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Abstract1

Predicting dispersal paths of marine larvae with long pelagic durations, such as2

American lobster (Homarus americanus), requires understanding the cues to which3

larvae respond, and how that response reflects changes in larval behaviour. If larvae4

respond to conspecific presence by varying their movement, this behaviour can bias5

laboratory estimates of environmental responses. We tested whether larvae actively6

decreased their local intraspecific density by measuring how the vertical distribution7

of larvae changed under high versus low concentrations of conspecifics. We observed8

weak increases in vertical dispersion at higher concentrations in both newly-hatched9

larvae and in post-larvae, but not in intermediate larval stages. Further, we found10

that larvae from different mothers consistently differed in vertical distribution, which11

may indicate maternal effects on dispersal behavior. We also tested for differences12

in horizontal swimming behaviour in high and low concentrations, by fitting a novel13

random walk model that allowed us to model both larval interactions and persistent14

turning behaviours. We showed substantial reduction in diffusive behaviour under15

high concentration conditions resulting from more frequent turns by each larva,16

but no evidence for consistent avoidance of conspecifics. Our study is the first to17

demonstrate concentration-dependent behaviours in lobster larvae.18

Keywords: Homarus americanus, American lobster, movement ecology, concentration19

dependence, larval dispersal20
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Introduction21

Many marine benthic invertebrates spend their adult lives as either sedentary individuals22

or moving slowly across the seafloor. Upon maturation, these meroplanktonic species23

produce planktonic larvae that disperse over much longer distances than adults (Pineda24

et al., 2007). The larval stage, therefore, plays a critical role in connecting distant popula-25

tions, allowing species to respond to changing habitat conditions, recover from localized26

population losses, and spread to new habitats (Sale et al., 2006). As such, predicting27

how these populations will change over time requires understanding how larvae disperse28

between source and settlement sites. Predicting dispersal and resulting connectivity re-29

quires understanding how larvae will react to environmental cues, including the presence30

of conspecific larvae.31

Water movement itself heavily influences a larva’s path through the water column.32

Therefore, most attempts to predict marine larval settlement patterns have focused on33

understanding current patterns, assuming larvae act as passive drifters. However, in-34

creasing evidence (Metaxas, 2001, Metaxas and Saunders, 2009) demonstrates that larval35

swimming behaviour can significantly affect its path while dispersing, either by alter-36

ing its vertical position in the water column (and thus changing the horizontal current37

regime it encounters), or by swimming horizontally through current discontinuities, such38

as fronts where different water masses meet. Although a larva may swim slowly relative39

to the currents it moves through, the ability to switch behaviours in response to changes40

in surrounding conditions can result in substantial control over its path (e.g. Fiksen et al.,41

2007).42

Most larval dispersal behavioural studies focus on larval response to external abiotic43

cues such as temperature (e.g. Rooney and Cobb, 1991), salinity (Anger, 2003), or light44

levels (Thorson, 1964). However, in addition to abiotic factors, the survival of an indi-45

vidual during dispersal to settlement depends on its biotic environment, including food,46

3
PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1969v1 | CC-BY 4.0 Open Access | rec: 19 Apr 2016, publ: 19 Apr 2016



predators, and competitors.47

Larval conspecifics comprise a potentially important part of an individual larva’s biotic48

environment. During dispersal, nearby conspecifics may help protect an individual from49

predation (e.g. sea urchins and sea stars, Roy et al., 2012) or attract nearby predators50

(e.g. planktivorous fish, McNaught and Hasler, 1961, Gliwicz et al., 2006). Further,51

nearby conspecifics may compete for resources during dispersal (e.g. Fortier and Harris,52

1989) and for resources or settlement sites if they eventually settle in close proximity (e.g.53

barnacles, Connell, 1985). All these factors add concentration-dependence to dispersal,54

because neighboring larvae may affect the probability that an individual propagule will55

survive until settlement.56

In species such as American lobster, Homarus americanus, where cannibalistic lar-57

vae of all stages readily attack any conspecifics they detect (Herrick, 1909), aggregation58

presumably offers little benefit. Further, as in many other meroplanktonic species, larval59

lobster encounter increased mortality and shelter limitation with increased settlement60

densities over small scales (Wahle and Incze, 1997, Steneck, 2006), meaning that individ-61

ual larvae should benefit by moving away from one another so as to avoid settling near62

competitors.63

Given that marine currents can aggregate larvae during transport (Siegel et al., 2008),64

an individual may potentially increase its probability of survival to settlement through65

behaviours that reduce this aggregation. Four broad types of behaviour could reduce ag-66

gregation. First, individual random movements spread aggregations through a diffusion-67

like mechanism (Harrison et al., 2013). Second, consistent inter-individual differences in68

behaviour, such as differences in mean swimming direction or responses to environmental69

cues, may spread larvae (Vikebø et al., 2007). Third, larvae could actively increase their70

local rate of diffusion (the rate at which they spread apart) when near conspecifics, by71

either moving more rapidly or by turning less frequently (Kareiva and Shigesada, 1983)72
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when near other larvae. Finally, larvae could simply swim away from nearby conspecifics.73

