The fractal dimension of the tree of life
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Abstract

The structure pattern of the tree of life clues on key ecological issues; hence knowing the fractal dimension is the
fundamental question in understanding the tree of life. Yet the fractal dimension of the tree of life remains unclear
since the scale of the tree of life has hypergrown in recent years. Here we show that the tree of life displays a
consistent fractal nature for inter- and intra-taxonomic levels, but the fractal dimensions were different among different
kingdoms. The fractal dimension of inter-taxonomic levels (D,) is 0.873 for the entire tree of life, which smaller than
the values of D, for Animalia and Plantae but greater than the values of D, for Fungi, Chromista, and Protozoa. The
hierarchical fractal dimensions values for prokaryotic kingdoms are lower than for other kingdoms. The D, value
for Viruses was lower than most eukaryotic kingdoms, but greater than prokaryotes. In the entire tree of life, intra-
taxonomic fractal dimensions (D;) for genus are 1.62, for family 1.42 , for order 1.56 , for class 1.57 , and for phylum
1.72. The distribution of taxa size is governed by fractal property but skewed by overdominating taxa with large
subtaxa size. The fractal dimensions of accumulating frequency (D,.) could eliminate the skewness effect of taxa
with large subtaxa size: for genus D, value was 1.41, for family 1.05, for order 1.35, for class 0.67, and for phylum
1.11. The proportion of subtaxa in each taxa with small and large sizes was greater than in taxa with intermediate
size. The slope value D,-higher proportion of taxa with small subtaxa size when D, > 0, and higher proportion
of taxa with large subtaxa size when D, < O-related closely to D, values, but not D, values. This results suggest
that the distribution of subtaxa in taxa can be predicted with both fractal dimension and skewness property. Our
study determined the fractal dimensions for inter- and intra-taxonomic levels of the present tree of life. These results
emphases the need for further theoretical studies, as well as predictive modelling, to interpret the different fractal
dimension for different taxonomic groups and skewness of taxa with large subtaxa size.

Introduction 13 of evolution (Doolittle, 2009), determining the threaten
1 of diversity (Mace, Gittleman, and Purvis, 2003), and
15 understanding the underlying mechanisms of constrain
16 ecological complexity (Solow, 2005). Fractal phenom-
17 ena, which is a mathematical object that has a fractal di-
1¢  mension that usually exceeds its topological dimension
19 and may fall between the integers, are widespread in na-
20 ture (Brown et al., 2002). The tree of life has long been
21 recognized as a fractal structure, including the diversity
22 of life and taxonomic systems in the tree of life, which
23 have self-similar features that look the same when there
2« 1is a change in scale (Burlando, 1990, 1993; Chaline,
»s  Nottale, and Grou, 1999). Recently released OneZoom
2 visualise the tree of life based on an adaptation of fractal
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Understanding the pattern of the tree of life has long
been a driving force for system biologist. Since the dra-
matic development in molecular technology, there has
been an exponential growth in the number of clades in
tree of life each year (Ciccarelli et al., 2006). The end
point of the tree of life is the construction of the sin-
gle phylogenetic tree linking all species living and ex-
tinct (Benton and Ayala, 2003). The hierarchical struc-
ture of tree of life contains valuable clues on the key is-
sue of realizing the modern diversification of life (Mora
et al., 2011; Tittensor et al., 2010), accessing the shape

tai, 264003, China. Tel: 86-535-2109123 28 The fractal property Of the tree Of llfe ShOWS a e-
Email address: bma@yic.ac.cn (Bin Ma) 20 mergent feature that scaling relationship are self-similar
Preprint submitted to PeerJ January 22, 2014

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.198v3 | CC-BY 3.0 Open Access | received: 23 Jan 2014, published: 23 Jan 2014




