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MOST: A modified MLST typing tool based on short read

sequencing

Rediat Tewolde, Timothy Dallman, Ulf Schaefer, Carmen Sheppard, Philip Ashton, Bruno Pichon, Matthew Ellington, Craig Swift,

Jonathan Green, Anthony Underwood

Multilocus sequence typing (MLST) is an effective method to describe bacterial

populations. Conventionally, MLST involves Polymerase Chain Reaction (PCR)amplification

of housekeeping genes followed by Sanger DNA sequencing. Public Health England (PHE) is

in the process of replacing the conventional MLST methodology with a method based on

short read sequence data derived from Whole Genome Sequencing (WGS). This paper

reports the comparison of the reliability of MLST results derived from WGS data, comparing

mapping and assembly-based approaches to conventional methods using 325 bacterial

genomes of diverse species. The sensitivity of the two WGS based methods were further

investigated with 26 mixed and 29 low coverage genomic data sets from Salmonella

enteridis and Streptococcus pneumoniae. Of the 325 samples, 92.9% (n=302), 97.2%

(n=316) and 99.7% (n=324) full MLST profiles were derived by the conventional method,

assembly- and mapping-based approaches, respectively. The concordance between

samples that were typed by conventional (92.9%) and both WGS methods was 100%. From

the 55 mixed and low coverage genomes, 90.9% (n=50) and 67.3% (n=37) full MLST

profiles were derived from the mapping and assembly based approaches, respectively. In

conclusion, deriving MLST from WGS data is more sensitive than the conventional method.

When comparing WGS based methods, the mapping based approach was the most

sensitive. In addition, the mapping based approach described here derives quality metrics,

which are difficult to determine quantitatively using conventional and WGS-assembly

based approaches.
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28

29 Abstract

30 Multilocus sequence typing (MLST) is an effective method to describe bacterial populations. 

31 Conventionally, MLST involves Polymerase Chain Reaction (PCR) amplification of housekeeping genes 

32 followed by Sanger DNA sequencing. Public Health England (PHE) is in the process of replacing the 

33 conventional MLST methodology with a method based on short read sequence data derived from Whole 

34 Genome Sequencing (WGS). This paper reports the comparison of the reliability of MLST results derived 

35 from WGS data, comparing mapping and assembly-based approaches to conventional methods using 

36 325 bacterial genomes of diverse species. The sensitivity of the two WGS based methods were further 

37 investigated with 26 mixed and 29 low coverage genomic data sets from Salmonella enteridis and 

38 Streptococcus pneumoniae. Of the 325 samples, 92.9% (n=302), 97.2% (n=316) and 99.7% (n=324) full 

39 MLST profiles were derived by the conventional method, assembly- and mapping-based approaches, 

40 respectively. The concordance between samples that were typed by conventional (92.9%) and both 

41 WGS methods was 100%. From the 55 mixed and low coverage genomes, 90.9% (n=50) and 67.3% 

42 (n=37) full MLST profiles were derived from the mapping and assembly based approaches, respectively. 

43 In conclusion, deriving MLST from WGS data is more sensitive than the conventional method. When 

44 comparing WGS based methods, the mapping based approach was the most sensitive. In addition, the 

45 mapping based approach described here derives quality metrics, which are difficult to determine 

46 quantitatively using conventional and WGS-assembly based approaches. 

47

48

49

50

51

52

53

54

55

56

57

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1971v1 | CC-BY 4.0 Open Access | rec: 19 Apr 2016, publ: 19 Apr 2016



58

59 Introduction 
60 The process of whole genome sequencing (WGS) has benefited from recent advances collectively known 

61 as next generation sequencing, allowing high throughput sequencing of bacterial genomes at low 

62 financial cost. This results in WGS becoming a viable alternative to some traditional typing methods for 

63 public health infectious disease surveillance. 