Any of the last three behavioural mechanisms will affect interpretation of larval be-74

haviour from small-scale experiments. First, if larvae exhibit strong inter-individual dif-75

ferences in behaviour, experimental results can only inform large scale (km or greater)76

dispersal predictions if the experiment includes sufficient larval behavioral diversity to77

capture this variability. Second, if larvae move away from one another at high concen-78

trations through either diffusive or directional movement, estimates of larval response to79

a given cue will depend on larval concentrations used in the trials to estimate that cue.80

Previous studies report a wide range of behavioural responses to conspecific concen-81

trations in planktonic organisms, in both field and laboratory studies. Larval sea urchins82

and sea stars (Roy et al., 2012) and copepods (Hamner and Carleton, 1979) and a wide83

variety of taxa display aggregation behaviours. In contrast, Daphnia move out of areas84

of high conspecific concentration, possibly to avoid predators (Gliwicz et al., 2006). Fish85

larvae in the field (Fortier and Harris, 1989) and Daphnia populations in laboratory ex-86

periments (Lampert, 2005) vertically position themselves in an ideal free distribution to87

exploit available prey.88

Even in the absence of conspecific avoidance behaviour, consistent behavioural vari-89

ability between individuals can increase variation in final settlement sites (Fraser et al.,90

2001, Bowler and Benton, 2005). Consistent behavioural differences between larvae from91

different parents are paticularly interesting, because heritable variability in dispersal traits92

can shape large-scale population dynamics and patterns of connectivity (Phillips et al.,93

2008, Clobert et al., 2009), effects that would be missed in large-scale dispersal simulations94

assuming identical larval behaviours (e.g. Katz et al., 1994, Incze et al., 2010). Heritable95

variation in dispersal behaviours have been observed in a wide variety of taxa (Zera and96

Brisson, 2012) but remains largely unstudied in larval studies of meroplanktonic species.97

For most meroplanktonic species, little data exist either on movement in response98
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to conspecifics or intraspecific variation in larval movement behaviours. For this study,99

we focused on concentration responses and behavioural variability in larvae of American100

lobster. Effective management of this commercially important species, fished across the101

North American Atlantic coast from Newfoundland, Canada to the mid-Atlantic U.S.,102

requires understanding factors that affect their dispersal. Dispersal from offshore stocks103

may stabilize and increase yields in inshore stocks (Fogarty, 1998), and knowing how dis-104

persal connects populations can help predict how management actions in one region will105

affect distant populations (Fogarty, 1995). Our study tested whether lobster larvae alter106

their vertical or horizontal movement behaviour at different conspecific concentrations.107

We hypothesized that larvae will increase inter-individual distances at higher concen-108

trations, because larvae actively move to reduce their local concentration and thus the109

potential for intra-specific competition.110

Female lobsters brood their eggs for 9-12 months before releasing hatchlings as free111

swimming larvae, up to 2000 larvae at a time (Ennis, 1995). The larvae develop over sev-112

eral weeks (Annis et al., 2007), depending on temperature (MacKenzie, 1988), through113

three larval stages (I - III) and one post-larval, pre-settlement stage (stage IV). Through-114

out this developmental period, they occur in the water column, dispersing upwards of115

100 km before settling. Behavioural studies suggest that all four lobster larval stages can116

actively mediate their vertical position in the water column (Ennis, 1975), however, the117

post-larvae are also strong horizontal swimmers (Ennis, 1986, Cobb et al., 1989).118

This study consisted of two sets of experiments. In the first, we tested how larval119

concentration in the water column affects vertical distributions at each developmental120

stage. We hypothesized that larvae increase vertical dispersion at higher concentrations.121

We also tested whether vertical dispersion varied consistently among larvae from the same122

mother, as a measure of potentially heritable variation in dispersal behaviours.123

Our second experiment recorded horizontal swimming behaviour of small groups of124
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postlarvae at low and high concentrations. We then developed a novel random walk125

model to estimate between-treatment and inter-individual variability in diffusion rates126

and inter-individual attraction or repulsion, while accounting for directional and turning127

rate persistence. As many meroplantonic larvae have been observed to show persistent128

looping behaviour, this model may be useful more generally as a tool to model larval129

behaviour under experimental conditions.130

We finally determined overall patterns of larval clustering, by testing whether the131

distribution of distances between larvae in each video frame clustered more or less than132

the null model. We hypothesized that increased conspecific avoidance and higher activity133

rates by larvae in the high concentration treatment would increase diffusion rates and134

inter-individual spacing relative to the low concentration treatment.135

Methods and Materials136

Larval rearing137

Fishermen collected egg-bearing female American lobsters (Homarus americanus) using138

commercial traps, from the ports of Port au Choix and Red Harbour in Newfoundland,139