30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

al

72

73

74

75

76

77

78

79

over a wide range of taxon scales (Rabosky, Slater, and
Alfaro, 2012; Lane, 2011; Foote, 2012; Chaline, Not-
tale, and Grou, 1999; Solow, 2005; Marquet et al., 2005;
Burlando, 1990, 1993; Herrada et al., 2008). Power-
law curve of size-frequency distributions of taxa, de-
rived from a number of checklists and catalogues of
species concerning protists, fungi, plants, and animal-
s, pointed out a very large number of taxa with one or
few subtaxa and a very small number of taxa with many
subtaxa (Mora et al., 2011; Burlando, 1990). The frac-
tal dimension of the taxonomic assemblages represents
their diversity characterization, which is viewed as an
evolutionary pattern related to scaling evolutionary pro-
cesses (Villarreal, 2006; Marquet et al., 2005; Bapteste
et al., 2009; Foote, 2012). The investigation in the frac-
tal geometry of the taxonomic system from both fossil
record and phylogenetic systems indicated that arrange-
ment of life taxonomy generally show fractal properties
reflects evolutionary feature (Rabosky, Slater, and Al-
faro, 2012). The branching patterns of a large set of phy-
logenetic tree follow allometric rules conserved across
the different levels in the tree of life (Herrada et al.,
2008). The universal patterns of phylogenetic differ-
entiation suggests that similar evolutionary forces drive
diversification across the broad range of scale, shaping
the diversity of life in the planet (Brown et al., 2002).

The fractal dimension of taxonomic systems have
been previously estimated based on the size-frequency
distributions of taxa with different number of subtax-
a (Burlando, 1990). Non-random occurrence of fractal
dimension values among groups suggests a relationship
with true biologic diversity patterns. The largest check-
list used in this study contained 70,000 species, and
catalogues of species concerning protists, fungi, plants
and animals. At present the number of species in tree
of life, however, reach to more than 2,000,000 species,
and with different kingdom system (Delsuc, Brinkman-
n, and Philippe, 2005). Understanding the newly pattern
of tree of life require knowing the fractal properties of
the tree of life. Here we analyze the hierarchic structure
of the global tree of life are obtained, allowing a char-
acterization of the tree of life through the estimation of
its fractal dimension. This emphasizes the self-similar
relationship for size-frequency distributions of both the
hierarchic size among taxon levels and the subtaxa di-
versity in each taxon.

Materials and Methods

Data sets
The data sets used in this paper were based on the
classification of currently valid species from the Tax-

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.198v3 | CC-BY 3.0 Open Access | received: 23 Jan 2014, published: 23 Jan 2014

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

119

120

121

122

123

onomy Database of NCBI (http://www.ncbi.nlm.
nih.gov/taxonomy) and the Catalogue of Life (www.
sp2000.org). The eukaryotic species in the former is
largely contained within the latter, whereas the prokary-
otic species in the latter is largely contained within the
former. These databases were screened for homonyms
and the classification of taxa into multiple clades. The
combined data sets included five eukaryotic domina-
tions and two prokaryotic dominations, with 126 phy-
lum, 259 class, 4163 order, 14939 family, 214158
genus, and 2031438 species. To describe the fractal
property of tree of life, we probe the fractal pattern of
intra- and inter-taxonomic level of tree of life.

The inter-taxonomic fractal property of tree of life

We related the logarithmic number of taxa against
their numerical rank and estimated the parameters of
linear models with least squares regression models:

lg(Nr) =-D, + U (1)

where N, denotes the number of taxon in taxonomic lev-
el r, u = Ig(Ny) + r1 D, is the proportionality coefficient,
and D, is the fractal dimension among taxonomic levels
in the tree of life. Since data are not strictly independen-
t across hierarchically organized taxa, we used models
based on generalized least squares assuming autocorre-
lated regression errors.