64

65 MLST can be derived from WGS using de novo assembly/BLAST based (Larsen et al., 2012; Jolley & 

66 Maiden 2013) and mapping based (Inouye et al., 2012, 2014) approaches. De novo assembly/BLAST 

67 based approaches work by assembling short reads into longer contiguous sequences and then 

68 comparing these contigs to a reference allele database using BLAST to assign a MLST type. Mapping 

69 based approaches align short reads to reference (allele) sequences representing all alleles from MLST 

70 loci using mapping tools such as BWA (Inouye et al., 2012) or Bowtie2  (Inouye et al., 2014). 

71 Subsequently SNP/INDELs are called using a variant-calling algorithm such as Samtools mpileup (Li et al., 

72 2009) to determine the most likely allele at each locus.  An allele is assigned if the reads have 100% 

73 coverage and 100% nucleotide identity to the locus alleles sequence without any INDELs. Mapping 

74 based approaches allow the calculation of metrics for each designated allele to assess the quality of the 

75 match (Inouye et al., 2012, 2014).  

76

77 Public Health England provides diagnostic, specialist and reference microbiology services to healthcare 

78 providers in England. Implementation of whole genome sequence (WGS) technology for public health 

79 microbiology requires quality controlled results that are at least as accurate as conventional �gold 

80 standard� methods. In order to make an informed decision regarding the software that is most capable 

81 of accurately determining the MLST profile from WGS data, this paper systematically compared the 

82 performance of WGS-based MLST software to conventional methods using genomes from 325 samples. 

83 The software was evaluated based on the ability to: (a) Derive a full MLST profile, (b) demonstrate 

84 concordance to the MLST results derived from conventional sequencing and (c) assign quality metrics 

85 that allow results to be reported quantitatively. 

86

87

88
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89 Materials and Methods

90 Isolates

91 Reference isolates and samples with mixed species assembly in vitro were prepared in order to compare 

92 the reliability of MLST results. 

93 Reference isolates

94 Samples containing pure cultures of diverse bacteria  

95 Isolates submitted to three different PHE reference laboratories, namely Gastrointestinal Bacteria 

96 Reference Unit (GBRU), Antimicrobial Resistance and Healthcare Associated Infection unit (AMRHAI) and 

97 Respiratory and Vaccine Preventable Bacteria Reference Unit (RVPBRU) were included for study.

98 The isolates were selected for WGS by each of the three units based on the following criteria: 

99 A. RVPBRU receives submissions of all invasive Streptococcus pneumoniae from hospital laboratories in 

100 England and Wales for confirmation of species and for serotyping.  From these, representatives of many 

101 different serotypes were selected.

102 B. AMRHAI receives isolates of Staphylococcus aureus from hospital laboratories in England & Wales for 

103 identification and molecular typing purposes. Samples were selected from reference receipts to 

104 represent the diversity of Staphylococcus aureus in England & Wales.   

105 C. GBRU receives isolates of Campylobacter from hospital diagnostic microbiology laboratories and Food 

106 Water and Environmental laboratories from England & Wales.  From these, representatives of many 

107 different STs were included.

108

109 Salmonella isolates, including those mixed with other species and isolates with low coverage 

110 Isolates submitted to the above reference laboratories are most often pure cultures, but a small 

111 proportion of samples do contain a mixture of organisms.  Kmer ID software (https://github.com/phe-

112 bioinformatics/kmerid) was used to identify samples containing mixed species. Samples containing 

113 Salmonella mixed with other species were used to test the sensitivity of WGS-based MLST methods 

114 (Table 1).

115

116 Samples with lower than the expected coverage of genomic data can be revealed from the �minimum 

117 consensus depth� value. To test how sensitive WGS-based MLST methods were when processing low 

118 coverage samples we used Salmonella samples with minimum read depth values of 1-10 

119 (Supplementary result Table).

