The fractal dimension of the tree of life

Xiaofei Lva,b, Yuping Wuc, Bin Maa,*

^aLaboratory of Microbial Ecology and Matter Cycles , Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China ^cNingbo Agricultural Production and Security Agency, Ningbo, 315012, China

Abstract

The structure pattern of the tree of life clues on key ecological issues; hence knowing the fractal dimension is the fundamental question in understanding the tree of life. Yet the fractal dimension of the tree of life remains unclear since the scale of the tree of life has hypergrown in recent years. Here we show that the tree of life displays a consistent fractal nature for inter- and intra-taxonomic levels, but the fractal dimensions were different among different kingdoms. The fractal dimension of inter-taxonomic levels (D_r) is 0.873 for the entire tree of life, which smaller than the values of D_r for Animalia and Plantae but greater than the values of D_r for Fungi, Chromista, and Protozoa. The hierarchical fractal dimensions values for prokaryotic kingdoms are lower than for other kingdoms. The D_r value for Viruses was lower than most eukaryotic kingdoms, but greater than prokaryotes. In the entire tree of life, intrataxonomic fractal dimensions (D_t) for genus are 1.62, for family 1.42, for order 1.56, for class 1.57, and for phylum 1.72. The distribution of taxa size is governed by fractal property but skewed by overdominating taxa with large subtaxa size. The fractal dimensions of accumulating frequency (D_{ac}) could eliminate the skewness effect of taxa with large subtaxa size: for genus D_{ac} value was 1.41, for family 1.05, for order 1.35, for class 0.67, and for phylum 1.11. The proportion of subtaxa in each taxa with small and large sizes was greater than in taxa with intermediate size. The slope value D_a -higher proportion of taxa with small subtaxa size when $D_a > 0$, and higher proportion of taxa with large subtaxa size when D_a < 0-related closely to D_{ac} values, but not D_t values. This results suggest that the distribution of subtaxa in taxa can be predicted with both fractal dimension and skewness property. Our study determined the fractal dimensions for inter- and intra-taxonomic levels of the present tree of life. These results emphases the need for further theoretical studies, as well as predictive modelling, to interpret the different fractal dimension for different taxonomic groups and skewness of taxa with large subtaxa size.

Introduction

10

11

Understanding the pattern of the tree of life has long been a driving force for system biologist. Since the dramatic development in molecular technology, there has been an exponential growth in the number of clades in tree of life each year (Ciccarelli et al., 2006). The end point of the tree of life is the construction of the single phylogenetic tree linking all species living and extinct (Benton and Ayala, 2003). The hierarchical structure of tree of life contains valuable clues on the key issue of realizing the modern diversification of life (Mora et al., 2011; Tittensor et al., 2010), accessing the shape

Email address: bma@yic.ac.cn (Bin Ma)

of evolution (Doolittle, 2009), determining the threaten of diversity (Mace, Gittleman, and Purvis, 2003), and understanding the underlying mechanisms of constrain ecological complexity (Solow, 2005). Fractal phenomena, which is a mathematical object that has a fractal dimension that usually exceeds its topological dimension and may fall between the integers, are widespread in nature (Brown et al., 2002). The tree of life has long been recognized as a fractal structure, including the diversity of life and taxonomic systems in the tree of life, which have self-similar features that look the same when there is a change in scale (Burlando, 1990, 1993; Chaline, Nottale, and Grou, 1999). Recently released OneZoom visualise the tree of life based on an adaptation of fractal mind (Rosindell and Harmon, 2012).