Canada in June of 2010, under Fisheries and Oceans Canada experimental license NL-140

1339-12. The females were held in individual tanks at the Ocean Sciences Center of141

Memorial University, Newfoundland and Labrador with continuous flow ambient sea wa-142

ter (7 - 15 ◦C), and fed twice weekly meals of squid. We used a reversed 12 hour light143

/ 12 hour dark light cycle, with light on from 7 pm to 7 am, because hatching typically144

occurs at the transition from light to darkness (Ennis, 1995).145

Each morning we collected larvae using a fine mesh net, and then maintained larvae146

from each mother in separate four-litre holding containers for their first two days in a147

shared water bath of filtered ambient sea water (7 - 15 ◦C). On the third day post-148
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hatching, we transferred larvae to shared 50 l plankton kreisel tanks filled with filtered149

sea water. Larvae in the kreisel tanks were maintained at concentrations of less than 50150

individuals ·l−1, and on a constant 12 hour dark/light cycle. Larvae in both types of tank151

were fed live Artemia salina ad libitum, and bubbled vigorously to reduce cannibalism.152

For larval trials, we removed stage II through IV larvae from the kreisel tanks by net and153

sorted them to stage by eye. No special permissions or permits were required for larval154

rearing or experiments.155

Vertical movement experimental trials156

We first tested whether increasing larval concentration resulted in larvae in an aggregate157

change in larval phototactic response, by larvae spreading out in the water column. To158

measure how concentration effects changed through larval age, we tested larvae at several159

developmental stages: zero-day old (10 trials), one day old (8 trials) and two day old (8160

trials) stage I larvae, stage II (4 trials), stage III (4 trials) and stage IV larvae (5 trials).161

Availability of larvae determined the number of trials per stage. We separated stage I162

larvae by day because phototactic behaviour shifts rapidly post-hatching (Ennis, 1975).163

For each of the stage I trials, all larvae in a given trial came from a single mother.164

This strategy allowed us to test whether larvae from the same mother exhibited consistent165

patterns of concentration-dependent vertical movement. It also ensured that, as would be166

expected under natural conditions, a given larva’s closest neighbor would come from the167

same mother until sufficient time passed for diffusion to mix larvae from different parents.168

We tested five mothers, with two trials per mother for zero-day old larvae. However, as169

daily larval mortality was high, our larval pool was reduced to individuals from two of170

the mothers for the second and third days for a single trial each, resulting in 8 trials for171

these stages.172

Larvae were equilibrated for half an hour at 15 ◦C, then placed in two 120 cm tall173
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plexiglass tanks (Fig. 1A) filled with filtered sea water, and held at 15 ◦C. Overhead174

lighting lit tanks equally, both to maintain a constant light environment and to induce175

phototactic behaviour. We used broad spectrum (Exo-Terra R© 25 w ‘day light’) bulbs176

positioned 30 cm above each tank to approximate daylight lighting. We selected one of177

each pair of replicate tanks at random for the high concentration treatment and the other178

for the low concentration treatment. In the low concentration tank, we placed either 20179

larvae (stage I) or 10 larvae (stage II-IV), in contrast to 40 larvae (stage I) or 20 larvae180

(stage II- IV) in the high concentration tank.181

Larval counts for high and low concentration treatments were chosen to balance the182

desire to match low larval concentrations typically encountered in the wild while maintain-183

ing sufficient numbers of larvae in the tank to generate a reliable estimate of distribution.184

We used different counts of larvae for different stages to account for the fact that lobster185

typically release stage I larvae in groups that occur at much higher concentrations than186

the other stages in the wild (Harding et al., 1982), and the difficulty in maintaining large187

numbers of post-stage I larvae.188

Larvae were placed at the top of the tank and allowed to move freely in the columns for189

15 minutes. We then counted the number of larvae visible in each 10 cm vertical segment190

of the tank (Fig. 1A). We repeated this count at 30 minutes to determine whether the191

vertical distribution of larvae within had equilibrated. This strategy yielded four sets of192

observations for each trial: two sets of counts for the left tank and two for the right.193

Statistical analysis of vertical movement194

All statistical analyses were conducted in R 3.1.2 (R Development Core Team, 2015).195

To determine whether larvae were distributed similarly in comparable tanks, we used a196

permutation-based analysis of variance of dissimilarities among tanks. For each stage197

tested, we transformed the observed set of larval counts into a dissimilarity matrix of rel-198
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ative abundances, by dividing counts in each 10 cm segment by the total number of larvae199

observed in that observation, then calculating the Bray-Curtis (BC) dissimilarity between200

all pairs of samples. We used the Bray-Curtis dissimilarity as it equally weights categories201

with both high and low abundances when calculating how dissimilar two samples are, and202

treats all pairs of samples with no shared counts as equally dissimilar (McCune et al.,203