The intra-taxonomic fractal property of tree of life

For each taxonomic rank from phylum to genus, we
represent the frequency distribution of taxa with differ-
ent subordinate taxa abundance in each taxa as a rank-
abundance curve. The taxa were arranged in increas-
ing order of the abundance of its subordinate, and tax-
a frequency were plot as a function of the abundance
of subordinate taxa. The probability distribution of the
frequency of taxa with different subordinate taxa abun-
dance, P(k), can be represented by a power-law (scale
free) with the subordinate taxa abundance:

Py =Pk 2

in which P; refer to the number of the taxon with
only one subordinate taxa, k to the size rank of the sub-
ordinate taxa abundance, and D; to the scaling exponen-
t, which also called fractal dimension” for . We used
logarithmic scales for both axes of the rank-abundance
curve, so that the power-law abundance distribution is
represented as a straight line, and the slope is equal to
the power-law exponent. We estimated the scaling ex-
ponent of power law using maximum likelihood method
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with BFGS optimization to eliminate the influence of
the long tail at low frequency. In order to include the
influence of long tail, we converted the taxa abundance
curve into the accumulating taxa abundance based on
the rank of subordinate taxa:

Ny = Nyk™Pe 3)

in which N; to the total number of taxa, and D, to
the fractal dimension for accumulated taxa frequency
distribution. Combining equation 2 and 3 yield such a
relation:

Pl N1
—)D; = (——))Dac 4
()7 =) )
In term of equation 4, we have:
N1
D,c = D, xlogr (—) 5
Pe - Ny
The distribution of taxonomic abundance is:
My =kx Pik? = P\K'™P = K" (6)

in which M; refer to the taxa abundance at different
rank, D, = 1 — D, to the slope of taxa abundance distri-
bution.

Results

Fractal property of hierarchical structure in the tree of
life

We complied 2 million currently valid species of
the tree of life from publicly accessible database. The
power-law relation between abundance in each taxa lev-
el and the rank of each taxa level indicated the frac-
tal property of hierarchical structure in the tree of life.
For the entire tree of life we find fractal dimension of
hierarchical structure D,=0.873 (Figure 1). Figure 2
shows the power-law property of hierarchical structure
for eight kingdoms. It reveal that D,=1.004 and 0.889
for Animalia and Plantae, respectively. Among all eu-
karyotic kingdoms, only the D, for Animalia and Plan-
taec were greater than the entire tree of life. The val-
ues of D, for Fungi, Chromista, and Protozoa were al-
1 lower than the entire tree of life, with hierarchical
fractal dimension D,(fungi)=0.8, D,(chromista)=0.586,
and D, (protozoa)=0.573, respectively. For archaea and
bacteria, we find D, values were 0.444 and 0.521, re-
spectively. This results indicates that hierarchical fractal
dimensions for prokaryotic kingdoms are significantly
lower than for other kingdoms. The Viruses have hierar-
chical fractal dimension D,=0.596, which is lower than

Dr=0.873

Abundance

specie
genus -
family |
order

class

phylum -
kingdom -

Figure 1: Relationship between the number of taxa and hierarchy of
each taxonomic rank for the entire tree of life
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Figure 2: Relationship between the number of taxa and hierarchy of
each taxonomic rank for each kingdom
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most eukaryotic kingdoms, but greater than prokary-
otes.

The value of fractal dimension for hierarchical taxa
level indicates the universal scaling between the number
of taxa (N,) and subordinate taxa (Ny): Ny, = N, x 10Pr.
For the entire tree of life, the number of Ny, is approx-
imately 7.5 times of N, since D, value is 1.133. The
D, values for bacteria and archaea denote that the the
number of Ny, is approximately 2.8 times and 3.3 times
of N,, respectively. The number of N, is approximate-
ly 6.3 times to 10.1 times of N; for Animalia, Plantae
and Fungi. For Chromista, Protozoa and Viruses, the
number of Ny, is approximately 3.8 times of N,.
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Fractal property of each taxa level in the tree of life

An assessment of the size-frequency distribution of
subtaxa in any taxa shows a consistent power-law
relation between the number of subordinate taxa in
each taxa and the frequency of taxa with same num-
ber of subordinate taxa at any taxonomic rank. Fig-
ure 3 shows the fractal dimension (power-law expo-
nent D;) for each taxa level of the entire tree of
life. They reveals the existence of self-similarity in
each taxa level with fractal dimension D,(genus)=1.62,
D(family)=1.42, D,(order)=1.56, D,(class)=1.57, and
D(phylum)=1.72, respectively. The D, values were es-
timated with power law model and can not represen-
t the influence of the long tail of low frequency tax-
a with very large subtaxa size. We then converted
the rank abundance plot into rank accumulating abun-
dance plot in order to reflect the long tail. The frac-
tal dimension (power-law exponent D,.) for accumu-
lating frequency plot is related with rank abundance
fractal dimension D; from Equation 5. The values
of D, for different taxa level are D,.(genus)=1.41,
D,.(family)=1.05, D,.(order)=1.35, D,.(class)=0.67,
and D,.(phylum)=1.11.