120
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121 Isolates mixed in-vitro

122 Intra-species mixed samples (Strepococcus pneumoniae)

123 In order to determine how sensitive WGS-based MLST methods are when processing intra-species mixed 

124 samples, we assembled artificial mixes of different S. pneumonaie types from previously extracted 

125 genomic DNA, at different ratios (Table 2).

126

127 DNA extraction and assembly of artificial mix S. pneumonaie 

128 DNA was extracted from Campylobacter sp., Salmonella sp., Staphylococcus aureus and Streptococcus 

129 pneumoniae samples via Qiasymphony (Qiagen, Hilden, Germany, GmBH) and quantified (Glomax, 

130 Promega, Madison, USA). 

131

132 In order to make up intentionally mixed S.pneumoniae samples for WGS, DNA extracted from 

133 S.pneumoniae isolates  were mixed at different ratio to give a mixed concentration of 25ng/µl in a final 

134 volume of 75µl (Table 2). The DNA from isolates:

135 1.  ST 5006 and ST 4149 were mixed in the ratios-10%:90%, 20%:80%, 30%:70%, 40%:60% and 50%:50% 

136 2.  ST 2865 and ST 1012 were mixed in the ratios-25%:75% and 50%:50% 

137 3.  ST 7219 and ST 7181 were mixed in the ratios-25%:75% and 50%:50%

138 4.  ST 5316 and ST 574 were mixed in the ratios-50%:50%

139 5.  ST 2865, ST 5316 and ST7219 were mixed in the ratios-25%:25%:50%

140

141 WGS, quality assessment and species identification

142 Samples for WGS sequencing were submitted to the Genomic Sequencing Unit at PHE. Illumina Nextera 

143 DNA libraries were constructed and sequenced using the Illumina HiSeq 2500. Afterwards, the samples 

144 were deplexed using the Casava 1.8.2 (Illumina inc. San Diego, CA, USA) and the FASTQ reads were 

145 quality trimmed using Trimmomatic (Bolger et al., 2014) to remove bases with a quality PHRED score 

146 below 30 from both ends. K-mer ID software was used to compare the sequence reads with a panel of 

147 curated NCBI Refseq genomes to identify the species. 

148

149

150
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151

152

153

154 MLST determination 

155 To extract MLST from Campylobacter sp., Staphylococcus aureu, Streptococcus pneumoniae and 

156 Salmonella sp., the respective MLST databases were downloaded from http://pubmlst.org/data/ and 

157 http://mlst.warwick.ac.uk/mlst/dbs/Senterica/Downloads_HTML.

158

159 STs were determined using:

160 1. Conventional and WGS based MLST methods from pure isolates in order to compare the conventional 

161 method against WGS based MLST.

162 2. Only WGS based MLST methods from a set of intra and inter species mixed samples and those with 

163 low coverage genomic data to investigate the sensitivity of WGS based MLST methods. 

164

165 The numbers of samples tested via each method are shown in Table 3.

166

167 MLST via conventional sequencing

168 Alleles were initially amplified by PCR and DNA sequenced using Sanger sequencing. Sanger sequencing 

169 was carried out using Applied Biosystems 3720X DNA analyser.  Bionumerics version 6.1 was then used 

170 to determine the alleles and ST. Bionumerics assigned an allele if the assembled reads matched 100% to 

171 the locus variant sequence with zero SNP/INDELs using BLAST. STs were determined using this 

172 methodology from set of pure isolates (Campylobacter sp., Staphylococcus aureus and Streptococcus 

173 pneumoniae samples).

174

175 MLST via WGS based mapping 

176 At the time that this validation study took place the only available mapping-based approach was SRST 

177 (version 1) (Inouye et al., 2012). Following initial testing, SRST was modified and the resulting software 

178 called �Metric Oriented Sequence Typer� (MOST). Bowtie2 was chosen as the global aligner (rather than 

179 BWA) due to the greater sensitivity that we have observed with Bowtie2. MOST uses the output from 

180 the Bowtie2 mapping to report percentage coverage across the allele length and the �maximum 
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181 percentage of non-consensus bases� at any position. The latter value enables the user to identify 

182 potentially mixed samples. 