2002). We then used the adonis function from the vegan package (Oksanen et al., 2013) to204

determine the fraction of variance in between-observation dissimilarities explained by our205

experimental treatments. This function calculated the fraction of the sum of squared dis-206

similarities between observations explained by group membership to determine a pseudo207

F-ratio, then permuted the labels on each observation and reran the process multiple208

times. We used these permutations to calculate a null distribution of pseudo F-ratios209

for model p-values (Anderson, 2001). The permutation method used 10000 permutations210

for each analysis to test how frequently the observed difference in dissimilarities between211

treatments would arise assuming no relationship between the treatment and observed dis-212

similarity. Within each developmental stage, we regressed dissimilarity on three different213

factors:214

1. Time period, to determine whether systematic within-stage differences occurred215

between the distribution of larvae between observation times.216

2. Identity of the mother, to test for systematic differences in larval distribution as-217

sociated with maternal origin. We only tested this effect for stage I larvae because218

subsequent stages were reared in pooled tanks.219

3. Concentration of larvae in the tank, to determine whether increasing intraspecific220

encounter rates produced systematic effects on the vertical distribution of larvae.221

Because the analysis of variance of dissimilarities only tested whether the two treat-222

ments differed and not the factors responsible for that difference, we used mixed-effect223
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modelling to determine how treatments differed. Given that we were testing to determine224

whether higher larval concentration caused larvae to spread out vertically, we used Shan-225

non diversity of counts within each tank at a given time point as the outcome variable.226

Shannon diversity measures the degree of spread among individuals at different depth227

stratum in the system, varying from zero if every individual was found in the same depth228

stratum, to a maximum of ln(n−1) if there are n strata and the same number of individ-229

uals occurred at every stratum in the tank (Lande, 1996). Shannon diversity of a given230

tank i was defined as:231

Ei = −
∑
j

pi,jln(pi,j) (1)

where pi,j denotes the fraction of total larvae in tank i found at height j.232

We used a linear mixed effect model to fit variation in diversity within each stage233

(Bolker, 2008), treating time period, mother, and the concentration treatment as fixed234

effects, and trial as a random effect to account for the repeated measures structure of the235

data. We ran these tests using the lme4 package for mixed effect modelling, version 1.1-7236

(Bates et al., 2014), assuming a normal distribution in residual Shannon diversity with237

equal variances for each maternal source and treatment within an age class. Treatment238

effects were compared using parametric bootstrapping to determine the distribution of239

differences between levels. The parametric bootstrap procedure estimates uncertainty240

in a parameter (Bates et al., 2014) by first assuming an appropriate model has been241

chosen (i.e., correctly specified errors and estimates of the predictor values), and then242

simulating new data from that model many times. For each simulation, we assumed the243

same numbers of each fixed factor (mother, time step, and concentration treatment) as244

observed, and that each value would have the same mean as the estimated model. We245

then added a new random effect and residuals from individual-level observations to this246

mean value. For each replicate simulation of the data, we refit the full model and used247
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the resulting distribution of estimates for each fixed effect to build confidence intervals248

for that parameter. Here we used percentile confidence intervals: for a given parameter,249

the 95% CI encompassed the range from the 2.5% percentile to the 97.5% percentile of250

the distribution of parameter estimates from the simulations.251

Horizontal movement behaviour experiment252

Our second set of experiments tested whether larvae altered their horizontal movement253

behaviour as a function of different conspecific concentrations. We recorded larval move-254

ment in an experimental arena in a 50 x 75 cm region of a recirculating flume (Fig. 1B),255

with 10 cm deep water maintained at 15 ◦C, without flow. We chose to use the flume256

because it provided a suitably large experimental “arena” surrounded by water of the257

same temperature. Screen barriers (100 um mesh) blocked off the two open ends in order258

to confine larvae to the arena. The arena was lit with four broad spectrum daylight259

incandescent lamps (Exo-Terra R© 25 w) placed in the corners of the experimental arena,260

75 cm above the surface of the water, to maintain a constant and homogeneous lighting261

environment. Larvae were allowed to adjust to the experimental temperature (typically262

within 5 ◦C of rearing temperature) for 30 minutes prior to recording.263

We only tested the horizontal concentration response of stage IV larvae, because264

previous studies demonstrated that earlier developmental stages have little control over265

their horizontal (as opposed to vertical) position (Ennis, 1995). We recorded five trials266

for each treatment, adding five larvae to the arena for the low concentration trials, and267

ten larvae for the high concentration trials.268

We recorded larval movement using an overhead digital camera (Axis 221 Day and269

