we identified, Vemurafenib, is approved for treatment of late stage melanoma has been106

shown to inhibit the BRAF protein in BRAF-V600 mutant melanomas (Chapman et al., 2011). However,107

cells can become resistant to Vemurafenib, thereby leading to metastasis (Le et al., 2013).108

A number of the drugs we identified are in clinical trials for treatment of melanoma. We identified109

BRAF-oriented drugs, Dabrafenib (Hauschild et al., 2012), Sorafenib (National Cancer Institute, 2005),110

and Regorafenib (Istituto Clinico Humanitas, 2015), that have been evaluated in clinical trials, but have111

not yet been approved. Zidovudine, or Azidothymidine (AZT) is a TERT inhibitor that has shown112

significant melanoma tumor reductions in mouse models (Humer et al., 2008). Three MAP kinase-related113

compounds, Vinblastine (Luikart et al., 1984), Trametinib (Kim et al., 2012), Vinorelbine (Whitehead114

et al., 2004) were identified that are in clinical trials for melanoma treatment. CDKN2A was another115

popular target, as Irinotecan (Fiorentini et al., 2009) Topotecan (Kraut et al., 1997) Sodium stibogluconate116

(Naing, 2011) are all drugs in clinical trial that we identified as potential therapies.117

Many other drugs were identified that are being studied in the lab. Additional drugs were identified118

that target the MAP kinase pathway, including Bosutinib (Homsi et al., 2009), Purvalanol (Smalley et al.,119

2007), Colchicine (Lemontt et al., 1988) Vincristine (Sawada et al., 2004). Podofilox has not yet been120

investigated in melanoma treatments, but preliminary investigations have focused on treating Chronic121

Lymphocytic Leukemia (CLL) (Shen et al., 2013) and Non-Small Cell Lung Cancer (NSCLC) (Peng122

et al., 2014). Since these drugs attack MAPK2 and related proteins rather than BRAF or NRAS, they123

can potentially synergize with other treatments (Homsi et al., 2009). Bosutinib in particular has been124

investigated as a synergistic treatment for melanoma (Held et al., 2012). Another possible treatment125

pathway is CXCR4 inhibition. Mouse models suggest that CXCR4 inhibitors like Plerixafor can reduce126

tumor metastasis and primary tumor growth (D’Alterio et al., 2012). We identify both Plerixafor and127

Framycetin (Neomycin B) as useful CXCR4 inhibitors. Two PKRCA activators, Ingenol Mebutate and128

Ellagic Acid, were also identified. PKRCA binds with BRAF (Pardo et al., 2006), but it is mechanistically129

unclear how PKRCA activation would result in treatment of melanoma. A number of other therapies130

are also notable. Purvalenol can inhibit GSK3β , which in turn activates TP53. Some, but not all,131

melanomas have TP53 deactivation (Smalley et al., 2007). Nadroparin, a MYC inhibitor, may inhibit132

tumor progression (Nagy et al., 2009). More broadly, heparins can potentially inhibit the metastatic133

process in melanoma and other cancers (Maraveyas et al., 2010).134

The approach that we present here offers a novel, mechanism-focused exploration to identify and135

examine drugs and targets related to cancer. This approach filters our noisy or poorly supported parts136

of the knowledge graph to identify more confident mechanisms between drugs, targets and diseases.137

Thus, our approach can be used to explore high confidence associations that are produced as a result of138

large scale computational screens that use network connectivity (Yang and Agarwal, 2011; Wu et al.,139

2013b; Cheng et al., 2012; Emig et al., 2013; Harrold et al., 2013; Wu et al., 2013a; Vogt et al., 2014), the140

complementarity in drug-disease gene expression, and the similarity of chemical fingerprints, side-effects,141

targets, or indications (Yang and Agarwal, 2011; Ye et al., 2014; Chiang and Butte, 2009; Gottlieb et al.,142

2011; Lamb et al., 2006; Sirota et al., 2011). Importantly, since we focus on protein networks that are143

strongly linked with diseases, we believe that our mechanism focused approach will also aid in the144

identification of disease-modifying drug candidates, rather than solely those that would be useful for the145

treatment of symptomatic phenotypes or related co-morbid conditions.146

3.2 Architecture147

ReDrugS uses a fairly straightforward web architecture, as shown in Figure 4. It uses the Blazegraph148