The fractal property of the tree of life shows a emergent feature that scaling relationship are self-similar

Preprint submitted to PeerJ January 22, 2014

 $^{^*{\}rm Laboratory}$ of Microbial Ecology and Matter Cycles , Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China. Tel: 86-535-2109123

37

38

39

41

42

45

46

48

49

50

52

53

56

57

60

61

62

64

65

67

68

69

71

72

73

over a wide range of taxon scales (Rabosky, Slater, and Alfaro, 2012; Lane, 2011; Foote, 2012; Chaline, Nottale, and Grou, 1999; Solow, 2005; Marquet et al., 2005; Burlando, 1990, 1993; Herrada et al., 2008). Powerlaw curve of size-frequency distributions of taxa, derived from a number of checklists and catalogues of species concerning protists, fungi, plants, and animals, pointed out a very large number of taxa with one or few subtaxa and a very small number of taxa with many subtaxa (Mora et al., 2011; Burlando, 1990). The fractal dimension of the taxonomic assemblages represents their diversity characterization, which is viewed as an evolutionary pattern related to scaling evolutionary processes (Villarreal, 2006; Marquet et al., 2005; Bapteste et al., 2009; Foote, 2012). The investigation in the fractal geometry of the taxonomic system from both fossil record and phylogenetic systems indicated that arrangement of life taxonomy generally show fractal properties reflects evolutionary feature (Rabosky, Slater, and Alfaro, 2012). The branching patterns of a large set of phylogenetic tree follow allometric rules conserved across the different levels in the tree of life (Herrada et al., 2008). The universal patterns of phylogenetic differentiation suggests that similar evolutionary forces drive diversification across the broad range of scale, shaping the diversity of life in the planet (Brown et al., 2002).

The fractal dimension of taxonomic systems have 103 been previously estimated based on the size-frequency distributions of taxa with different number of subtaxa (Burlando, 1990). Non-random occurrence of fractal 105 dimension values among groups suggests a relationship with true biologic diversity patterns. The largest checklist used in this study contained 70,000 species, and catalogues of species concerning protists, fungi, plants and animals. At present the number of species in tree of life, however, reach to more than 2,000,000 species, and with different kingdom system (Delsuc, Brinkmann, and Philippe, 2005). Understanding the newly pattern of tree of life require knowing the fractal properties of the tree of life. Here we analyze the hierarchic structure of the global tree of life are obtained, allowing a characterization of the tree of life through the estimation of 116 its fractal dimension. This emphasizes the self-similar relationship for size-frequency distributions of both the 117 hierarchic size among taxon levels and the subtaxa di- 118 versity in each taxon.

76 Materials and Methods

77 Data sets

The data sets used in this paper were based on the 124 classification of currently valid species from the Tax- 125

onomy Database of NCBI (http://www.ncbi.nlm. nih.gov/taxonomy) and the Catalogue of Life (www. sp2000.org). The eukaryotic species in the former is largely contained within the latter, whereas the prokaryotic species in the latter is largely contained within the former. These databases were screened for homonyms and the classification of taxa into multiple clades. The combined data sets included five eukaryotic dominations and two prokaryotic dominations, with 126 phylum, 259 class, 4163 order, 14939 family, 214158 genus, and 2031438 species. To describe the fractal property of tree of life, we probe the fractal pattern of intra- and inter-taxonomic level of tree of life.

The inter-taxonomic fractal property of tree of life

We related the logarithmic number of taxa against their numerical rank and estimated the parameters of linear models with least squares regression models:

$$lg(N_r) = -D_r + \mu \tag{1}$$

where N_r denotes the number of taxon in taxonomic level r, $\mu = lg(N_1) + r_1D_r$ is the proportionality coefficient, and D_r is the fractal dimension among taxonomic levels in the tree of life. Since data are not strictly independent across hierarchically organized taxa, we used models based on generalized least squares assuming autocorrelated regression errors.

The intra-taxonomic fractal property of tree of life

For each taxonomic rank from phylum to genus, we represent the frequency distribution of taxa with different subordinate taxa abundance in each taxa as a rankabundance curve. The taxa were arranged in increasing order of the abundance of its subordinate, and taxa frequency were plot as a function of the abundance of subordinate taxa. The probability distribution of the frequency of taxa with different subordinate taxa abundance, P(k), can be represented by a power-law (scale free) with the subordinate taxa abundance:

$$P_k = P_1 k^{-D_t} \tag{2}$$

in which P_1 refer to the number of the taxon with only one subordinate taxa, k to the size rank of the subordinate taxa abundance, and D_t to the scaling exponent, which also called "fractal dimension" for . We used logarithmic scales for both axes of the rank-abundance curve, so that the power-law abundance distribution is represented as a straight line, and the slope is equal to the power-law exponent. We estimated the scaling exponent of power law using maximum likelihood method