183

184 The �Max percentage non-consensus bases� value is calculated for each position by using the following 

185 formula:

186 Percentage non-consensus bases = Number of reads mapped to reference sequence with non-consensus 

187 base/ Total number of reads aligned to reference sequence * 100

188  

189 Once the percentage non-consensus bases are calculated, the maximum percentage non-consensus 

190 base value is determined and reported. 

191

192 Finally, MOST was adjusted to infer Salmonella serotype from the ST value using a PHE Salmonella 

193 serotype database (Ashton et al., 2016).  For a full list of other modifications please refer to the 

194 supplementary methods. MOST is available as open source software (https://github.com/phe-

195 bioinformatics/MOST).

196

197 In addition to the samples used for the conventional ST methodology, STs were also determined from 

198 samples with intra and inter species mixes and those with low coverage from the genomic data in order 

199 to determine the sensitivity of MOST. 

200

201 MLST using BIGSdb � a WGS-assembly based approach

202 Sequence reads from the same samples described in the previous section were assembled using Spades 

203 (version 2.5.1) de novo assembly software with the following parameters �spades.py --careful -1 

204 strain.1.fastq.gz -2 strain.2.fastq -t 2 -k 21,33,55,77�. The resulting contigs were uploaded to BIGSdb for 

205 determination of their STs. 

206

207

208

209

210

211

212
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214 Results 

215 Conventional MLST vs WGS-based MLST � for pure cultures 

216 WGS based MLST yielded via MOST returned full MLST profiles from 99.7% (324) of the 325 isolates 

217 tested. This compared to 97.2% (316) via assembly and BIGSdb, and 92.9% (302) by conventional MLST 

218 (Table 3). The concordance between samples that return a full MLST profile by conventional MLST and 

219 both WGS methods was 100% (Table 3). For 21 Campylobacter sp and 2 Streptococcus pneumoniae 

220 samples, a full MLST profile was not returned via the conventional method due to poor sequence 

221 quality.

222

223 WGS-mapping based MLST vs WGS-assembly based MLST 

224 Having established the superiority of WGS based MLST over conventional MLST for sensitivity of ST 

225 determination from pure cultures, we investigated the accuracy (including the assessment of quality) of 

226 different WGS analyses for samples with low coverage and for samples with more than one organism. 

227

228 From 29 samples that yielded low coverage Salmonella genomic data, the WGS-mapping approach 

229 (MOST) and WGS-assembly approach (assembly and BIGSdb) returned 100% (29) and 93.1% (27) full 

230 MLST profiles, respectively (Table 3). The WGS-assembly based approach did not return full profiles for 2 

231 samples due to truncation of a contig that contained a MLST locus and for the other sample BIGSdb 

232 returned two variant matches for the thrA allele. 

233

234 From 14 Salmonella isolates mixed with other bacterial species (Table 1), the WGS-mapping approach 

235 (MOST) returned full MLST profiles for all samples (100%), whereas the WGS-assembly approach 

236 returned full profiles for only half of the samples (50% or 7/14)  (Table 3). The WGS-assembly approach 

237 did not return full profiles for 7 samples.  Three of these were due to contigs that were truncated in a 

238 target region (MLST allele), a further three returned two thrA allele variants via BIGSdb. The remaining 

239 sample had an �N� introduced in the aroC allele. 

240

241 From 12 samples constructed in vitro to contain more than one ST of Streptococcus pneumoniae we 

242 found the WGS-mapping approach (MOST) returned the expected MLST results for 58% (7/12), whilst 

243 the WGS-assembly approach (via BIGSdb) returned the expected MLST results for only 25% (3/12) of 

244 samples (Table 3). Thus, the mapping based software, MOST, was more sensitive than the assembly 

245 based approach.  Of the four samples that returned full profiles via MOST, but not via BIGSdb, three 
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246 returned two allele variants for the ddl and spi alleles whilst the remaining sample has a contig that was 

247 truncated in the gki allele region.  For four S.pneumoniae isolates that were mixed at 50%:50% ratio, 

248 both WGS based methods did not return correct profile (Table 2). 