RDF database backend. The database layer is interchangeable except that the full text search service149

needs to use Blazegraph-only properties to perform text searches as text indexing is not yet standardized150

in the SPARQL query language. All other aspects are standardized and should work with other RDF151

databases without modification. ReDrugs currently uses the Python-based TurboGears web application152
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framework hosted using the Web Services Gateway Interface (WSGI) standard via an Apache HTTP153

server. TurboGears in turn hosts the SADI web services that drive the application and access the database.154

It also serves up the static HTML and supporting files.155

RDF Store

Python + Apache Web Server

/api/search
/api/upstream
/api/downstream

Javascript Web Client

Cytoscape.js

SPARQL

JSON-LD

Figure 4. The ReDrugS software architecture. Using web standards and a three layer architecture (RDF

store, web server, and rich web client), we were able to build a complete knowledge graph analysis

platform.

The user interface is implemented with AngularJS and Cytoscape.js, which submits queries to the156

SADI web services using JSON-LD and aggregates results into the networked view. The software relies157

exclusively on standardized protocols (HTTP, SADI, SPARQL, RDF, and others) to make it simple to158

replace technologies as needed. The data itself is processed using conversion scripts as shown in Figure 6.159

We have also adapted and featured ReDrugS in an immersive visualization laboratory called the160

Collaborative-Research Augmented Immersive Virtual Environment (CRAIVE) Lab at RPI, as shown161

in Figure 5. The goal of the demonstration was to explore new ways to visualize, sonify, and interact162

with big data in large-scale virtual reality systems. We also leveraged a gesture controller (Microsoft163

kinect) to interact with the visualization. With the 360-degree projection, multiple people can explore the164

visualization concurrently, which accelerates the exploration and discovery speed.165

Figure 5. The authors demonstrate the ReDrugS user interface in the Collaborative-Research

Augmented Immersive Virtual Environment (CRAIVE) Lab at RPI.
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ReDrugS API
Interaction network search 

and expansion

iRefIndex
ReDrugS

RDF Store

Analytical Tools ReDrugS
Cytoscape.js App

Ontological Resources
Protein/Protein Interaction Ontology, 

Semanticscience Integrated Ontology, 
Gene Ontology

vocabularies, relationships

queries

queries graphqueries graph

Experimental 
Method 

Assessment
Confidence scores of 

experimental methods.

evidence to
probabilityconverted to

nanopubs

Cytoscape, R, Python, etc.

Figure 6. The ReDrugS data flow. Data is selected from external databases and converted using scripts

into nanopublication graphs, which are loaded into the ReDrugS data store. This is combined with

experimental method assessments, expressed in OWL, and public ontologies into the RDF store. The web

service layer queries the store and produces aggregate analyses of those nanopublications, which is

consumed and displayed by the rich web client. The same APIs can be used by other tools for further

analysis.

3.3 Limitations and Future Work166

Our study has a some limitations. First, our study is limited by the sources of data used. We used 3167

databases (DrugBank, iRefIndex, and OMIM) to construct the initial knowledge graph. These databases168

are continuously changing and necessarily incomplete with respect to the total number of drugs, targets,169

protein interactions, diseases, and disease genes. For instance, as of 8/15/2016 there are over 2000170

additional FDA approved drugs in DrugBank than in the version that was initially used. Second, the171

focus of our work is on the potential repositioning of FDA approved drugs, which means that tens of172

thousands of chemical compounds with protein binding activity cannot be considered as candidates in173

the current study. Third, our path expansion is currently limited to pairwise protein-protein interactions,174

which excludes interactions as a result of protein complexes or regulatory pathways. Having a more175

sophisticated understanding of non direct interactions will help identify candidate drugs that can regulate176

entire pathways in a more rational manner. Additionally, we aim to incorporate knowledge of the177

complementarity of drug and disease gene expression patterns as evidenced by the Connectivity Map178

(Lamb et al., 2006), which could suggest therapeutic and adverse interactions. Finally, as we develop179

new hypotheses about potential new drug effects, we plan to test them using a new three-dimensional180

cellular microarray to perform high throughput drug screening (Lee et al., 2008) with reference samples.181

The integration of computational predictions and high throughput screening platform will enable the182

systematic evaluation of any drug or mechanism of action against any disease or adverse event.183