120

121

127

128

129

130

131

132

133

134

135

136

137

138

140

142 143

144

146

147

150

151

153

154

155

156

157

158

159

161

162

163

165

166

167

with BFGS optimization to eliminate the influence of the long tail at low frequency. In order to include the influence of long tail, we converted the taxa abundance curve into the accumulating taxa abundance based on the rank of subordinate taxa:

$$N_k = N_1 k^{-D_{ac}} \tag{3}$$

in which N_1 to the total number of taxa, and D_{ac} to the fractal dimension for accumulated taxa frequency distribution. Combining equation 2 and 3 yield such a relation:

$$(\frac{P1}{P_{\nu}})^{\frac{1}{D_{t}}} = (\frac{N1}{N_{\nu}})^{\frac{1}{D_{ac}}} \tag{4}$$

In term of equation 4, we have:

$$D_a c = D_t \times \log_{\frac{P_1}{P_k}}(\frac{N1}{N_k}) \tag{5}$$

The distribution of taxonomic abundance is:

$$M_k = k \times P_1 k^{-D_t} = P_1 K^{1-D_t} = P_1 K^{-D_a}$$
 (6)

in which M_k refer to the taxa abundance at different rank, $D_a = 1 - D_t$ to the slope of taxa abundance distribution.

Results

Fractal property of hierarchical structure in the tree of life

We complied 2 million currently valid species of the tree of life from publicly accessible database. The power-law relation between abundance in each taxa level and the rank of each taxa level indicated the fractal property of hierarchical structure in the tree of life. For the entire tree of life we find fractal dimension of hierarchical structure D_r =0.873 (Figure 1). Figure 2 shows the power-law property of hierarchical structure for eight kingdoms. It reveal that D_r =1.004 and 0.889 for Animalia and Plantae, respectively. Among all eukaryotic kingdoms, only the D_r for Animalia and Plantae were greater than the entire tree of life. The values of D_r for Fungi, Chromista, and Protozoa were all lower than the entire tree of life, with hierarchical 173 fractal dimension D_r (fungi)=0.8, D_r (chromista)=0.586, 174 and $D_r(\text{protozoa})=0.573$, respectively. For archaea and bacteria, we find D_r values were 0.444 and 0.521, respectively. This results indicates that hierarchical fractal 1777 dimensions for prokaryotic kingdoms are significantly 178 lower than for other kingdoms. The Viruses have hierarchical fractal dimension D_r =0.596, which is lower than

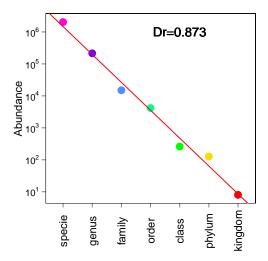


Figure 1: Relationship between the number of taxa and hierarchy of each taxonomic rank for the entire tree of life

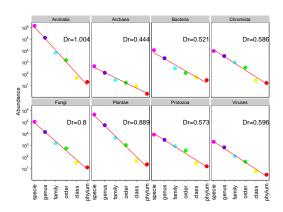


Figure 2: Relationship between the number of taxa and hierarchy of each taxonomic rank for each kingdom

most eukaryotic kingdoms, but greater than prokaryotes.

The value of fractal dimension for hierarchical taxa level indicates the universal scaling between the number of taxa (N_t) and subordinate taxa (N_{st}) : $N_{st} = N_t \times 10^{D_r}$. For the entire tree of life, the number of N_{st} is approximately 7.5 times of N_t since D_r value is 1.133. The D_r values for bacteria and archaea denote that the the number of N_{st} is approximately 2.8 times and 3.3 times of N_t , respectively. The number of N_{st} is approximately 6.3 times to 10.1 times of N_t for Animalia, Plantae and Fungi. For Chromista, Protozoa and Viruses, the number of N_{st} is approximately 3.8 times of N_t .