Night Network Cameras, model no. 0221-01-04, Axis Communications, Lund, Sweden),270

placed in the centre of the arena, 200 cm above the surface of the water. The camera271

recorded larvae for 30 minutes in grey scale with a resolution of ∼ 10 pixels mm−1 at 30272
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frames per second (fps).273

Prior to analysis, we reformatted videos as uncompressed avi files using the software274

Avidemux 2.6.8. Each video was then broken into three ten minute parts and sub-sampled275

to 10 fps using Matlab R© R2014a, because the original files were too large to process as276

single blocks.277

Files were loaded into the image processing software ImageJ R© (Schneider et al., 2012)278

(see Fig. 2A for the video processing applied to a sample frame). We then cropped videos279

to remove side walls and lighting artifacts at the video edges (Fig. 2B). We thresholded280

each frame to set any pixel with a saturation value below 148 (where saturation ranged281

from 0 to black to 255 for white) as black and all other pixels to white. This approach282

removed the light background (Fig. 2C). We used the ImageJ CASA plugin, designed to283

follow sperm movement in videos (Wilson-Leedy and Ingermann, 2007), to detect tracks284

and extract coordinates of individual larvae in each video. Because the software was285

unable to track larvae perfectly and larvae often moved to the edge of the frame outside286

the cropped area, we could not associate individuals with a single unique path. However,287

the software often tracked larvae for several minutes at a time (Fig. 2D). After files were288

processed in CASA, we excluded any paths in the 40-pixel region on the bottom edge289

of the frame from further analysis because lighting artifacts created too many spurious290

paths. Any paths that passed through this region were split into new paths at the point291

where they entered. Finally, we removed any paths recorded for fewer than 100 frames292

(10 seconds) or with maximum displacement from their start point of 50 pixels or less (∼293

5 cm), to remove potentially spurious paths.294

Random walk modelling of horizontal behaviour295

We used a set of correlated random walk models to estimate inter-individual differences296

in behaviour, and to determine how individual larvae may change their behaviours in297
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response to conspecifics in the horizontal movement trials. The random walk models298

treated each individual movement path as a stochastic process: the direction and length299

of move in a given period of time were treated as random variables, which may depend300

on the previous movements in the path or on an individual’s local environment (Okubo301

and Levin, 2001). This approach can account for a wide range of different behaviours302

and inter-individual interactions, and can be used to predict population-level parameters303

such as average rate of diffusion in a population under a given set of conditions (Turchin,304

1998, Méndez et al., 2014).305

We used two types of random walk models to determine whether stage IV larvae306

changed their horizontal behaviour with concentration. The first set of models estimated307

changes in the rate that individuals spread out in the water column, by measuring dif-308

fusion coefficients. The second set of models measured whether nearby larvae attracted309

or repelled individual larvae. In the first set of models, we hypothesized that individuals310

would change their behaviour to increase their effective diffusion rate at higher conspe-311

cific concentrations. For the second set of models, we hypothesized that individuals would312

move away from one another to increase local dispersion.313

Calculating horizontal diffusion coefficients314

Dispersers patchily distributed in space could decrease encounter rates with other dis-315

persers by increasing their spreading rate whenever encountering other larvae. The long-316

term rate at which mean-squared displacement (MSD) of an individual from its starting317

point increases with time provides one measure of increase in spread. MSD typically318

increases linearly with time, assuming finite variance of step lengths. The slope of the319

time-MSD relationship represents the diffusion coefficient (Méndez et al., 2014). There-320

fore, for each path observed in each video, we estimated the long-term diffusion coefficient321

for that individual, assuming it followed a correlated random walk with no directional322
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bias or turning angle bias (Kareiva and Shigesada, 1983). We showed previously that323

this method effectively captures patterns of mean squared displacement in larval lobsters324

under similar experimental conditions (Stanley et al., 2016). We sub-sampled each path325

to one frame per second, to reduce correlation between turn angles in each step and326

estimated the diffusion coefficient for path i as:327

Di = σ2
l,i + l̄i

2
+ 2l̄i

2
(

ci
1− ci

) (2)

Here, σ2
l,i denotes the sample variation of step distances (cm2·second−1), l̄i was the328

mean step distance (cm·second−1), and ci denotes the mean cosine of path i. We compared329

diffusion coefficients between the high and low concentration treatments with a mixed330

effect model, using the lme4 package (Bates et al., 2014). We treated the concentration331

treatment as a fixed effect and used paths nested in video as a random effect to control332

for between-video heterogeneities. Our null expectation was that individuals at both high333

and low concentrations would have similar diffusion rates. Deviations away from this null334

model indicated how larval behaviour changed under different conspecific concentrations.335