Tendency of D, and D, values were different among
eukaryote, prokaryote, and Viruses. Among eukaryote
kingdoms, the variation tendency of fractal dimension
D, and D, is similar at same taxa levels. D, and D,
values at class and family levels were obviously smaller
than at other taxa levels. For Animalia, Plantae and Fun-
gi, the fractal dimension values were similar to values
for entire tree of life. Except at class level, the D, val-
ues for Protozoa and Chromista were greater than val-
ues for entire tree. The tendency of fractal dimension
among prokaryotic taxa levels is different with eukary-
otic kingdom. The fractal dimensions D, for bacteria
and archaea in all taxa levels were all greater than val-
ues for entire tree of life. D, for genus and family level
were smaller than other taxa level, but D, for different
bacterial taxa levels were all closely to 1.3. D, values
for archaea were similar to bacteria, but D,. values for
archaea varied in wide range. The fractal dimension D,
for viruses were obviously greater than other kingdoms.

We also accounted for the distribution of subtaxa
abundance in each taxa level (Fig 3). The mathematical
description of the proportion distribution (Equation 4)
indicated that the relation between abundance of subtax-
a and size of subtaxa in taxa could be also represented
by a power-law relationship. For the entire tree of life,
the abundance of subtaxa in taxa with small size of sub-
taxa was greater than in taxa with large size of subtaxa.
However, the abundance of subtaxa in taxa with same
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Figure 3: Relationship between the number of taxa and subtaxa num-
ber for the entire tree of life

frequency was increase linear with the size of subtax-
a. Accordingly, the abundance of subtaxa in taxa with
small and large sizes was greater than in taxa with inter-
mediate size. Since D, = 1 — Dy, the proportion for taxa
with small size of subtaxa number should similar with
the proportion for taxa with large size of subtaxa num-
ber when D, ~ 1. However, the long tail of taxa with
large size of subtaxa would skewed the slope of lineage
regression for subtaxa abundance distribution. Accord-
ingly, D, values could roughly refer D, values because
D, values can reflect the influence of long tail. For
genus and order with D, > 1, the abundance of species
and family in genus and order with small species and
family number was greater than in genus and order with
great species and family number, respectively. For class
with D,. < 1, the abundance of order in class with s-
mall order number was greater than in class with great
order number. For family and phylum with D, = 1,
the abundance of genus and class in family and phylum
with small genus and class number was greater than in
family and phylum with great genus and class number,
respectively.

The distribution of subtaxa abundance was also dif-
ferent among eukaryote, prokaryote, and Viruses (Fig
S1-S8). The D, values of eukaryotic kingdoms were
most similar with the entire of tree of life. The D, val-
ues for genus and order of eukaryotic kingdoms were
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all greater than zero, whereas the D, values for class
of eukaryotic kingdoms were all smaller than zero. The
D, values for family of eukaryotic kingdoms were close
to zero, except D, values of Chromista and Protozoa
which were approximately -0.5. The D, values for
genus, order, and class of archaea were greater than ze-
ro, and for family and phylum were less than zero. All
D, values of bacteria were greater than zero, indicating
that the abundance of subtaxa in all bacteria taxa with s-
mall subtaxa number was greater than in taxa with great
subtaxa number. On the contrary, all D, values of Virus-
es were greater than zero.

Discussion

Knowing the fractal property of tree of life has been
a question of great interest motivated in part of our col-
lective curiosity about the evolution of different types of
life, and in part by the need to provide a reference point
for current and future pattern of biological diversity. In
this paper, we describe two type of fractal property in
the tree of life, the fractal dimension among different
taxa levels (D,) and between taxa and subtaxa (D,).