183

184

185

186

187

189

190

191

192

193

194

195

197

198

199

201

202

203

204

205

207

208

209

211

212

213

214

215

216

217

218

219

220

221

222

223

225

226

227

229

230

231

Fractal property of each taxa level in the tree of life

An assessment of the size-frequency distribution of subtaxa in any taxa shows a consistent power-law relation between the number of subordinate taxa in each taxa and the frequency of taxa with same number of subordinate taxa at any taxonomic rank. Figure 3 shows the fractal dimension (power-law exponent D_t) for each taxa level of the entire tree of They reveals the existence of self-similarity in each taxa level with fractal dimension $D_t(genus)=1.62$, $D_t(family)=1.42, D_t(order)=1.56, D_t(class)=1.57, and$ $D_t(phylum)=1.72$, respectively. The D_t values were estimated with power law model and can not represent the influence of the long tail of low frequency taxa with very large subtaxa size. We then converted the rank abundance plot into rank accumulating abundance plot in order to reflect the long tail. The fractal dimension (power-law exponent D_{ac}) for accumulating frequency plot is related with rank abundance fractal dimension D_t from Equation 5. The values of D_{ac} for different taxa level are $D_{ac}(genus)=1.41$, $D_{ac}(family)=1.05, \ D_{ac}(order)=1.35, \ D_{ac}(class)=0.67,$ and $D_{ac}(phylum)=1.11$.

Tendency of D_t and D_{ac} values were different among eukaryote, prokaryote, and Viruses. Among eukaryote 232 kingdoms, the variation tendency of fractal dimension 233 D_t and D_{ac} is similar at same taxa levels. D_t and D_{ac} 234 values at class and family levels were obviously smaller 235 than at other taxa levels. For Animalia, Plantae and Fun- 236 gi, the fractal dimension values were similar to values 237 for entire tree of life. Except at class level, the D_t val- 238 ues for Protozoa and Chromista were greater than val- 239 ues for entire tree. The tendency of fractal dimension 240 among prokaryotic taxa levels is different with eukary- 241 otic kingdom. The fractal dimensions D_t for bacteria 242 and archaea in all taxa levels were all greater than val- 243 ues for entire tree of life. D_t for genus and family level 244 were smaller than other taxa level, but D_{ac} for different 245 bacterial taxa levels were all closely to 1.3. D_t values 246 for archaea were similar to bacteria, but D_{ac} values for 247 archaea varied in wide range. The fractal dimension D_{t} 248 for viruses were obviously greater than other kingdoms. 249

We also accounted for the distribution of subtaxa 250 abundance in each taxa level (Fig 3). The mathematical 251 description of the proportion distribution (Equation 4) 252 indicated that the relation between abundance of subtaxa a and size of subtaxa in taxa could be also represented 254 by a power-law relationship. For the entire tree of life, 255 the abundance of subtaxa in taxa with small size of subtaxa was greater than in taxa with large size of subtaxa. 257 However, the abundance of subtaxa in taxa with same 258

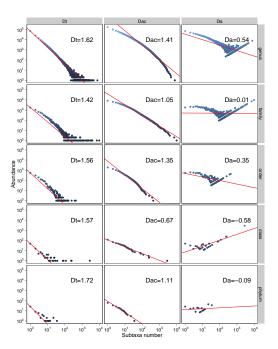


Figure 3: Relationship between the number of taxa and subtaxa number for the entire tree of life

frequency was increase linear with the size of subtaxa. Accordingly, the abundance of subtaxa in taxa with small and large sizes was greater than in taxa with intermediate size. Since $D_a = 1 - D_t$, the proportion for taxa with small size of subtaxa number should similar with the proportion for taxa with large size of subtaxa number when $D_t \approx 1$. However, the long tail of taxa with large size of subtaxa would skewed the slope of lineage regression for subtaxa abundance distribution. Accordingly, D_{ac} values could roughly refer D_a values because D_{ac} values can reflect the influence of long tail. For genus and order with $D_{ac} > 1$, the abundance of species and family in genus and order with small species and family number was greater than in genus and order with great species and family number, respectively. For class with D_{ac} < 1, the abundance of order in class with small order number was greater than in class with great order number. For family and phylum with $D_{ac} \approx 1$, the abundance of genus and class in family and phylum with small genus and class number was greater than in family and phylum with great genus and class number, respectively.