249

250 MOST quality metrics accurately informed mixed and low coverage samples 

251 Unlike assembly based approaches, the MOST mapping based approach provided a �minimum 

252 consensus depth� quality metric that informed low coverage, as well as the �max percentage non-

253 consensus base value� which was informative for identifying mixed samples. 

254 For the 29 samples that yielded low coverage Salmonella genomic data, the �minimum consensus 

255 depth� values reported by MOST did demonstrate that the samples have low sequence depth 

256 (Supplementary result Table).

257

258 For the mixed samples containing more than one ST of S. pneumoniae the �max percentage non-

259 consensus base� values reported by MOST demonstrated the presence of a mixture but also returned 

260 the ST of the majority strain within the mixture.  However the ratios of the mixtures detected by MOST 

261 were consistently higher than the ratios provided by the laboratory. For example samples mixed at ratio 

262 50:50%, 40:60% , 30:70% , 20:80%, 10:90% gave  �max percentage non consensus base� values of 50%, 

263 49%, 40%,31% and 17%, respectively (Table 2), and may reflect laboratory (pipetting) bias during 

264 construction of the mixes. 

265
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278

279 Discussion

280 This study revised, tested and validated mapping-based and assembly-based software whose purpose 

281 was to extract STs from short-read WGS data by comparing the results with those from the conventional 

282 (PCR amplification and Sanger sequencing) MLST methods. Having established the superiority of WGS 

283 based methods, we then went on to compare the performance of two WGS data analysis approaches 

284 (assembly and mapping) to determine their accuracy against samples that contained more than one 

285 organism and low coverage data. 

286

287 The superiority of WGS based methods was evidenced by the greater number of full MLST profiles as 

288 compared to the conventional method. Additional evidence was provided by the complete concordance 

289 between the results of conventional and WGS based methods, as well as no instances where only the 

290 conventional method returned a full MLST profile. Between the two WGS approaches our comparison 

291 indicated that MOST returned, 5% (21) more full MLST profiles than an assembly based approach (Table 

292 3). MOST was particularly effective when handling data from samples with intra- and inter-species 

293 mixes. Moreover the quality metric values that it assigns flag mixtures such as these as well as low 

294 coverage data. In this respect as well determining the ST from pure samples, it is also suitable for 

295 determining the ST from a contaminated or impure sample. The importance of this benefit in the 

296 environment of a routine microbiology laboratory cannot be understated, for example we found that 

297 1.5% (n=335)  of the cultures of Salmonella referred for typing were mixed with other species and 4.9% 

298 (n=1060) contained more than one strain. PHE National Infections Service reference laboratories have 

299 selected and used MOST to extract the MLST profile as part of its bioinformatics pipelines. To date (18th 

300 March 2016), our reference laboratories have extracted MLST data from over 37,000 samples (21237 

301 Salmonella, 4256 Streptococcus pyogenes , 1579 Campylobacter, 2920 Streptococcus pneumoniae, 3936 

302 Escherichia coli, 1887 Staphylococcus aureus, 1200 Listeria monocytogenes  and 700 Streptococcus 

303 agalactiae) via MOST. 