The values of fractal dimension D, were differen-
t among different kingdoms. The D, value represents
the scales among different taxa levels, which may pro-
mote the discrete evolutionary forces drive diversifica-
tion across different domination. The evolutionary of
organisms is driven with both natural variation and nat-
ural selection (Foote, 2012). We now know that the
mechanisms of natural variation entailing recombina-
tion in its various forms differ starkly between prokary-
otes and eukaryotes (Bapteste et al., 2009; Drake, 1999).
Among eukaryotes, meiosis ensures reciprocal recom-
bination among homologous chromosomes and reas-
sortment of alleles within lineages that recombine with-
in or very near (in the case of hybridization) species
boundaries (Ramesh, Malik, and Logsdon Jr, 2005).
But for prokaryotes, the mechanisms of natural varia-
tion are quantitatively, and many would say fundamen-
tally, different from what goes on in sexual eukaryotes
(Bapteste et al., 2009; Lake, 2009). These mechanism-
s include , gene transfer agents and integrons (Frost
et al., 2005). In eukaryotes, the D, values for Fungi,
Chromista and Protozoa were greater than Animalia and
Plantae. The Animalia and Plantae kingdoms were mul-
ticellular organisms, but some organisms in the Fun-
gi and Chromista kingdoms and all organisms in Pro-
tozoa were single celled organisms (Woese, Kandler,
and Wheelis, 1990). It is already known that in single-
celled eukaryotes, endosymbiosis and gene transfer are
important processes for evolution (Hotopp et al., 2007;
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Moustafa et al., 2009). Increasing knowledge of the
genomes of protists may thus in the future expand our
conclusion: not only are the tree of life and prokaryot-
ic evolution are two different things, but all microbial
evolution (that of prokaryotes and protists) may also be
poorly described if addressed in an exclusively tree-like
framework (Adl et al., 2007). The fractal dimension for
Virus was smaller than prokaryote, was greater than An-
imalia, Plantae and fungi in eukaryote, and was simi-
lar with Chromista and Protozoa in eukaryote. Never-
theless, fractal dimension value did not definitely indi-
cate evolutionary force. The fractal dimension values
for Virus was almost equal to the fractal dimension val-
ues for Chromista, but the evolutionary force for Virus
and Chromista is obviously different (Villarreal, 2006;
Drake, 1999).

In each taxa levels, the frequency of taxa with same
subtaxa sizes also follow the power-law, which indi-
cated the fractal property of subtaxa numbers in each
taxa level. Fractal dimension (D;) indicates the distri-
bution of taxa with rare and frequent subordinate taxa.
The fractal dimension for genera calculated 30 year a-
go based on 70 000 species was 1.59 (Burlando, 1990),
which is very similar to 1.62 reported in our study based
on more than 2 million species. This results might sug-
gests that the fractal pattern of diversity in genera is reli-
ably, although species number increase about 30 times.
The D; values for each taxa level were similar, where-
as the D,. values for class was extremely lower than
for other taxa levels because of the scatting of points
at the lower end. Similar fractal dimension at different
taxa levels might implies that tree of life is scale free
at both the pattern of both macro and micro evolution
(Raff, 2000). The long tail in size frequency distribu-
tion appears that power law model under estimate the
size of large taxa (Burlando, 1990). However, the dis-
tinctly difference between D, and D, might suggests
(Burlando, 1993). The skewness of distribution caused
by the presence of large size taxa has been regard as
an evidence of (Blum and Francoise, 2006). Howev-
er, the skewness can also be viewed as a scaling cutoff,
which shows a transition from fractal to non-fractal di-
versity (Burlando, 1990). Consequently, D, values and
scatting points denote frequency distribution of fractal
to non-fractal distributing taxa, and D, values show the
feature of both the fractal to non-fractal diversity. Sub-
taxa abundance distribution is also influence by both the
fractal to non-fractal distributing taxa. Accordingly, D,
values represents the subtaxa abundance distribution is
related to D, rather than D;,.