The distribution of subtaxa abundance was also different among eukaryote, prokaryote, and Viruses (Fig S1-S8). The D_a values of eukaryotic kingdoms were most similar with the entire of tree of life. The D_a values for genus and order of eukaryotic kingdoms were

all greater than zero, whereas the D_a values for class $_{309}$ of eukaryotic kingdoms were all smaller than zero. The 310 D_a values for family of eukaryotic kingdoms were close 311 to zero, except D_a values of Chromista and Protozoa 312 which were approximately -0.5. The D_a values for 313 genus, order, and class of archaea were greater than ze- 314 ro, and for family and phylum were less than zero. All D_a values of bacteria were greater than zero, indicating 316 that the abundance of subtaxa in all bacteria taxa with s- 317 mall subtaxa number was greater than in taxa with great 318 subtaxa number. On the contrary, all D_a values of Virus- 319 es were greater than zero.

Discussion

259

260

261

262

263

266

267

268

270

272

273

275

276

277

279

280

283

284

287

288

289

290

291

292

294

295

296

297

298

299

300

302

303

304

306

307

308

Knowing the fractal property of tree of life has been a question of great interest motivated in part of our collective curiosity about the evolution of different types of life, and in part by the need to provide a reference point 327 for current and future pattern of biological diversity. In 328 this paper, we describe two type of fractal property in 329 the tree of life, the fractal dimension among different 330 taxa levels (D_r) and between taxa and subtaxa (D_t) .

The values of fractal dimension D_r were different among different kingdoms. The D_r value represents 333 the scales among different taxa levels, which may pro- 334 mote the discrete evolutionary forces drive diversification across different domination. The evolutionary of 336 organisms is driven with both natural variation and nat- 337 ural selection (Foote, 2012). We now know that the 338 mechanisms of natural variation entailing recombination in its various forms differ starkly between prokary- 340 otes and eukaryotes (Bapteste et al., 2009; Drake, 1999). 341 Among eukaryotes, meiosis ensures reciprocal recom- 342 bination among homologous chromosomes and reassortment of alleles within lineages that recombine within or very near (in the case of hybridization) species 345 boundaries (Ramesh, Malik, and Logsdon Jr, 2005). 346 But for prokaryotes, the mechanisms of natural variation are quantitatively, and many would say fundamen- 348 tally, different from what goes on in sexual eukaryotes 349 (Bapteste et al., 2009; Lake, 2009). These mechanism- 350 s include, gene transfer agents and integrons (Frost 351 et al., 2005). In eukaryotes, the D_r values for Fungi, 352 Chromista and Protozoa were greater than Animalia and Plantae. The Animalia and Plantae kingdoms were multicellular organisms, but some organisms in the Fungi and Chromista kingdoms and all organisms in Protozoa were single celled organisms (Woese, Kandler, 357 and Wheelis, 1990). It is already known that in singlecelled eukaryotes, endosymbiosis and gene transfer are important processes for evolution (Hotopp et al., 2007;

Moustafa et al., 2009). Increasing knowledge of the genomes of protists may thus in the future expand our conclusion: not only are the tree of life and prokaryotic evolution are two different things, but all microbial evolution (that of prokaryotes and protists) may also be poorly described if addressed in an exclusively tree-like framework (Adl et al., 2007). The fractal dimension for Virus was smaller than prokaryote, was greater than Animalia, Plantae and fungi in eukaryote, and was similar with Chromista and Protozoa in eukaryote. Nevertheless, fractal dimension value did not definitely indicate evolutionary force. The fractal dimension values for Virus was almost equal to the fractal dimension values for Chromista, but the evolutionary force for Virus and Chromista is obviously different (Villarreal, 2006; Drake, 1999).

