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ABSTRACT

Background. Chromosome conformation capture, coupled with high throughput DNA sequencing in
protocols like Hi-C and 3C-seq, has been proposed as viable means to generate data to resolve the
genomes of microorganisms living in naturally occuring environments. Metagenomic Hi-C and 3C-seq
datasets have begun to emerge, but the feasibility of resolving genomes when closely related organisms
(strain-level diversity) are present in the sample has not yet been systematically characterised.

Methods. We developed a computational simulation pipeline for metagenomic 3C and Hi-C se-
quencing to evaluate the accuracy of genomic reconstructions at, above, and below an operationally
defined species boundary. We simulated datasets and measured accuracy over a wide range of
parameters. Five clustering algorithms were evaluated (2 hard, 3 soft) using an adaptation of the
extended B-cubed validation measure.

Results. When all genomes in a sample are below 95% sequence identity, all of the tested
clustering algorithms performed well. When sequence data contains genomes above 95% identity (our
operational definition of strain-level diversity), a naive soft-clustering extension of the Louvain method
achieves the highest performance.

Discussion. Previously, only hard-clustering algorithms have been applied to metagenomic 3C
and Hi-C data, yet none of these perform well when strain-level diversity exists in a metagenomic sample.
Our simple extension of the Louvain method performed the best in these scenarios, however, accuracy
remained well below the levels observed for samples without strain-level diversity. Strain resolution is also
highly dependent on the amount of available 3C sequence data, suggesting that depth of sequencing
must be carefully considered during experimental design. Finally, there appears to be great scope to
improve the accuracy of strain resolution through further algorithm development.

Keywords:  3C, HiC, chromosome conformation capture, microbial ecology, metagenomics, synthetic
microbial communities, simulation pipeline, metagenome assembly, read mapping, clustering, soft
clustering, external index

INTRODUCTION

The explicit and complete determination of the genomes present in an environmental sample is a highly
prized goal in microbial community analysis. When combined with their relative abundances, this detailed
knowledge affords a great deal of power to downstream investigations in such things as: community
metabolism inference, functional ecology, genetic exchange and temporal or inter-community comparison.
Unfortunately, the current standard methodology in DNA sequencing is incapable of generating data
of such exquisite detail and although raw base-pair yield has increased dramatically with technological
progress, a significant methodological source of information loss remains.

The organization of DNA into chromosomes (long-range contiguity) and cells (localization) is almost
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completely lost as a direct result of two requirements of high-throughput library based sequencing; cell
lysis (the DNA purification step) and the subsequent shearing (the DNA fragmentation step). What remains
in the form of direct experimental observation is short-range contiguity information. Beginning from this
observational evidence, the problem of determining long-range contiguity and thus reconstruction the
original genomic sources is handed over to computational algorithms, in particular genome assembly
algorithms. Computational approaches to genome assembly would have little success if not for the known
physical constraints (the sequential structure of DNA), a high degree of oversampling in what remains
(read depth) and the assumption that a very high degree of sequence identity (>95% ANI) implies a
common chromosomal origin.

Though the damage done in the steps of purification and fragmentation amounts to a tractable problem
in single-genome studies, in metagenomics the whole-sample intermingling of free chromosomes of
varying genotypic abundance is an enormous blow to assembly algorithms. Conventional whole-sample
metagenome sequencing (Tringe and Rubin, 2005) thus results in a severely underdetermined system,
where the number of unknowns exceeds the number of observations and the degree to which a given
metagenome is underdetermined depends variously on community complexity. Accurately and precisely
inferring cellular co-locality for this highly fragmented set of sequences, particularly in an unsupervised
de novo setting, and thereby achieving genotype resolution, remains an unsolved problem.

Recent techniques which repeatedly sample an environment, extracting a signal based on correlated
changes in abundance to identify genomic content that is likely to belong to individual strains or pop-
ulations of cells, have confidently obtained species resolution (Alneberg et al., 2013; Imelfort et al.,
2014) and begun to work toward strain (genotype) resolution (Cleary et al., 2015). Inferring abundance
per-sample from contig coverage (Alneberg et al., 2013; Imelfort et al., 2014) or k-mer frequencies (Cleary
et al., 2015) respectively, the strength of this discriminating signal is a function of community diversity,
environmental variation and sampling depth; and represents a significant computational task.

HiC (Lieberman-Aiden et al., 2009) is an extension of 3C (Dekker et al., 2002) exploiting high-
throughput sequencing, as is 3C-seq (Stadhouders et al., 2013) and related techniques such as tethered
conformation capture (Kalhor et al., 2012). Recently introduced to metagenomics (Beitel et al., 2014;
Burton et al., 2014; Marbouty et al., 2014) as an alternative to purely computational solutions, this family
of techniques attempts to capture the native conformational state of DNA prior to cell lysis. Thus bound,
cellular lysis is followed by DNA extraction and restriction digestion. In dilute conditions, the religation
of free ends within cross-linked DNA-protein complexes favors ligation of free ends that were in close
physical proximity prior to cross-linking. The cross-linking is then reversed and a series of steps applied
to prepare the ligation products for high-throughput sequencing. Post sequencing, the resulting proximity
ligation read-pairs provide direct experimental evidence of the cellular co-locality of the respective
short DNA sequences (read-pairs). Given sufficient sampling, proximity ligation (3C) read-pairs have
the potential to link points of genomic variation at the genotype level at much longer ranges than has
previously been possible (Selvaraj et al., 2013; Beitel et al., 2014).

Sequencing information generated in this way thus acts to recover a portion of the information lost in
conventional whole genome shotgun (WGS) sequencing. Expressed in terms of observation probability,
it has been shown that intra-chromosomal read-pairs (cis) follow a long-tailed distribution decreasing
exponentially with increasing genomic separation (Beitel et al., 2014). Inter-chromosomal read-pairs
(trans), modeled as uniformly distributed across chromosome pairs, typically occur an order of magnitude
less frequently than cis pairs, and inter-cellular read-pairs are an order of magnitude less frequently again
(Beitel et al., 2014). This hierarchy in observational probability has potential to be an extremely valuable
source of information with which to deconvolute conventionally generated metagenomes into species and
perhaps strains.