4 MATERIALS AND METHODS184

This research project did not involve human subjects. The ReDrugS platform consists of a graphical185

web application, an application programming interface (API), and a knowledge base. The graphical web186

application enables users to initiate a search using drug, gene, and disease names and synonyms. Users can187

then interact with the application to expand the network at an arbitrary number of interactions away from188
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the entity of interest, and to filter the network based on a joint probability between the source and target189

entities. Drug-protein, protein-protein, and gene-disease interactions were obtained from several datasets190

and integrated into ontology-annotated and provenance and evidence bearing representations called191

nanopublications. The web application obtains information from the knowledge base using semantic web192

services. Finally, we evaluated our approach by examining the mechanistic plausibility of the drug in193

having melanoma-specific disease modifying ability. We evaluated a large number of possible drug/disease194

associations with varying joint probabilities and interaction steps to determine the thresholds with the195

highest F-Measure, resulting in our thresholds of three or less interactions and a joint probability of 0.93196

or higher.197

Using the ReDrugS application page1, we initiate our search for “melanoma”, and select the first198

suggestion obtained from the Experimental Factor Ontology (EFO).2 The application then provides199

immediate neighborhood of drugs and genes that are associated with melanoma. We expanded the200

network by first selecting the melanoma node and expanding the link distance to |I| ≤ 3 and the changing201

the minimum joint probability to p ≥ 0.93 in the search options. Importantly, we also limit the node202

type to ”Drug”. Finally, we click on the ”find incoming links” button (two left-facing arrows). When203

finished the network will show all drugs interacting with melanoma that meet the above criteria, as well204

as any intervening entities and their interactions. The resulting network can be downloaded as an image,205

or a summary CSV file. We used the CSV file to validate the links by searching Google Scholar and206

ClinicalTrials.gov for each proposed drug/disease combination. We consider a “hit” to be a pairing with207

a published positive experiment in vivo or in vitro or any pairing that has been tested in a clinical trial.208

While this level of validation does not guarantee efficacy, it does determine if the resulting connection is a209

plausible hypothesis that might be tested.210

4.1 Data Fusion211

We developed a structured knowledge base containing data pertaining to drugs, targets, interactions, and212

diseases. We used five data sources: iRefIndex (Razick et al., 2008) DrugBank (Wishart et al., 2006),213

UniProt Gene Ontology Annotations (GOA) (Camon et al., 2004), the Online Mendelian Inheritance in214

Man (OMIM) (Hamosh et al., 2005), and the COSMIC Gene Census (Futreal et al., 2004).215

iRefIndex contains protein-protein interactions and protein complexes and is an amalgam of the216

Biomolecular Interaction Network Database (BIND) (Bader et al., 2003), BioGRID (Stark et al., 2006),217

the Comprehensive Resource of Mammalian protein complexes (CORUM) (Ruepp et al., 2008), Database218

of Interacting Proteins (DIP), (Xenarios et al., 2002), Human Protein Reference Database (HPRD), (Prasad219

et al., 2009), InnateDB (Lynn et al., 2008), IntAct (Kerrien et al., 2012), MatrixDB (Chautard et al., 2011),220

Molecular INTeraction database (MINT) (Chatr-aryamontri et al., 2008), MPact (Güldener et al., 2006),221

microbial protein interaction database (MPIDB) (Goll et al., 2008), MIPS mammalian protein-protein222

interaction database (MPPI) (Pagel et al., 2005), and Online Predicted Human Interaction Database223

(OPHID) (Brown and Jurisica, 2005). DrugBank provides information about experimental/approved224

drugs and their targets, and UniProt GOA describes proteins in terms of their biological processes,225

cellular locations, and molecular functions. OMIM provides associations between genes and inherited226

or genetically-driven diseases. The COSMIC Gene Census is a curated list of genes that have causal227

associations with one or more cancer types.228

Each association (e.g. drug-target, protein-protein, disease-gene) was captured using the nanopubli-229

cation (Groth et al., 2010) scheme. A nanopublication is a digital artifact that consists of an assertion,230

its provenance, and information about the digital publication. Our nanopublications are represented as231

Linked Data: Each data item is identified using an dereferenceable HTTP Uniform Resource Identifier232

(URI) and statements are represented using the Resource Description Framework (RDF). Each nanop-233

ublication corresponds to a single interaction assertion from one of the databases. We used a number234

of automated scripts to produce the nanopublications and load them into the SPARQL endpoint. An235

example nanopublication is shown in Figure 7. We used the Semanticscience Integrated Ontology (SIO)236

(Dumontier et al., 2013) as a global schema to describe the nature and components of the associations, and237

coupled this with the PSI-MI Ontology (Hermjakob et al., 2004) to denote the types of interactions. We238

used the World Wide Web Consortium’s Provenance Ontology (PROV-O) (Lebo et al., 2013) to capture239

provenance of the assertion (which data source it originated from). We loaded our nanopublications into240