Fractal dimension of size frequency distribution of
subtaxa in each taxa varied with kingdoms. The D;
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values for multiple cellular organisms (e.g. Animali-
a, Plantae, and Fungi) were smaller than the D, vales
for singular cellular organisms (Bacteria, Archaeal, Pro,
Protozoa and Chromista). The D, values for Virus were
greater than all other kingdoms. The D, vales yield a
diversity measure, since high D, values indicates that
taxa with one or a few-taxa are more numerous. In oth-
er words, the kingdom with high D, values has proved
with high diversity pattern. The results in present study
might suggest that evolutionary scaling is closely relat-
ed to the morphologic scaling of organisms (Marquet
et al.,, 2005). The size of an organism affects its al-
1 aspects of life, including metabolic, growth, mortal-
ity, and other vital rates (Gouws, Gaston, and Chown,
2011; Coetzee, le Roux, and Chown, 2013). The body
size spectra in natural community are scale-free, which
is the product of intra- and interspecies regulation of
the relative abundance of organisms of different sizes
(Giometto et al., 2013).

We recognize a number of factors that can influence
the fractal property.

Taxa definitions. Different taxonomic communities
use different levels of differentiation to define taxonom-
ic levels (Mora et al., 2011). This difference implies
that the numbers of taxa for different taxonomic com-
munities are not directly comparable. For example, the
species concept for prokaryotes tolerates a much higher
degree of genetic dissimilarity than in most eukaryotes
(opez Garcia and Moreira, 2008). Species take longer
to isolate in prokaryotes than in eukaryotes due to hor-
izontal gene transfers among phylogenetic (Ochman,
Lawrence, and Groisman, 2000). Thus, implication of
estimated fractal dimensions are different for different
taxonomic communities. Nevertheless, the aim of the
present study is describing the hierarchical structure of
the Tree of Life but not the topological property. We
found that in any taxonomic communities, there is a
constantly follows power-law rule for rank-abundance
relationship between taxa number and diversity subor-
dinate taxa.

Completeness of the tree of life. It is obviously that
the tree of life is still incomplete at present (Benton
and Ayala, 2003). The number of eukaryotic species
have been estimated to be 8.7 million on earth, but the
catalogued species is just 1.2 million at present (Mora
et al., 2011). Although the catalogued species number
is approximately 10 thousand, it is believe that isolat-
ed prokaryotic species is only 1% of entire prokaryot-
ic species at present (Gich et al., 2012). Although the
rate of catalogued species varied from 1% (prokaryotes)
to 70% (Plantae), there is a constantly follows power-
law rule for rank-abundance relationship between taxa
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number and diversity subordinate taxa. These results
indicated that new discovered species might influence
the fractal dimension but not the power-law relation-
ship tendency. Furthermore, increase in the number of
higher taxa will distort the shape of the current tree of
life. Increasing number of new discovered higher taxa in
ongoing for prokaryotes, but the number of catalogued
higher taxa is almost reach the entire number of high-
er taxa for eukaryotes, except Chromista, Protozoa and
fungi (Mora et al., 2011). These results suggest that our
fractal property analysis for prokaryotes and Chromista,
Protozoa and Fungi in eukaryotes should be interpreted
with that caution in mind.

Self-similarity of the tree of life. The tree of life is
widely accept to be self-similarity. Sub-fractal structure
for different taxonomic communities varied in a wide
range due to various self-similarity property. Howev-
er, in this study we do not concern the topological of
tree of life, but the diversity number in each taxonomic
level. The consistent patterns for entire tree of life im-
ply that the different self-similarity in sub-fractal struc-
ture do not obscure the robust underlying relationship
for inter- and intra-taxonomic levels.

In summary, the diversity for each level of the Tree
of Life display a consistent power-law rules for inter-
and intra-taxonomic levels. The discrepancy of frac-
tal nature indicates different evolutionary force for vari-
ous kingdoms. The distribution of taxa size is governed
by fractal diversity but skewed by overdominating taxa
with low frequency. The distribution of subtaxa abun-
dance is influence by both fractal and non-fractal over-
dominating taxa. The use of fractal geometry provides a
unified view of diversity in tree of life and might there-
fore give clue to the evolutionary of tree of life.
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