304

305 As part of the MOST development we included additional utility to infer serotypes for Salmonella. This 

306 functionality inferred the serotype from the MLST profile based on a database of previously determined 

307 conventional serotyping results and showed 96% (n= 6616) concordance between the MOST and 

308 conventional results (Ashton et al., 2016). Six months after our implementation of MOST an updated 

309 version of SRST (version 2) was released (Inouye et al., 2012, 2014). Whilst this update included the 
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310 addition of local mapping alignment, it did not include the additional database analysis component we 

311 used for inferring serotype, otherwise our tests indicated agreement with MOST results, except for one 

312 sample for which SRSTv2 returned a different type to the conventional type (Supplementary result 

313 Table).
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363

364 Tables 

365 Table 1: WGS-based MLST results derived from Salmonella isolates mixed with other bacteria.

  ST derived from

K-mer identification of primary sample K-mer identification of secondary sample 

WGS-mapping 

approach 

(MOST)

WGS-assembly 

based (BIGSdb)

Proteus mirabilis WGLW4 Salmonella enterica subsp I enterica 48 Undetermined

Proteus mirabilis C05028 Salmonella enterica subsp I enterica 15 Undetermined

Proteus mirabilis WGLW4 Salmonella enterica subsp I enterica 19 19

Proteus mirabilis C05028 Salmonella enterica subsp I enterica 198 Undetermined

Proteus mirabilis WGLW4 Salmonella enterica subsp I enterica 897 897

Proteus mirabilis BB2000 uid214430 Salmonella enterica subsp I enterica 46 46

Klebsiella pneumoniae subsp. 

pneumoniae KpQ3 
Salmonella enterica subsp I enterica 16 Undetermined

Klebsiella pneumoniae subsp. 

pneumoniae KpQ3 
Salmonella enterica subsp I enterica 414 414

Salmonella enterica subsp I enterica Escherichia coli K 12 substr  W3110 uid161931 11 11

Escherichia coli K 12 substr  W3110 

uid161931 
Salmonella enterica subsp I enterica 515 515

Proteus mirabilis C05028 Salmonella enterica subsp I enterica 16 Undetermined

Proteus mirabilis C05028 Salmonella enterica subsp I enterica 543 543

Proteus mirabilis WGLW4 Salmonella enterica subsp I enterica 34 Undetermined

Proteus mirabilis WGLW4 Salmonella enterica subsp I enterica 34 Undetermined
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373

374 Table 2: WGS-based MLST results derived from DNA of different S. pneumonaie types mixed in 

375 different ratios.

ST derived from

S. pneumonaie types and ratio of DNA 

mixes

Max percentage non-consensus base values 

derived from MOST software

WGS-mapping approach 

(MOST)

WGS-assembly 

based (BIGSdb)

90% ST 4149: 10% ST 5006 17.2 4149 Undetermined

80% ST 4149:  20% ST 5006 31.0 4149 4149

70 % ST4149:  30% ST 5006 40.5 4149 Undetermined

60% ST 4149: 40% ST 5006 49.4 4149 Undetermined

50 % ST4149: 50% ST 5006 50.3 Novel allele Undetermined

75% ST 1012 : 25% ST 2865 37.9 1012 Undetermined

50% ST 1012 :50% ST 2865 48.2 Novel allele Undetermined

75% ST 7181 : 25% ST 7219 31.7 7181 7181

50% ST 7181 : 50% ST 7219 47.4 7219 7219

50% ST 7219: 25% ST 2865 : 25% ST 5316 49.6 Novel allele Undetermined

50% ST 5316  : 50% ST 574 49.4 Novel allele Undetermined
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391 Table 3: MLST results derived using conventional method and WGS. 

Total number of full MLST results derived from

Workflow names Number of samples
WGS-mapping 

approach (MOST)

WGS-

assembly 

based 

(BIGSdb)

Conventional 

method

Isolates in pure culture

Campylobacter Sp. 120 119 112 99

Streptococcus pneumoniae 99 99 99 97

Staphylococcus aureus 106 106 106 106

�Difficult� samples (mixed cultures and those with low coverage)

Intra  species Streptococcus pneumoniae  12 7 3 nt*

Mixed Salmonella sp with other bacterial 

species
14 14 7 nt*

Low coverage genomic salmonella data 29 29 27 nt*

392 *nt indicates samples not tested
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