1http://redrugs.tw.rpi.edu
2http://www.ebi.ac.uk/efo/EFO_0000756
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Blazegraph, an RDF nanopublication compatible database. The data is accessed using its native SPARQL241

endpoint by the web application.242

Figure 7. Representation of a protein/protein interaction within a nanopublication. Three graphs are

represented. The assertion graph (NanoPub 501799 Assertion), states that an interaction (X) is of type

sio:DirectInteraction, and has the target of SLC4A8, and a participant of CA2. The supporting graph

(NanoPub 501799 Supporting), states that the assertion graph was generated by a pull down experiment

(one of many encoded experiment types used in , a subclass of prov:Activity. The attribution graph

(NanoPub 501799 Attribution), in turn, states that the assertion had a primary source of (Loiselle et al.,

2004) and that the interaction was quoted from BioGrid.

4.2 Assertion Probability243

Each knowledge graph fragment, enclosed in a nanopublication, is assigned a probability based on the244

quality of the methods used to create the assertions in the fragment. We compute probabilities based245

on two different methods. Manually curated assertions, from DrugBank, OMIM, and COSMIC Gene246

Census, are directly given a probability p = 0.999. Assertions that have been derived from a specific247

experimental method are given probabilities appropriate for that method. These probabilities are derived248

from a expert-driven measure of the reliability of the experimental method used to derive the association.249

Factors involved in the assessment of confidence include the degree of indirection in the assay, the250

sensitivity and specificity of the approach, and reproducibility of results under different conditions based251

on the comparative analyses of techniques (Obenauer and Yaffe, 2004; Sprinzak et al., 2003). Two expert252

bioinformaticians rated the reliability of each method and assigned a score of 1-3, where 1 corresponds to253

low confidence and 3 high confidence. After their initial assessment, they conferred on their reasoning254

for each score to resolve differences where possible. The experts considered level 1 to correspond to255

weak evidence that needs independent verification. Level 2 methods are generally reliable, but should256

have additional biological evidence. Level 3 methods are high quality method that produces few false257

positives. We calculated inter-annotator agreement between the two annotators over the three categories258

using Scott’s Pi. Scott’s Pi is similar to Cohen’s kappa in that it improves on simple observed agreement259

by factoring in the extent of agreement that might be expected by chance. We determined the agreement to260
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Service

Name

Description URL Input Output

Resource

text tearch

Look up resources using

free text search against

their RDFS labels. This ser-

vice is optimized for typea-

head user interfaces.

search pml:Query pml:AnsweredQuery

Find interac-

tions in a bi-

ological pro-

cess

Find interactions whose

participants or targets also

participate in the input pro-

cess.

process sio:Process sio:Process

Find up-

stream

participants

Find interactions that the

input entity is a target of

in and have explicit partici-

pants.

upstream sio:MaterialEntity sio:Target

Find down-

stream

targets

Find interactions that the

input entity participates in

and have explicit targets.

downstream sio:MaterialEntity sio:Agent

Table 2. The API endpoint prefix is http://redrugs.tw.rpi.edu/api/.

be 0.56 (Scott’s Pi value of 0.26) across 104 experimental methods comprising of 99.9999% of interaction261

annotations (SCOTT, 1955).262

The scores of 1, 2, and 3 were then assigned provisional probabilities of p = 0.8, p = 0.95, and263

p = 0.99 respectively. We chose these probabilities as approximations of the conceptual levels of264

probability for each rating by the experts, and feel that those probabilities correspond to how often an265

experiment at that confidence level can be expected to be accurate. We plan to provide a more rigorous266

assessment of the accuracy of each method against gold standards in future work. These confidence values267

were encoded into an OWL ontology along with the evidence codes. The full inferences were extracted268

using Pellet 3 and loaded into the SPARQL endpoint, where they were used to apply the probabilities to269

each assertion in the knowledge graph that had experimental evidence.270

4.3 Semantic Web Services271

We developed four Semantic Automated Discovery and Integration (SADI) web services (Wilkinson272

et al., 2009) in Python4 to support easy access to the nanopubications (see Table 2) in ReDrugS. The four273

services are enumerated in Table 2.274

The first service is a simple free text lookup, that takes an pml:Query5 McGuinness et al. (2007) with275

a prov:value as a query and produces a set of entities whose labels contain the substring. This is used for276

interactive typeahead completion of search terms so users can look up URIs and entities without needing277