Previous work which leverages 3C data in assembly analysis has yielded algorithms focused on
scaffolding (Burton et al., 2013; Marie-Nelly et al., 2014). In the context of clonal genome sequencing, 3C
directed scaffolding can be applied directly to the entire draft assembly with reasonable success. Beyond
monochromosomal genomes, it has been necessary to first cluster (group) assembly contigs into chro-
mosome (plasmid) bins, after which scaffolding is applied to each bin in turn. A move to metagenomics
generally entails increased sample complexity and less explicit knowledge about composition. Effectively
clustering metagenomic assemblies, containing a potentially unknown degree of both species and strain
diversity, represents a challenge that to date has not be thoroughly investigated.

In this work, we describe the accuracy of various analysis algorithms applied to resolving the genomes
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of strains in metagenomic sequence data. The accuracy of these algorithms was measured over a range
of simulated experimental conditions, including varying degrees of evolutionary divergence around the
species boundary, and varying depths of generated sequence data. Finally, we discuss implications for
the design of metagenomic 3C experiments on systems containing strain-level diversity, and describe the
limitations of the present work.

MATERIALS AND METHODS

Representation

A contact map is formed by mapping proximity ligation read-pairs to the available reference and counting
occurrences between any two genomic regions (Belton et al., 2012); where the definition of a genomic
region is application dependent. Mathematically, the contact map is a symmetric square matrix .#, whose
raw elements m;; represent the set of observational frequencies between all genomic regions. The removal
of experimental bias by normalization, inference of spatial proximity and finally prediction of chromosome
conformation represents the majority of published work in the field to date (Lieberman-Aiden et al., 2009;
Noble et al., 2011; Yaffe and Tanay, 2011; Imakaev et al., 2012).

Defining the genomic regions as the set of contigs produced by WGS assembly and noting that the
contact map is equivalent to the adjacency matrix A of a weighted undirected graph G (Boulos et al.,
2013), an alternative graphical representation can be obtained. The eponymous contig graph expresses
the combined 3C and WGS assembly data as an undirected graph, where nodes n; represent contigs and
weighted edges e(n;,nj, w;;) represent the observed frequency w;; of 3C read-pairs linking contigs »; and
n;. Expressed as a graph, a host of graph theoretic analysis methods can be brought to bear on problems
in metagenomics. In particular, the utility of graph clustering in the reconstruction of community member
genomes has been successfully demonstrated for both synthetic and real communities (Beitel et al., 2014;
Burton et al., 2014; Marbouty et al., 2014).

Clustering

Placing entities into groups by some measure of relatedness is often used to reduce a set of objects O
into a set of clusters K and ideally where number of clusters is much less than the number of objects
(i.e. |K| < |0|). When object membership within the set of clusters K is mutually exclusive and
discrete, so that no object o; belongs to more than a single cluster kg, it is termed hard-clustering (i.e.
Yoi,0; € O | (0; C ki) A (0j C k1) A (K N & = 0)). Termed soft-clustering when the constraint is removed
and objects allowed to belong to multiple clusters, the potentially non-empty intersection between clusters
(x: N x; 2 0) is known as the overlap between ky, k.

Possibly motivated by a desire to obtain the plainest answer with maximal contrast, and for the sake
of relative mathematical simplicity, hard-clustering is the more widely applied approach. Despite this,
many problem domains exist in which cluster overlap reflects real phenomena. For instance, in the
metagenomic analysis of closely related species or strains, the tendency of the highly conserved core
genome to co-assemble into single contigs while the more distinct accessory genomes tend not to, implies
that a 1-to-1 correspondence of cluster-to-genome is not possible and an overlapping model is required.

From the aspect of prior knowledge, clustering algorithms fall into two categories: supervised, where
important details with respect to cluster definition are presented to the algorithm at the outset (e.g. number
of clusters, archetype objects); and unsupervised, where this is not required. Unsupervised algorithms, in
removing this a priori condition, would be preferable if not necessary in situations where such information
is unavailable (perhaps due to cost or accessibility) or the uncertainty in this information is high.

Appropriate Validation Measures

Although algorithmic complexity can ultimately dictate applicability to a given problem domain, the
quality of the resulting solution remains an overriding concern in assessing an algorithm’s value. Simply
put, clustering algorithms group objects together when they are similar (the same cluster) and separates
those objects which differ (different clusters). To fully assess the quality of a given clustering solution,
multiple aspects must be considered. Measures that fail to account for one aspect or another may
incorrectly rank solutions. Five important yet often incompletely addressed aspects of clustering quality
have been proposed (Amigé et al., 2009): homogeneity, completeness, size, number and lastly the notion
of a ragbag. Here, a ragbag is when preference is given to placing uncertain assignments in a single

3/20
Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1974v1 | CC-BY 4.0 Open Access | rec: 20 Apr 2016, publ: 20 Apr 2016




catch-all cluster, rather than spreading them across otherwise potentially homogeneous clusters or leaving
them as isolated nodes.

External measures, which compare a given solution to a gold-standard are a powerful means of
assessing quality and they themselves vary in effectiveness. Fi-score, the harmonic mean of the traditional
measures precision and recall, is frequently employed in the assessment of bioinformatics algorithms.
For clustering algorithms, it is perhaps not well known that F;-score fails to properly consider the aspect
of completeness (Amig6 et al., 2009) and further is sensitive to a preprocessing step where clusters and
class labels must first be matched (Hirschberg and Rosenberg, 2007). The entropy based V-measure
(Hirschberg and Rosenberg, 2007) was conceived to address these shortcomings, but does not consider
the ragbag notion nor the possibility of overlapping clusters and classes. The external validation measure
Bcubed (Bagga and Baldwin, 1998) addresses all five aspects and building from this, extended Bcubed
(Amigo et al., 2009) supports the notion of overlapping clusters and classes. Analogous to F;-score and
V-measure, extended Bcubed is also the harmonic mean of a form of precision and recall.

Still, all of these measures treat the objects involved in clustering as being equal in value when
assessing correct and incorrect placements. For some problem domains, it could be argued that correctly
classifying object A may be more important than correctly classifying object B. Conversely, that incorrectly
classifying object A may represent a larger error than incorrectly classifying object B. To this end, we
introduce per-object weighting to extended Bcubed (Equation 1) and propose using contig length (bp) as
the measure of inherent value when clustering metagenomic contigs.