Random walk models of intra-individual attraction or repulsion336

To test whether conspecifics attracted or repelled individual larvae, we fit random walk337

models to each larval path. We used an autocorrelated random walk model where the338

angle of the step each larva took from one frame to the next persisted (based on the339

angular correlated random walk model of Shimatani et al., 2012). The random walk340

model included three key parameters: wp, wc and κ (see Appendix A for the mathematical341

details on the model).342

The parameter wp determined whether larvae tended to continue moving in the same343

direction as the last step or to turn at the same rate as the previous step; wp = 0344

corresponded to the case where a larva continued travelling in the same direction, whereas345
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wp = 1 corresponded to the case where a larva moved in loops with the same turning346

speed over time. We included this parameter to model the persistent looping behaviour347

observed in larval movement paths (Fig. 2).348

The parameter wc determined how strongly a given larva was repelled (or attracted)349

from the common centroid of the other larvae present in the flume. When wc = 0 a350

larva tended to keep moving in the same path predicted by wp regardless of the location351

of other larva. When wc = 1, a larva tended to move toward (away) from the common352

center of the other larvae, regardless of its behaviour in the last step.353

The final parameter, κ, measured the amount of random variation around the mean354

predicted step given by wp and wc. If κ = 0, a larva always moved in the predicted355

direction. When κ→∞, a larva chose the direction of each step at random.356

We fit the three models to all larvae with a path consistently recorded for three min-357

utes or more, to ensure paths sufficiently long to produce a reliable estimate of model358

coefficients. We sub-sampled larval paths to one frame per second, to reduce the correla-359

tion of turn angles with steps further in the past. For each path, we estimated all three360

models using maximum likelihood. We logit-transformed wc and wp, and log-transformed361

κ prior to fitting, to ensure the parameters were unbounded to avoid issues with bounded362

optimization. The Nelder-Mead algorithm in the optim function for R 3.1.2 (R Develop-363

ment Core Team, 2015) estimated the maximum likelihood value for each model for each364

path. We estimated standard errors for each parameter as the diagonal of the inverse365

Hessian of the negative log-likelihood for that fit (Bolker, 2008).366

We used a permutation test to determine if each path was better fit by attraction,367

repulsion, or the null model (no interactions). For each path, we calculated the difference368

in log-likelihood between the null and each interaction model. We then generated a369

distribution of likelihood differences by shuffling the order of observations of angles to the370

centroid 500 times while retaining the same order of absolute and relative angles, then re-371
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fit the null model and both interaction models to the new paths. For each simulated path,372

we calculated the difference in log-likelihood between the null and interaction models. We373

then compared what fraction of simulated paths had a log-likelihood difference greater374

than that observed in the data, giving us a p-value of observing that large a deviation375

when the null model was true. For each path, we also tested how well the best fit376

model captured the movement dynamics of that individual, using several goodness-of-fit377

tests (Appendix A). We finally tested whether possible attractive or repulsive behaviours378

detected in the movement paths resulted from bounding larvae within a fixed arena where379

they could not move far from one another (Appendix B).380

Variation in larval spatial distribution381

If individuals actively moved from one another, then at any given point in time larvae382

in higher concentration treatments should be more dispersed than expected from the383

overall distribution of larval locations. To test for this pattern, we compared the distri-384

bution of distances between larvae observed in each frame to the distribution of distances385

drawn from a null model: the set of all observed larval locations. More weight at short386

distances in the observed distribution compared with the null model would indicate clus-387

tering, whereas more weight at long distances would indicate over-dispersion (Bonetti388

and Pagano, 2005).389

For each frame where our program detected more than one larva, we calculated the390

distance from each larva to every other larva in the frame. This calculation provided391

our observed distribution of inter-individual distances. To determine the probability of392

a given observed distance in the absence of clustering or avoidance, we generated a null393

distribution of distances. We drew 1000 samples of larval coordinates randomly from394

those observed across all videos and calculated the distance between each pair of draws.395
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Results396

Vertical distribution of larvae397

At each stage, the aggregate distribution of larvae in the vertical column was similar for398

the high and low concentration treatments, and was consistent with patterns of photo-399

tactic behaviour previously observed for H. americanus larvae (Hadley, 1908) (Fig. 3).400

The bimodally phototactic zero-day old stage I larvae either moved to the top or bottom401

of the tank (Fig. 3A). One-day old larvae almost always occupied the bottom 10 cm,402

only occasionally moving to higher depth strata (Fig. 3B). Two-day old stage I larvae,403

as well as stage II and III larvae, occurred almost exclusively in the bottom 10 cm of the404

tanks (Fig. 3C-E). Finally, stage IV returned to a bimodal distribution, with the bulk405

of the larvae at the top or bottom of the tanks (Fig. 3F). We restricted the remaining406

analyses to zero and one day old stage I and stage IV larvae given the lack of variation407

in the distribution of larvae between tanks for the other stages.408

Although larval distribution varied among trials, we detected systematic variation by409

treatment only in the zero-day old and one-day old larvae (Table 1). In both zero and410

one day olds, maternal origin affected distribution most, explaining 63% of the variance411

in dissimilarities for zero day old and 23% of the variation in one day old larvae. The412

concentration of larvae in the tank only minimally influenced vertical distribution, ex-413

plaining less than 10% of the variation for all treatments with a statistically significant414

effect (at the 0.05 level) only for zero-day old larvae. Finally, we observed a weak effect415