to know the details.278

The other three SADI services look up interactions that contain a named entity. Two of them look279

at the entity to find upstream and downstream connections, and the third service assumes that the entity280

is a biological process and finds all interactions that related to that process. The services return only281

one interaction for each triple (source, interaction type, target). There are often multiple probabilities282

per interaction, and more than one interaction per interaction type. This is because the interaction may283

have been recorded in multiple databases, based on different experimental methods. To provide a single284

probability score for each interaction of a source and target, the interactions are combined. A single285

probability is generated per identified interaction by taking the geometric mean of the probabilities for that286

interaction. However, this method is undesirable when combining multiple interaction records of the same287

type. We instead combine the interaction records using a form of probabilistic voting using composite288

3https://github.com/complexible/pellet
4For further information on developing web services in Python using SADI, see this tutorial:

https://github.com/markwilkinson/SADI-Semantic-Web-Services-Core/wiki/Building-Services-in-Python
5PML 3, in development: https://github.com/timrdf/pml. This includes PML 2 constructs that are not covered in PROV-O.
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Z-Scores. This is done to model that multiple experiments that produce the same results reinforce each289

other, and should therefore give a higher overall probability than would be indicated by taking their mean290

or even by Bayes Theorem. We do this by converting each probability into a Z Score (aka Standard291

Score) using the Quantile Function (Q()), summing the values, and applying the Cumulative Distribution292

Function (CDF()) to compute the corresponding probability:293

P(x1...n) =CDF

(

n

∑
i=1

Q(P(xi))

)

These composite Z Scores, which we transform back into probabilities, are frequently used to combine294

multiple indicators of the same underlying phenomena, as in (Moller et al., 1998). It has a drawback,295

however. One concern is that the strategy does not account for multiple databases recording the same296

non-independent experiment. This can possibly inflating the probabilities of interactions described by297

experiments that are published in more than one database.298

4.4 Graph Expansion Using Joint Probability299

In order to compute the probability that a given entity affects another, we compute the joint probability300

that each of the intervening interactions are true. Joint probability is the probability that every assertion in301

the set is true. This is computed by taking the product of probabilities of each interaction:302

P(x1 ∧ ...∧ xn) =
n

∏
i=1

P(xi)

This joint probability is used as a threshold that users can set to stop graph expansion. We also provide303

expansion limits using the number of interaction steps that are needed to connect the two entities.304

4.5 User Interface305

The user interface was developed using the above SADI web services and uses Cytoscape.js,6, angular.js,7306

and Bootstrap 3.8 An example network is shown in Figure 2 Users can search for biological entities and307

processes, which can then be autocompleted to specific entities that are in the ReDrugS graph. Users308

can then add those entities and processes to the displayed graph and retrieve upstream and downstream309

connections and link out to more details for every entity. Cytoscape.js is used as the main rendering310

and network visualization tool, and provides node and edge rendering, layout, and network analysis311

capabilities, and has been integrated into a customized rich web client.312

In order to evaluate this knowledge graph, we developed a demonstration web interface9 based on the313

Cytoscape.js10 JavaScript library. The interface lets users enter biological entity names. As the user types,314

the text is resolved to a list of entities. The user finishes by selecting from the list, and submitting the315

search. The search returns interactions and nodes associated with the entity selected, which are added316

to the Cytoscape.js graph. Users are also able to select nodes and populate upstream or downstream317

connections. Figure 2 is an example output of this process.318
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Nagy, Z., Turcsik, V., and Blaskó, G. (2009). The Effect of LMWH (Nadroparin) on Tumor Progression.470

Pathology & Oncology Research, 15(4):689–692.471

Naing, A. (2011). Phase I Dose Escalation Study of Sodium Stibogluconate (SSG) a Protein Tyrosine472

Phosphatase Inhibitor, Combined with Interferon Alpha for Patients with Solid Tumors. J. Cancer,473

page 81.474

National Cancer Institute (2005). Carboplatin and Paclitaxel With or Without Sorafenib Tosylate in475

Treating Patients With Stage III or Stage IV Melanoma That Cannot Be Removed by Surgery. Accessed476

2016-1-10.477

Obenauer, J. C. and Yaffe, M. B. (2004). Computational prediction of protein-protein interactions. In478

Protein-Protein Interactions, pages 445–467. Springer.479

Pagel, P., Kovac, S., Oesterheld, M., Brauner, B., Dunger-Kaltenbach, I., Frishman, G., Montrone, C.,480
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