Clustering Algorithm Selection

Supervised algorithms require a priori descriptive detail about the subject of study prior to analysis, while
unsupervised algorithms make no such demand. This a priori knowledge can be of crucial importance
scientifically, such as informing a clustering algorithm how many clusters exist within a dataset under
study. For the genome of a single organism, where cluster count corresponds to chromosome count,
independent estimation may be tenable. Extracting such descriptive information from an uncultured
microbial community in the face of ecological, environmental and historical variation is an onerous
requirement. For this reason, we only consider unsupervised algorithms, and focus attention to both hard
and soft clustering approaches.

Four graph clustering algorithms were considered: MCL, SR-MCL, the Louvain method and OClustR
(van Dongen, 2001; Shih and Parthasarathy, 2012; Blondel et al., 2008; Pérez-Sudrez et al., 2013). While
MCL and Louvain have previously been applied to 3C contig clustering (Beitel et al., 2014; Marbouty
et al., 2014), to our knowledge SR-MCL and OClustR have not. We did not consider the clustering
algorithm employed by (Burton et al., 2014) as it requires the number of clusters to be specified a priori.

Runtime parameters particular to each algorithm were controlled in the sweep as necessary (Table
2). The widely used MCL (markov clustering) algorithm (van Dongen, 2001) uses stochastic flow
analysis to produce hard-clustering solutions, where cluster granularity is controlled via a single parameter
(“inflation”). For this parameter, a range of 1.1 to 2.0 was chosen based on prior work (Beitel et al.,
2014) and the interval sampled uniformly in five steps (inflation: 1.1 - 2.0). A soft-clustering extension of
MCL, SR-MCL (soft, regularized Markov clustering) (Shih and Parthasarathy, 2012) attempts to sample
multiple clustering solutions by iterative re-execution of MCL, penalizing node stochastic flows between
iterations depending on the previous run state. Beyond MCL'’s inflation parameter, SR-MCL introduces
four additional runtime parameters (balance, quality, redundancy and penalty ratio). It was determined that
default settings were apparently optimal for these additional parameters (data not shown) and therefore
only inflation was varied over the same range as MCL.

The Louvain modularity O (Newman and Girvan, 2004) quantifies the degree to which a graph is
composed of pockets of more densely interconnected subgraphs. Density is uniform across a graph
when Q = 0 and there is essentially no community structure, while as Q — 1 it indicates significant
community structure with a strong contrast in the degree to which nodes are linked within and between
communities. Louvain clustering builds upon this modularity score (Blondel et al., 2008), following a
greedy heuristic to determine a best partitioning of a graph by the measure of local modularity, identifying
sets of nodes more tightly interconnected with each other than with the remainder of the graph. Although
a hierarchical solution by recursive application of the Louvain method on the subsequent subgraphs can
be obtained, at each step the result is a hard-clustering. We implemented a one-step Louvain clustering
algorithm in Python making use of the modules python-louvain and Networkx. We further extended this
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hard-clustering method (Louvain-hard) to optionally elicit a naive soft-clustering solution (Louvain-soft),
where after producing the hard-clustering, any two nodes in different clusters that are connected by an
edge in the original graph are made members in both clusters.

We implemented the OClustR algorithm (Pérez-Sudrez et al., 2013) in Python. The algorithm employs
a graph covering strategy applied to a thresholded similarity graph using the notion of node relevance (the
average of relative node compactness and density) (Pérez-Sudrez et al., 2013). The approach functions
without the need for runtime parameters, thus avoiding their optimization, and aims to produce clusters of
minimum overlap and maximal size.

Gold Standard

The gold standard (ground truth) is a crucial element of external validation and often overlooked is the
reality that it itself is only an approximation to the absolute truth. Particularly in the treatment of scientific
data, what we call the gold standard is frequently the “best we can do”. Despite the powerful a priori
advantages gained by the explicit nature of simulation based studies, practical limitations can introduce
uncertainty. In particular, the loss of read placement information in de Bruijn graph assembly means we
must infer contig origin rather than obtain it explicitly from assembly output metadata.

In this study, the gold standard must accurately map the set of assembly contigs C to the set of
community source genomes G, while supporting the notion of one-to-many associations from contig c;
to some or all genomes g; € G. It is this one-to-many association that represents the overlap between
genomes at low evolutionary divergence. The mapping must also contend with spurious overlap signal
from significant local alignments due to such factors as conserved gene content and try to minimize false
positive associations.

We used LAST (v712) (Kietbasa et al., 2011) to align the set of assembly contigs C onto the respective
set of community reference genomes G. For each contig ¢; € C, LAST alignments were traversed in order
of descending bitscore and used to generate a mask M(g;,x) of contig coverage indexed by both reference
genome g; € G and contig base position x. Rather than a binary representation, mask elements were
assigned real values [0, 1] in proportion to the identity of the maximally scoring alignment to reference
genome g; at the given site x. Lastly the arithmetic mean was calculated over all base positions for each
reference genome g; (i.e. (g;) = |x|~' £, M(g;,x)) and an association was recognized between contig
¢; and reference genome g; when pi(g;) > 0.96.

Graph Generation

Undirected contig graphs were generated by mapping simulated 3C read-pairs to WGS assembly contigs
using BWA MEM (v0.7.9a-r786) (Li, 2013). Read alignments were accepted only in the case of matches
with 100% coverage of each read and zero mismatches. In general, this restriction to 100% coverage and
identity should be relaxed when working with real data and we found the iterative strategy employed
by (Burton et al., 2014) effective in this case (data not shown). Assembly contigs defined the nodes
n; and inter-contig (trans) read-pairs the edges ((n;,n;) <= i# j), while intra-contig (cis) read-pairs
((ni,nj) < i=j) were ignored. Raw edge weights w(n;,n;) were defined as the observed number of
read-pairs linking nodes n; and n;.

Validation

To assess the quality of clustering solutions a modification to the Extended Bcubed external validation
measure (Amigo6 et al., 2009) was made, wherein each clustered object was attributed with an explicit
weight. We call the resulting measure “weighted Bcubed” (Equation 1). For a uniform weight distribution
this modification reduces to conventional Extended Bcubed. In our work, contig length (bp) was chosen
as the weight when measuring the accuracy of clustered assembly contigs. Remaining the harmonic
mean of Bcubed precision and recall, the weights w(o;) are introduced here (Equation 2, 3) and the result
normalized. For an object o;, the sum is carried out over all members of the set of objects who share at
least one class H(o;) or cluster D(o;) with object o; (Equation 3).