(R2 < 5% for all treatments) of time of measurement on vertical distribution of larvae,416

which may indicate that larval distribution had not stabilized before the end of the trial.417

However, this effect was significant only at the 0.05 level for the zero-day old larvae.418

Shannon diversity for each tank varied substantially between individual tanks (Fig.419

4). However, we observed a significant between-treatment difference in diversity only for420
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zero-day old stage I larvae and for stage IV larvae, both in the predicted direction (higher421

diversity in the high concentration treatment). On average high concentration diversity422

exceeded that in low concentration treatments by 0.3 (0.1 - 0.5, 95% bootstrap percentile423

CI) units for zero day olds, and 0.2 units (0.05 - 0.3, 95% bootstrap percentile CI) higher424

in Stage IV high concentration treatments compared to low. One-day old larvae showed425

no significant effect (0.8 - 1.6 times).426

As with overall distribution, Shannon diversity also varied strongly between larvae427

from different mothers in zero-day old larvae, differing by up 0.7 units, an effect size428

roughly two and half times larger than the effect of increasing concentration. Maternal429

source had no significant effect on diversity in one-day old larvae. However, the estimated430

diversity effects for each mother correlated strongly between zero-day old and one day431

old larvae (r=0.9). This correlation may indicate heritable or maternal effects on larval432

vertical dispersion.433

We did not detect any significant effect of measurement time (first versus last 15434

minutes) on average tank diversity for any of the three stages examined.435

Horizontal movement of state IV larvae436

We observed a total of 223 paths in the low concentration treatment, and 629 paths in437

the high concentration treatment. Paths were tracked for a median of 26 seconds in the438

high concentration treatment, and 28 seconds in the low concentration treatment. These439

values varied substantially, with several paths in both treatments lasting for the entire440

ten-minute period of the video segment.441

Overall, we observed a mean estimated long-term diffusion rate of 42 cm2sec−1 with442

substantial intra-individual variability around this mean (0.01 cm2sec−1 to 1800 cm2sec−1)443

(Fig. 5A). Furthermore, diffusion rates differed substantially between high and low con-444

centration treatments, but not in the direction originally hypothesized: diffusion rates445
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were 4.5 times lower (1.2 - 16 times, 95% bootstrap percentile CI) in the high concentra-446

tion treatment, compared to the low concentration treatment. Differences in the mean447

cosine of turning angles drove this pattern, as opposed to mean or variance of step length448

per second (Fig. 5B-D). This result indicates that larvae travelled at similar speeds in449

both treatments, but followed more tortuous paths in high concentration conditions.450

Inter-individual interactions451

We detected substantial variation in inter-individual interactions between larvae, with452

intraspecific attraction more common than repulsion. Of the 64 individual paths (54 from453

high concentration and 10 from low concentration treatments) that exceeded 3 minutes,454

an attraction-driven random walk model fit two paths best (one from low concentration,455

one from high), whereas a repulsion-driven model fit four others best (all from the high-456

concentration treatment), with the null model best fitting the remainder.457

In general, goodness-of-fit tests showed that the random walk model captured the458

movement dynamics of each path (see Appendix B for details). However, several paths459

fitted showed poor fit, with substantial long-term auto-correlation of turn angles remain-460

ing in the model residuals. This finding indicates that our intraspecific interaction models461

may not have captured all the features of the fitted larval paths. Even with these caveats462

in mind, examination of parameter estimates for individual models offers some utility, as463

they illustrate average trends in larval movement.464

Although parameter estimates within each model class varied substantially among465

paths (Fig. 6), we typically observed a small degree of intra-specific attraction or repulsion466

even for superior non-null models (wc < 0.5). Further, attraction or repulsion paths467

also produced lower estimates of κ than models paths best fit by the null model. As468

κ determined the between-step variability of movement, this result suggests that larvae469

exhibiting attraction or repulsion also take more tortuous paths.470
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For all three models, wp was bimodally distributed, with values typically either close471

to one or zero. This result points to two types of behaviour: persistent cycling (wp close472

to zero) or constant straight-line movement (wp close to one). This result matches the473

two types of movement behaviour previously described in stage IV lobster larvae, where474

larvae switch between a directional "claws together" swimming mode, and a claws apart,475

a-directional mode (Cobb et al., 1983). This result is also consistent with a positive476

correlation between our estimates of wp and κ (r =0.22), implying more variability in477

turn angles of larvae not traveling directionally.478

Evidence for overall horizontal larval clustering479

Although we observed significant differences in diffusion rates between concentration480

treatments, this result did not translate into differences in the overall spatial clustering481