In each taxa levels, the frequency of taxa with same subtaxa sizes also follow the power-law, which indicated the fractal property of subtaxa numbers in each taxa level. Fractal dimension (D_t) indicates the distribution of taxa with rare and frequent subordinate taxa. The fractal dimension for genera calculated 30 year ago based on 70 000 species was 1.59 (Burlando, 1990), which is very similar to 1.62 reported in our study based on more than 2 million species. This results might suggests that the fractal pattern of diversity in genera is reliably, although species number increase about 30 times. The D_t values for each taxa level were similar, whereas the D_{ac} values for class was extremely lower than for other taxa levels because of the scatting of points at the lower end. Similar fractal dimension at different taxa levels might implies that tree of life is scale free at both the pattern of both macro and micro evolution (Raff, 2000). The long tail in size frequency distribution appears that power law model under estimate the size of large taxa (Burlando, 1990). However, the distinctly difference between D_t and D_{ac} might suggests (Burlando, 1993). The skewness of distribution caused by the presence of large size taxa has been regard as an evidence of (Blum and Francoise, 2006). However, the skewness can also be viewed as a scaling cutoff, which shows a transition from fractal to non-fractal diversity (Burlando, 1990). Consequently, D_t values and scatting points denote frequency distribution of fractal to non-fractal distributing taxa, and D_{ac} values show the feature of both the fractal to non-fractal diversity. Subtaxa abundance distribution is also influence by both the fractal to non-fractal distributing taxa. Accordingly, D_a values represents the subtaxa abundance distribution is related to D_{ac} rather than D_t .

Fractal dimension of size frequency distribution of subtaxa in each taxa varied with kingdoms. The D_t

320

321

362

363

364

368

369

370

371

372

373

375

376

377

379

380

381

383

384

385

387

388

389

391

392

393

394

395

396

398

399

400

402

403

406

407

408

409

410

411

412

values for multiple cellular organisms (e.g. Animali- 413 a, Plantae, and Fungi) were smaller than the D_t vales 414 for singular cellular organisms (Bacteria, Archaeal, Pro, 415 Protozoa and Chromista). The D_t values for Virus were 416 greater than all other kingdoms. The D_t vales yield a 417 diversity measure, since high D_t values indicates that 418 taxa with one or a few-taxa are more numerous. In other words, the kingdom with high D_t values has proved with high diversity pattern. The results in present study might suggest that evolutionary scaling is closely relat- 422 ed to the morphologic scaling of organisms (Marquet 423 et al., 2005). The size of an organism affects its al- 424 1 aspects of life, including metabolic, growth, mortal- 425 ity, and other vital rates (Gouws, Gaston, and Chown, 426 2011; Coetzee, le Roux, and Chown, 2013). The body 427 size spectra in natural community are scale-free, which is the product of intra- and interspecies regulation of 429 the relative abundance of organisms of different sizes 430 (Giometto et al., 2013).

We recognize a number of factors that can influence the fractal property. 432

Taxa definitions. Different taxonomic communities use different levels of differentiation to define taxonomic levels (Mora et al., 2011). This difference implies 436 that the numbers of taxa for different taxonomic communities are not directly comparable. For example, the 438 species concept for prokaryotes tolerates a much higher 439 degree of genetic dissimilarity than in most eukaryotes 440 (opez Garcia and Moreira, 2008). Species take longer 441 to isolate in prokaryotes than in eukaryotes due to horizontal gene transfers among phylogenetic (Ochman, Lawrence, and Groisman, 2000). Thus, implication of estimated fractal dimensions are different for different 445 taxonomic communities. Nevertheless, the aim of the 446 present study is describing the hierarchical structure of the Tree of Life but not the topological property. We found that in any taxonomic communities, there is a constantly follows power-law rule for rank-abundance relationship between taxa number and diversity subordinate taxa.