2(Fp3) (Ry3)

= )+ Ry)
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where (P,3) and (R,3) are the weighted arithmetic means of P, (0;) and R,3 (0;) (Equation 2, 3) over
all objects.
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Unchanged from Extended Bcubed, the expressions for the Multiplicity Bcubed precision P*(0;,0;)
(Equation 4) and recall R*(0;,0;) (Equation 5) account for the non-binary relationship between any two
items in the set when dealing with overlapping clustering.
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where K (o;) the set of clusters and @(o;) the set of classes either of which contain object o;.

Pipeline Design
The selected workflow (Figure 1) represents a simple and previously applied (Beitel et al., 2014; Burton
et al., 2014) means of incorporating 3C read data into traditional metagenomics, via de novo WGS
assembly and subsequent mapping of 3C read-pairs to assembled contigs. Inputs to this core process
are 3C read-pairs and WGS sequencing reads. Outputs are the set of assembled contigs C and the set of
“3C read-pairs to contig” mappings M3c. Although tool choices vary between researchers, we chose to
keep the assembly and mapping algorithms fixed and focus instead on how other parameters influence
the quality of metagenomic reconstructions with 3C read data. The A5-miseq pipeline (incorporating
IDBA-UD, but skipping error correction and scaffolding via the —metagenome flag) (Coil et al., 2015)
was used for assembly. BWA MEM was used for mapping 3C read-pairs to contigs (Li, 2013). Parameters
placed under control were: WGS coverage (xfold), the number of 3C read-pairs (n3c) and a random
seed (S). Prepended to this core process are two preceding modules: community generation and read
simulation.

From a given phylogenetic tree and an ancestral sequence, the community generation module produces
a set of descendent taxa with an evolutionary divergence defined by the phylogeny and evolutionary model.
The simulated evolutionary process is implemented by sgEvolver (Darling et al., 2004), which models
both local changes (e.g. single nucleotide substitutions and indels) and larger genomic changes (e.g. gene
gain, loss, and rearrangement). The degree of divergence is controlled through a single scale factor gy,
(Table S1) that uniformly scales tree branch lengths prior to simulated evolution. As data inputs, the
module takes a phylogenetic tree and an ancestral genome. As data outputs, the module generates a set of
descendent genomes G and an accompanying gold-standard. Overall, community generation introduces
the following two sweep parameters: branch length scale factor oz and random seed (S) (Table 1).

Following community generation, the read-simulation module takes the set of descendent genomes G
as input and generates as output simulated Illumina WGS paired-end reads and 3C read-pairs. Variation
in relative abundance of the descendent genomes G in simulated metagenomes was produced by wrap-
ping ART illumina (v1.5.1) (Huang et al., 2012) within a Python script (metaART.py) with the added
dependency of an abundance profile table as input. A 3C read-pairs simulator was implemented in Python
(simForward.py), capable of simulating both inter- and intra- chromosomal pairs from whole communities
when supplied a set of reference genomes and a per-genome abundance profile. Here, a linear combination
of the geometric and uniform distributions was used to model a long-tailed probability distribution of
intra-chromosomal (cis) read-pairs as a function of genomic separation and the distribution was calibrated
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Figure 1. The 3C sequencing simulation pipeline used within the parameter sweep. An ancestral
sequence and phylogenetic tree are used in simulating a process of genome evolution with varying
divergence (apr). The resulting evolved genomes are subsequently subjected to in silico high-throughput
sequencing, producing both WGS and 3C read-sets of chosen depth (Nwgs, N3c). WGS reads are
assembled and 3C read-pairs are mapped to the resulting contigs to generate a contig graph. Finally, the
graph is supplied to a clustering algorithm and the result validated against the relevant gold standard.

by fitting it to the real experimental data of (Beitel et al., 2014). No constraints that would come about by
modeling 3D chromosome structure were imposed on the simulation. Read-generation introduces the
following sweep parameters: WGS depth of coverage (xfold) and number of 3C read-pairs (n3c) (Table
D).

After the assembly and mapping module comes the community deconvolution module, taking as
input the set of 3C read mappings M3c. Internally, the first step of the module generates the contig graph
G(n,e,w(e)). Deconvolution is achieved by application of graph clustering algorithms, where the set of
output clusters K reflect predicted genomes of individual community members (Beitel et al., 2014; Burton
et al., 2014).

Lastly, the validation module takes as inputs: a clustering solution, a gold-standard and a set of
assembly contigs. The first two inputs are compared by way of weighted Bcubed (Equation 1), while the
set of contigs is supplied to QUAST (v3.1) (Gurevich et al., 2013) for the determination of conventional
assembly statistics. The results from both clustering and assembly validation are then joined together to
form a final output.

Simulation

Variational studies require careful attention to the number of parameters under control and their sampling
granularity, so as to strike a balance between potential value to observational insight and computational
effort. Even so, the combinatorial explosion in the total number of variations makes a seemingly small
number of parameters and steps quickly exceed available computational resources. Further, an overly
ambitious simulation can itself present significant challenges to the interpretation of fundamental system
behaviour under the induced changes.

End-to-end, the simulation pipeline makes a large number of variables available for manipulation,
and the size and dimensionality of the resulting space is much larger than can be explored with available
computational resources. Therefore we decided to focus our initial exploration on a small part of this
space. We used two simple phylogenetic tree topologies (a four taxon ladder and a four taxon star) (Figure
2), to develop insight into the challenges that face metagenomics researchers choosing to apply 3C to
communities which contain closely related taxa.
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star ladder

Figure 2. Two simple trees of four taxa (A,B,C,D) were used in the parameter sweep. The star; where
all taxa are of equal evolutionary distance ¢ and ladder; where evolutionary distance decreases in
incremental steps of ¢/2. For the ladder, the length of the internal branch for taxon B was set equal to the
branch length of the star and therefore possesses both more closely and more distantly related community
members for any value of the scale factor oy relative to the star topology.

Parameter Sweep

A single monochromosomal ancestral genome was used throughout (Escherichia coli K-12 substr.
MG1655 (acc: NC_000913)). Two simple ultrametric tree topologies of four taxa (tree: star, ladder)
(Fig. 2) were included and evolutionary divergence was varied over ten values on a log-scale (or: 1 —
0.025; mean taxa ANIb 85 — 99.5%) (Figure 3). Two community abundance profiles were tested (profile:
uniform and 1/¢). WGS coverage was limited to three depths (xfold: 10, 50, 100), which for uniform
abundance represents 0.12, 0.60 and 1.2 Gbp of sequencing data respectively. Being a simple simulated
community, greater depths did not appreciably improve the assembly result. The number of 3C read-pairs
was varied from 10 to 100 thousand pairs (n3c: 10k, 20k, 50k, 100k), while the remaining parameter
variations can be found in Tables 1 and 2.

From the 40 simulated microbial communities, the resulting 120 simulated metagenome read datasets
were assembled and the assemblies evaluated using QUAST (v3.1) (Gurevich et al., 2013) against the
20 respective reference genome sets. Both external reference based (E.g. rates of mismatches, Ns,
indels) and internal (E.g. N50, L50) statistics were collected and later joined with the results from
the downstream cluster validation measures. Data generation resulted in 480 distinct combinations of
simulation parameters, forming the basis for input to the selected clustering algorithms. OClustR results
in 480 clusterings; Louvain clustering was performed both as standard hard-clustering (Louvain-hard) and
our naive soft-clustering modification (Louvain-soft) resulting in 480 clusterings each; lastly MCL and
SR-MCL were both varied over one parameter (infl) in 5 steps resulting in 2400 clusterings each. Finally,
the quality of the clustering solutions for all four algorithms was assessed using the weighted extended
Bcubed (Equation 1) external validation measure. Other parameters fixed throughout the sweep were:
ancestral genome size (seq-len: 3 Mbp), indel/inversion/HT rate multiplier (sg_scale: le-4), small HT size
(Poisson(200 bp)), large HT size range (Uniform(10-60 kbp)), inversion size (Geometric(50 kbp)), WGS
read generation parameters (read-length: 150 bp, insert size: 450 bp, standard deviation: 100 bp); HiC/3C
parameters (read-length: 150 bp, restriction enzyme: Nlalll [ CATG" ]). As simulated genomes were
monochromosomal, inter-chromosomal read-pair probability was not a factor.

Assembly Entropy
A normalized entropy based formulation Sy, (Equation 6) was used to quantify the degree to which
a contig within an assembly is a mixture of source genomes, averaged over the assembly with terms
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Figure 3. For sample points used in the sweep for the star topology, we depict the relationship between
BL and the resulting measure of average nucleotide identity from BLAST (ANIb). The 95% threshold
indicated is used internally within IDBA-UD (Peng et al., 2012) to determine whether to merge highly
similar contigs and has been proposed as a pragmatic definition of bacterial species (Konstantinidis et al.,
2006) akin to 98% 16S rRNA identity.

weighted in proportion to contig length. For simulated communities, the maximum attainable value is
equal to the logarithm of the sum of the relative abundances ¢;, the effective number of genomes N, s¢
(uniform profile N, sy =4, 1/e profile Noss =~ 1.37). Here N¢ is the number of contigs within an assembly,
Ng the number of genomes within a community and Ly, simply the total extent of an assembly, p;; is the
proportion of reads belonging to i genome mapping to the j* contig, / ; the length of the j contig, and
h the step size in opy.

When each contig in an assembly is derived purely from a single genomic source S,ixing = 0, con-
versely when all contigs possess a proportion of reads equal to the relative abundance the respective
source genome Syixing = 1. A forward finite difference was used to approximate the first order derivative
AS,ixing (Equation 7), where mixing was regarded as a function of opy and the difference taken between
successive sample points in the sweep.

1 N¢c Ng Nc Ng
Smixing = —7————— Y 1j ) pijlogy(pij)  Lasm= ) 1j;  Negr =) ai (6)
mixing Lasm 10g2 (Neff) j:zl J ,=Zl J gz( l]) asm jzzl J 1 1=Zl
1
ASmixing (aBL) = z (Smixing(aBL + h) - Smixing(aBL)) (7)
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Graph Complexity

Although simple intrinsic graph properties such as order, size and density can provide a sense of com-
plexity, they do not consider the internal structure or information content present in a graph. One
information-theoretic formulation with acceptable computational complexity is the non-parametric en-
tropy Hy (Equation 8) associated with the non-zero eigenvalue spectrum of the normalized Laplacian
matrix N = D~ Y/2LD~1/2 where L = D — A is the regular Laplacian matrix, D is the degree matrix and A
the adjacency matrix of a graph (Dehmer and Mowshowitz, 2011; Mowshowitz and Dehmer, 2012).

Ho= )  |Allogy|A 8)
Aie{A:A>0}
where {4 : A > 0} is set the non-zero eigenvalues of the normalized Laplacian N.

Table 1. Primary parameters under control in the sweep. In total, each clustering algorithm is presented
with 480 combinations which may further increase depending on whether a clustering algorithm also has
runtime parameters under control.

Level Name Description Type Number Total Values

1 tree Phylogenetic tree topology factor 2 2 star, ladder

2 profile Relative abundance profile factor 2 4 uniform, 1/e

3 (07278 Branch length scale factor numeric 10 40 0.025-1
(log scale)

4 xfold WGS paired-end depth of numeric 3 120 10, 50, 100

coverage

5 n3c Number of 3C read-pairs numeric 4 480 10000, 20000,
50000, 100000

6 algo Clustering algorithm factor 5 MCL,
SM-MCL,

Louvain-hard,
Louvain-soft,
OClustR

Table 2. Clustering algorithm dependent parameters explored in the sweep, where the base set of
combinations begins with the fundamental 480 combinations. Only MCL and SR-MCL were swept
through additional runtime parameters.

Algorithm Name Description Type Number Total Values Sampling
MCL infl Inflation parameter numeric 5 2400 1.1-2  linear
SR-MCL infl Inflation parameter numeric 5 2400 1.1-2  linear
Louvain-hard 1 480
Louvain-soft 1 480
OClustR 1 480

RESULTS

Assembly Complexity

Along with traditional assembly validation statistics (N50, L50) (Figure 4a, 4b), assembly entropy Syuixing
and its approximate first order derivative AS;xins (Equations 6, 7) (Figure 4¢) were calculated for all 120
combinations resulting from the first four levels of the sweep (parameters: tree, profile, opr, xfold) (Table
1).