Completeness of the tree of life. It is obviously that the tree of life is still incomplete at present (Benton and Ayala, 2003). The number of eukaryotic species have been estimated to be 8.7 million on earth, but the catalogued species is just 1.2 million at present (Mora et al., 2011). Although the catalogued species number is approximately 10 thousand, it is believe that isolated prokaryotic species is only 1% of entire prokaryotic species at present (Gich et al., 2012). Although the rate of catalogued species varied from 1% (prokaryotes) to 70% (Plantae), there is a constantly follows power-law rule for rank-abundance relationship between taxa

number and diversity subordinate taxa. These results indicated that new discovered species might influence the fractal dimension but not the power-law relationship tendency. Furthermore, increase in the number of higher taxa will distort the shape of the current tree of life. Increasing number of new discovered higher taxa in ongoing for prokaryotes, but the number of catalogued higher taxa is almost reach the entire number of higher taxa for eukaryotes, except Chromista, Protozoa and fungi (Mora et al., 2011). These results suggest that our fractal property analysis for prokaryotes and Chromista, Protozoa and Fungi in eukaryotes should be interpreted with that caution in mind.

Self-similarity of the tree of life. The tree of life is widely accept to be self-similarity. Sub-fractal structure for different taxonomic communities varied in a wide range due to various self-similarity property. However, in this study we do not concern the topological of tree of life, but the diversity number in each taxonomic level. The consistent patterns for entire tree of life imply that the different self-similarity in sub-fractal structure do not obscure the robust underlying relationship for inter- and intra-taxonomic levels.

In summary, the diversity for each level of the Tree of Life display a consistent power-law rules for interand intra-taxonomic levels. The discrepancy of fractal nature indicates different evolutionary force for various kingdoms. The distribution of taxa size is governed by fractal diversity but skewed by overdominating taxa with low frequency. The distribution of subtaxa abundance is influence by both fractal and non-fractal overdominating taxa. The use of fractal geometry provides a unified view of diversity in tree of life and might therefore give clue to the evolutionary of tree of life.

References

Adl SM, Leander BS, Simpson AG, Archibald JM, Anderson OR, Bass D, Bowser SS, Brugerolle G, Farmer MA, Karpov S, et al. 2007. Diversity, nomenclature, and taxonomy of protists. Systematic Biology 56:684–689.

Bapteste E, O'Malley M, Beiko R, Ereshefsky M, Gogarten J, Franklin-Hall L, Lapointe FJ, Duprus J, Dagan T, Boucher Y, Martin W. 2009. Prokaryotic evolution and the tree of life are two different things. *Biology Direct* 4:34.

Benton MJ, Ayala FJ. 2003. Dating the tree of life. *Science* 300:1698–1700.

Blum MG, Francoise O. 2006. Which random processes describe the tree of life? a large-scale study of phylogenetic tree imbalance. *Systematic Biology* 55:685–691.

Brown J, Gupta V, Li BL, Milne B, Restrepo C, West G. 2002. The fractal nature of nature: power laws, ecological complexity and biodiversity. *Philosophical transactions of the Royal Society of London Series B, Biological sciences* 357:619–626.

Burlando B. 1990. The fractal dimension of taxonomic systems. *Journal of Theoretical Biology* 146:99–114.

468

469

470

471

472

473

474

475

476

477

478

480

481

482

483

484

485 486

488

489 490

491

492 493

494

496

497 498

499

500 501

502

504 505

506

507

508

509

510

511

512

514

520

521

522

523

524

525

526

527

528

529

531

- Burlando B. 1993. The fractal geometry of evolution. Journal of 532 Theoretical Biology 163:161-172
- Chaline J, Nottale L, Grou P. 1999. Is the evolutionary tree a fractal 534 structure? Comptes Rendus de l'Academie des Sciences Series IIA Earth and Planetary Science 11:717-726.