As community composition moves from the realm of distinct species (opr=1.0, ANI~=85%) to well
below the conventional definition of strains (o;=0.025, ANI~99.5%), and though increased read-depth
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assists in delaying the onset, the degree of contig mixing increases more or less monotonically. After
o1, the only significant continuous variable influencing mixing is read-depth (Spearman’s p=-0.26,
P=3.83x10~%), while abundance profile is the only significant categorical variable (one-factor ANOVA
R%=0.0774, P=2.09x10_3) (Lé et al., 2008). In all cases, as ap;, decreases mixing approaches unity;
implying that as genomic sources become more closely related, the resulting metagenomic assembly
contigs are of increasingly mixed origin.

Regarding the assembly process as a dynamic system in terms of evolutionary divergence, the turning
point evident in ASyxing (Figure 4c dashed lines) could be regarded as the critical point in a continuous
phase transition from a state of high purity (S,ixing = 0) to a state dominated by completely mixed contigs
(Simixing — 1). This point in evolutionary divergence coincides with the region where assemblies are
the most fragmented (max L50, min N50) (Figure 4a, 4b) and AS,,xine is well correlated with both
N50 (Spearman’s p=0.72, P < 1x107>) and L50 (Spearman’s p=-0.83, P < 1x10~7), implying that as
community divergence decreases through this critical point, traditional notions of assembly quality follow
suit.

Graph Complexity
Introduction of 3C sampling depth at the next level within the sweep (parameter: n3c) generated 480
contig graphs (Table 1). To assess how assembly outcome affects the derived graph: order, size, density,
and entropy Hy, (Equation 8) were calculated and subsequently joined with the associated factors from
assembly (Figure 4d).

Per the definition of the contig graph, there is a strong linear correlation between graph order |n| and
L50 (Pearson’s 7=0.96, P < 1x107'%) and a weaker but still significant linear correlation between graph
size |e| and 3C sampling depth (parameter: n3c) (Pearson’s r=0.61, P < 1x10~'®). Graphical density
was strongly linearly correlated with graphical complexity (Pearson’s r=-0.87, P < 1x10~'®). Graph
entropy H is strongly correlated with assembly statistics NS0 (Spearman’s p=-0.97, P < 1x1071%), L50
(Spearman’s p=0.96, P < 1x107'¢) and AS,ixine (Spearman’s p=-0.73, P =< 1x10~16),

The knock-on effect of evolutionary divergence on the contig graphs derived from metagenomic
assemblies is clear; fragmented assemblies comprised of contigs of mixed heritage result in increased
contig graph complexity. As 3C read-pairs are the direct observations used to infer association between
contigs, it could be expected that the correlation between 3C sampling depth and graphical size (|e|)
is high (p — 1) and so too the rate at which new edges are formed as read-pair data is added. As we
observe a more moderate correlation (p=0.61) and with the absence of unhelpful spurious read-pairs
in our simulation model, the perceived efficiency shortfall is in fact the necessary and expected repeat
observation of contig-to-contig associations. Therefore by the nature of the experiment, increased 3C
sampling depth does not confer increased graphical complexity in the same way that a more fragmented
assembly would and increased 3C sampling depth can significantly improve the quality of clustering
solutions.

Clustering Validation

The 240 contig graphs resulting from the sweep at uniform abundance were used to assess the influence
of the various parameters on the performance of five clustering algorithms. For each clustering algorithm,
overall performance scores, using Fy3 (Equation 1), were joined with their relevant sweep parameters and
PCA performed in R (FactoMineR v1.32) (L€ et al., 2008). The first three principal components explain
78% of the variation, where PC1 is primarily involved with factors describing graphical complexity
(apr: r=0.91, P =2.77x10~%3; density: r=0.70, P = 4.59x10~36; order: r=-0.76, P = 2.81x10~*; ANIb:
r=-091, P = 5.25x107°%; H: r=-0.92, P = 4.76x10~°%), PC2 factors describing the sampling of contig-
contig associations and overall connectedness of the contig graph (size: r=0.87, P = 2.58x107!6; n3c:
r=0.72, P = 2.65x10~%; modularity: r=-0.48, P = 5.41x1013) and PC3 pertaining to local community
structure (modularity: r=0.72, P = 5.19x10740; xfold: r=0.52, P = 2.72x10~'8) (Figure 5).

Of the five clustering algorithms, the performance of four (MCL, SR-MCL, Louvain-hard and
OClustR) is strongly correlated with PC1 and so their solution quality is inversely governed by the
the degree of complexity in the input graph, which in turn is largely influenced by within-community
evolutionary divergence. The fifth algorithm, our naive Louvain-soft, though also correlated with PC1
and so negatively affected by graphical complexity, possesses significant correlation with PC2 (#=0.53,
P = 1.27x107'8) and thus noticeably benefits from increased 3C sampling depth (Figure 5).
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DISCUSSION

Selecting a deeply sequenced slice from within the sweep (profile: uniform, xfold: 100) and ideal
algorithm-specific runtime parameters (MCL, SR-MCL inflation: 1.1), we can visually compare clustering
performance under best tested conditions for a given algorithm (Figure 6). For evolutionary divergence
well above the level of strains and prior to the critical region of assembly (apz, > 0.292, ANIb < 95%),
all algorithms achieve their best performance (£3 — 1) (Figure 6¢). As evolutionary divergence decreases
toward the level of strains and the assembly process approaches the critical region, a fall-off in performance
is evident for all algorithms and this performance drop is largely attributable to loss of recall (Figure
6b). Hard-clustering algorithms (MCL, Louvain-hard) in general exhibit superior precision (Figure 6a) to
that of soft-clustering algorithms (SR-MCL, OClustR, Lovain-soft) and the precision of soft-clustering
algorithms is worst in the critical region where graphical complexity is highest.