535

545

- Ciccarelli FD, Doerks T, Von Mering C, Creevey CJ, Snel B, Bork P. 537 2006. Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283-1287.
- Coetzee BWT, le Roux PC, Chown SL. 2013. Scale effects on the body size frequency distributions of african birds: patterns and potential mechanisms. Global Ecology and Biogeography 22:380-
- Delsuc F, Brinkmann H, Philippe H. 2005. Phylogenomics and the reconstruction of the tree of life. Nature Reviews Genetics 6:361-375
- Doolittle W. 2009. The practice of classification and the theory of 547 evolution, and what the demise of charles darwin's tree of life hypothesis means for both of them. Philosophical transactions of the 549 Royal Society of London Series B, Biological sciences 364:2221- 550 2228
- Drake J. 1999. The distribution of rates of spontaneous mutation over viruses, prokaryotes, and eukaryotes. Annals of the New York Academy of Sciences 870:100-107.
- Foote M. 2012. Evolutionary dynamics of taxonomic structure. Biology Letters 8:135-138.
- Frost LS, Leplae R, Summers AO, Toussaint A. 2005. Mobile genetic elements: the agents of open source evolution. Nature Reviews Microbiology 3:722-732.
- Gich F, Janys MA, König M, Overmann J. 2012. Enrichment of previously uncultured bacteria from natural complex communities by adhesion to solid surfaces. Environmental Microbiology 14:2984-
- Giometto A, Altermatt F, Carrara F, Maritan A, Rinaldo A. 2013. Scaling body size fluctuations. Proceedings of the National Academy of Sciences 110:4646-4650.
- Gouws EJ, Gaston KJ, Chown SL. 2011. Intraspecific body size frequency distributions of insects. PLoS ONE 6:e16606.
- Herrada E, Tessone C, Klemm K, Eguluz V, Hernndez-Garca E, Duarte C. 2008. Universal scaling in the branching of the tree of life. PloS ONE 3:e2757.
- Hotopp JCD, Clark ME, Oliveira DC, Foster JM, Fischer P, Torres MCM, Giebel JD, Kumar N, Ishmael N, Wang S, et al. 2007. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317:1753-1756.
- Lake JA. 2009. Evidence for an early prokaryotic endosymbiosis. Nature 460:967-971.
- Lane N. 2011. Energetics and genetics across the prokaryote-513 eukaryote divide. Biology Direct 6:35.
- Mace GM, Gittleman JL, Purvis A. 2003. Preserving the tree of life. 515 Science 300:1707-1709. 516
- Marquet P, Quiåones R, Abades S, Labra F, Tognelli M, Arim M, Ri-517 vadeneira M. 2005. Scaling and power-laws in ecological systems. 518 The Journal of Experimental Biology 208:1749-1769. 519
 - Mora C, Tittensor D, Adl S, Simpson A, Worm B. 2011. How many species are there on earth and in the ocean? PLoS biology 9:e1001127.
 - Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D. 2009. Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324:1724-1726.
 - Ochman H. Lawrence JG, Groisman EA, 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405:299-304.
 - opez Garcia P, Moreira D. 2008. Tracking microbial biodiversity through molecular and genomic ecology. Research in Microbiology 159:67-73.
 - Rabosky D, Slater G, Alfaro M. 2012. Clade age and species rich-

- ness are decoupled across the eukaryotic tree of life. PLoS biology 10:e1001381.
- Raff RA. 2000. Evo-devo: the evolution of a new discipline. Nature Reviews Genetics 1:74-79.
- Ramesh MA, Malik SB, Logsdon Jr JM. 2005. A phylogenomic inventory of meiotic genes: evidence for sex in giardia and an early eukaryotic origin of meiosis. Current Biology 15:185–191.
- Rosindell J, Harmon L. 2012. Onezoom: a fractal explorer for the tree of life. PLoS biology 10:e1001406.
- Solow AR. 2005. Power laws without complexity. Ecology Letters 8:361-363.
- Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D, Berghe EV, Worm B. 2010. Global patterns and predictors of marine biodiversity across taxa. Nature 466:1098-1101.
- Villarreal LP. 2006. How viruses shape the tree of life. Future Medicine 1:587-595.
- Woese CR, Kandler O, Wheelis ML. 1990. Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proceedings of the National Academy of Sciences 87:4576-4579.