A ten-fold increase of 3C sampling depth (10k to 100k) has only a modest effect on clustering
performance for 4 of the 5 algorithms, the exception being our naive Louvain-soft. Louvain-soft makes
substantial gains in recall from increased 3C sampling depth at evolutionary divergences well below the
level of strains (o < 0.085, ANIb < 98%), but sacrifices precision at larger evolutionary divergences.
The soft-clustering SR-MCL also sacrifices precision but fails to make similar gains in recall as compared
to Louvain-soft. Recall for all three hard-clustering algorithms (MCL, Louvain-hard, OClustR) decreases
with decreasing evolutionary divergence and the growing prevalence of degenerate contigs. This drop in
recall is particularly abrupt for the star topology where, within the assembly process, all taxa approach the
transitional region simultaneously. Being primarily limited by their inability to infer overlap, increase in
3C sampling depth for the hard-clustering algorithms has little effect on recall.

Our results have implications for the design of metagenomic 3C sequencing experiments. When
genomes with >95% ANI exist in the sample, the power to resolve differences among those genomes can
benefit greatly from generation of additional sequence data beyond what would be required to resolve
genomes below 95% ANI. In our experiments the best results were achieved with 100x WGS coverage in
addition to 100,000 3C read-pairs. For the simple communities of four genomes each of roughly 3Mbp
considered here, 100x coverage corresponds to generating approximately 1.2Gbp of Illumina shotgun data.
In a metagenomic 3C protocol (Marbouty et al., 2014), obtaining 100,000 proximity ligation read-pairs
would require approximately 107 read-pairs in total; when we assume a proximity ligation read-pair rate
of 1% (Liu and Darling, 2015). We note that current Illumina MiSeq V3 kits are specified to produce
up to ~ 2x107 read-pairs, while HiSeq 2500 V4 lanes are specified to yield up to & 5x108 read-pairs per
lane. Therefore, while it may be possible to resolve closely related genomes in very simple microbial
communities with the capacity of a MiSeq, the scale of the HiSeq is likely to be required in many cases.
Alternatively, the more technically complicated HiC protocol may be advantageous to achieve higher
proximity ligation read rates, with up to 50% of read pairs spanning over 1kbp.

Limitations and Future Work

Our simulation of 3C read-pairs did not include modeling of experimental noise in the form of spurious
read-pairs that do not reflect true DNA:DNA interactions. Such aberrant products have been estimated to
occur in real experiments at levels up to 10% of total yield in 3C read-pairs (Liu and Darling, 2015). As a
first approximation, we feel it reasonable to assume these erroneous read-pairs are a result of uniformly
random ligation events between any two DNA strands present in the sample. The sampling of any
such spurious read-pair will be sparse in comparison to the spatially constrained true 3C read-pairs and
therefore amount to weak background noise. As currently implemented, the Louvain-soft clustering
method would be prone to creating false cluster joins in the presence of such noise, but a simple low
frequency threshold removal (e.g. requiring some constant number N links to join communities instead of
1) could in principle resolve the problem.

Only 3C read-pairs were used when inferring the associations between contigs, while conventional
WGS read-pairs were used exclusively in assembly. It could be argued that also including WGS read-
pairs during edge inference would have had positive benefits, particularly when assemblies were highly
fragmented in the critical region.

Only raw edge weights were used in our analysis as normalization procedures, such as have been
previously employed (Beitel et al., 2014; Marbouty et al., 2014; Burton et al., 2014), proved only weakly
beneficial when at higher 3C sampling depths and occasionally detrimental in situations of low sampling
depth. For higher sampling depth, the weak response can likely be attributed to a lack of complexity
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and the low noise environment inherent in simulation. For low sampling depth, observation counts are
biased to small values (mode [w(n;,n;)] — 1) and simple counting statistics would suggest there is high
uncertainty (£+/w(n;,n;)) in these values. As such, this uncertainty is propagated via any normalization
function f(w(n;,n;)) that attempts to map observation counts to the real numbers (f : N — R). Even
under conditions for high sampling depth, pruning very infrequently observed low-weight edges can prove
beneficial to clustering performance as, beyond this source of uncertainty, some clustering algorithms
appear to unduly regard the mere existence of an edge even when its weight is vanishingly small relative
to the mean.

For the sake of standardization and to focus efforts on measuring clustering algorithm performance we
elected to use a single assembly and mapping algorithm. However, many alternative methods for assembly
and mapping exist. In the case of assembly, there are an increasing number of tools intended explicitly for
metagenomes, such as metaSPAdes (Bankevich et al., 2012), MEGAHIT (Li et al., 2015), or populations
of related genomes (Cortex) (Igbal et al., 2013), while the modular MetAMOS suite (Treangen et al.,
2013) at once offers tantalising best-practice access to the majority of alternatives. For HiC/3C analysis, a
desirable feature of read mapping tools is the capability to report split read alignments (E.g. BWA MEM)
(Li, 2013). Because of the potential for 3C reads to span the ligation junction, mappers reporting such
alignments permit the experimenter the choice to discard or otherwise handle such events. Though we
explored the effects of substituting alternative methods to a limited extent (not shown), both in terms of
result quality and practical runtime considerations, a thorough investigation remains to be made.

The present implementation state of the simulation pipeline does not meet our desired goal for ease of
configuration and broader utility. Of the numerous high-throughput execution environments (SLURM,
PBS, SGE, Condor) in use, the pipeline is at present tightly coupled to PBS and SGE. It is our intention to
introduce a grid-agnostic layer so that redeployment in varying environments is only a configuration detail.
Although a single global seed is used in all random sampling processes, the possibility for irreproducibility
remains due to side-effects brought on by variance in a deployment target’s operating system and codebase.
Additionally, though the pipeline and its ancillary tools are under version control, numerous deployment
specific configuration settings are required post checkout. Preparation of a pre-configured instance within
a software container such as Docker| would permit the elimination of many such sources of variance and
greatly lower the configurational barrier to carrying out or reproducing an experiment.

Many commonly used external validation measures (E.g. F-measure, V-measure) have traditionally
not handled cluster overlap and were inappropriate for this study. Ongoing development within the field of
soft-clustering (also known as community detection in networks) has, however, led to the reformulation of
some measures to support overlap (Lancichinetti et al., 2009) or re-expression of soft-clustering solutions
into a non-overlapping context (Xie et al., 2011). While a soft-clustering reformulation of normalized
mutual information (NMI) (Lancichinetti et al., 2009) has become frequently relied on in clustering
literature (Xie et al., 2013), alongside Bcubed the two have been shown to be complementary measures
(Jurgens and Klapaftis, 2013). Therefore, although the choice to rely on the single measure we proposed
here (Equation 1) is a possible limitation, it simultaneously avoids doubling the number of results to
collate and interpret.

We chose to limit the representation of the combined WGS and 3C read data to a contig graph. While
other representations built around smaller genomic features, such as SNVs, could in principle offer greater
power to resolve strains, they bring with them a significant increase in graphical complexity. How more
detailed representations might impact downstream algorithmic scaling, or simply increase the difficulty in
accurately estimating a gold standard remains to be investigated.

Benchmark graph generators (so called LFR benchmarks) have been developed that execute in the
realm of seconds (Lancichinetti et al., 2008; Lancichinetti and Fortunato, 2009). Parameterizing the
mesoscopic structure of the resulting graph, their introduction is intended to address the inadequate
evaluation of soft-clustering algorithms, which too often relied on unrepresentative generative models
or ad hoc testing against real networks. Our pipeline may suffice as a pragmatic, albeit much more
computationally intensive means of generating a domain specific benchmark on which to test clustering
algorithms. Whether it is feasible to calibrate the LFR benchmarks so as to resemble 3C graphs emitted
by our pipeline could be explored. Ultimately however, the parameter set we defined for the pipeline
(Table 1) has the benefit of being domain-specific and therefore meaningful to experimental researchers.

Detection of overlapping communities in networks is a developing field and much recent work has
left the performance of many clustering algorithms untested in deconvolving microbial communities via
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3C read data. Not all algorithms are wholly unsupervised and individually fall into various algorithmic
classes (i.e. clique percolation, link partitioning, local expansion, fuzzy detection and label propagation).
Label propagation methods have shown promise with respect to highly overlapped communities (Xie
et al., 2011; Chen et al., 2010; Gaiteri et al., 2015), which we might reasonably expect to confront when
resolving microbial strains. Empirically determined probability distributions, such as those governing the
production of intra-chromosomal (cis) read-pairs as a function of genomic separation, might naturally
lend themselves to methods from within the fuzzy-detection class. With a generative community model
in hand, exploring the performance of gaussian mixture models (GMM), mixed-membership stochastic
block models (SBM) or non-negative matrix factorization (NMF) could be pursued.

The incomplete nature of graphs derived from experimental data can result in edge absence or edge
weight uncertainty for rare interactions, with the knock-on effect that clustering algorithms can then suffer.
We have shown that increase in 3C sampling depth (Figure 6) can significantly improve the quality of the
resulting clustering solutions. A computational approach, which could potentially alleviate some of the
demand for increased depth has been proposed (EdgeBoost) (Burgess et al., 2015) and shown to improve
both Louvain and label propagation methods, is a clear candidate for future assessment.

CONCLUSION

For a microbial community, as intra-community evolutionary divergence decreases, contigs derived from
WGS metagenomic assembly increasingly become a mixture of source genomes. When combined with
3C information to form a contig graph, evolutionary divergence is directly reflected by the degree of
community overlap. In an effort to deconvolute simulated metagenomic assemblies into their constituent
genomes, we tested the performance of both hard and soft clustering algorithms when applied to the
contig graph. Performance was assessed by our proposed object-weighted variation of the extended
Bcubed validation measure (Equation 1). We have shown that soft-clustering algorithms can significantly
outperform hard-clustering algorithms when intra-community evolutionary divergence approaches that of
bacterial strains. In addition, although increasing sampling depth of 3C read-pairs does little to improve
the quality of hard-clustering solutions, it can noticeably improve the quality soft-clustering solutions. Of
the tested algorithms, the precision of the hard-clustering algorithms often equalled or exceeded that of
the soft-clustering algorithms across a wide range of evolutionary divergence. However, the poor recall of
hard-clustering algorithms at low divergence greatly reduces their value in genomic reconstruction. We
recommend that future work focus on the application of recent advances soft-clustering methods.
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Figure 4. Plotted as a function of evolutionary divergence (measured by ANIb) for the star and ladder
communities at three depths of WGS coverage (10, 50 and 100x); assembly validation statistics N50 (top
left) and L50 (fop right), the degree of genome intermixing Smixing and its approximate first order
derivative AS,;xine (dashed lines) (bottom left), lastly graphical complexity Hy (bottom right). As
community member similarity increases (ANIb — 1), assemblies go through a transition from a state of
high purity (Sixing ~0) to a highly degenerate state (S,,ixing ~1), where many contigs are composed of
reads from all community members. A crisis point is observed for small evolutionary divergence

(apr < 0.2924, ANIb < 95%), where a sharp change in contiguity (implied by N50 and L50) occurs. At
very low divergence, N50 and L50 statistics imply that assemblies are recovering, while source
degeneracy (Syixing) monotonically increases. Graphical complexity (Hy) exhibits a similar turning point
to L50 and for the 3C contig graph is dominated by graphical order.
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Figure 5. A PCA biplot of individuals and variables (first two components) for the 240 contig graphs
pertaining to the uniform abundance profile. PC1 is most strongly correlated with graphical complexity
(parameters: order, Hy), which comes about with decreasing evolutionary divergence (parameters: ANI,
o) and explains the majority of variation in performance for 4 of 5 clustering algorithms, with the
notable exception being Louvain-soft. PC2 is related sampling depth and overall connectedness of contig
graphs (parameters: size, n3c) with which Louvain-soft has significant positive correlation.
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Figure 6. Performance of the five clustering algorithms (MCL, Louvain-hard, OClustR, SR-MCL,
Louvain-soft), as measured by the weighted extended Bcubed Fy3 (Equation 1). The slice from the sweep
pertains to uniform abundance and 100x WGS coverage and the best performing runtime parameters
specific to algorithms (MCL, SR-MCL). (A) Louvain-hard demonstrates high precision throughout, while
our simple modification Louvain-soft leads to a drop. (B) All algorithms struggle to recall the four
individual genomes as evolutionary divergence decreases and cluster overlap grows. Within the region of
overlap, Louvain-soft performs best and clearly gains from deeper 3C coverage. (C) In terms of Fy3, the
harmonic mean of Recall and Precision, only Louvain-soft appears to be an appropriate choice when it is
expected that strain-level diversity exists within a microbial community.
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