of larvae between treatments (Fig. 7). Neither low nor high-concentration treatments482

showed evidence for either further or closer spacing of larvae than expected, given the ob-483

served distribution of larval locations across all trials. This result indicates an essentially484

random distribution of larvae within each frame across all trials.485

Discussion486

Our study demonstrated intra-individual variability in H. americanus larval behaviour487

under different encounter rates. We also demonstrated that newly hatched larvae and488

postlarvae increase vertical dispersion in response to higher concentrations of larvae in489

the water column. Finally, we demonstrated more diffusive horizontal behaviour at lower490

concentrations of postlarvae than at higher concentrations, and detected both attractive491

and repulsive horizontal responses to other larvae in a small subset of individuals mea-492

sured. However, the individual variability and response of larvae to conspecifics did not493
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scale up to overdispersion in their horizontal distribution, which was close to random in494

both high and low concentrations.495

We observed decreasing vertical clustering at higher concentration in our experimen-496

tal water columns, as we originally hypothesized. This decrease may indicate repulsive497

movement in early stage I larvae and post-larvae. However, the effect was weak relative to498

inter-tank variation in vertical distribution within each stage. We observed the strongest499

response to concentration in newly hatched larvae. Given the large numbers released at500

time of hatching (Ennis, 1995), moving away from conspecifics may be a mechanism to501

avoid cannibalism or predators attracted to aggregations. This strategy would also ex-502

plain the absence of a concentration response in our one-day old larvae: 24 hours should503

allow sufficient time to dissipate small-scale clustering of larvae from the same hatching.504

These results also highlight the importance of measuring individual larval behaviours505

as well as aggregate distributions in behavioural movement experiments. We observed506

large differences in vertical overdispersion in larvae from different mothers, and this effect507

persisted for at least one day; larvae from mothers that produced overdispersed zero-day508

old larvae also tended to overdisperse as one-day old larvae. The large degree of variabil-509

ity in vertical dispersion among larvae from different mothers has interesting implications510

for lobster dispersal. We showed significant variability in the degree of variation in verti-511

cal distribution among larvae from different mothers, and consistent variability, at least512

between newly hatched and one-day old larvae.513

Although we did not design our experiments to test for heritability, and we only514

examined behavioural variation over a very small vertical range, our results nonetheless515

suggest a useful direction for further work. Oceanographic models incorporating larval516

behaviour demonstrate that larvae starting from the same point but at depths differing by517

only a few meters can settle at very different locations (Hinckley et al., 1996, Fiksen et al.,518

2007, Vikebø et al., 2007, Paris et al., 2011, Phelps et al., 2015). Heritable variation in519
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vertical movement of lobsters could potentially affect large-scale patterns of connectivity520

between lobster populations.521

We also detected a net change in horizontal diffusion rates from low to high concen-522

tration treatments, but a change opposite to what we had predicted. We anticipated that523

diffusion rates would increase at higher concentrations as a non-directional mechanism of524

increasing distances among individuals. Instead, we observed a decrease in diffusion. The525

difference in mean cosines of larval path, rather than either the mean or variance of step526

length, drove between-treatment differences. This result indicates that larvae moved at527

similar speeds in both treatments but turned more frequently at higher concentrations,528

perhaps altering their paths when encountering another larva.529

Given that we detected behavioral differences in average diffusion rates between high530

and low concentrations and the presence of both attraction and repulsion to conspecifics,531

three factors may explain random aggregate distributions. First, the bulk of larvae ap-532

peared not to move toward or away from conspecifics, and approximately equal numbers533

of larvae were apparently attracted to or repelled from one another. Therefore, averaging534

out combined effects of some larvae moving towards one another while others avoided535

each other should not affect the aggregate distribution. Second, larvae may not move536

toward or away from conspecifics, or our models might have missed such movement (see537

Appendix B). Third, the tank walls act as a boundary, preventing over-dispersion. Even538

with higher diffusion rates in the low concentration treatment, the larvae could not spread539

out further because they could not leave the experimental arena.540

Implications for experimental lobster research541

Lobster larvae of all stages demonstrate strong behaviour responses to a range of envi-542

ronmental cues, such as vertical responses to light levels (Ennis, 1975) or thermocline543

location (Boudreau et al., 1992). The experiments demonstrating these responses have544
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typically relied on measuring large numbers of larvae together in a single tank, to build545

up aggregate measures of responses.546

Our work shows that estimates of behavioural responses based on aggregated experi-547

mental measurements may underestimate the strength of larval response to environmental548

cues. Larval experiments typically utilize much higher concentrations than would typi-549

cally occur in the wild. Surface tows across the lobster’s range rarely detect more than550

100 postlarvae per 1000 m3 of water (Wahle and Incze, 1997, Incze et al., 2000), and551

earlier larval stages are rarely detected at abundances more than an order of magnitude552

higher (Harding et al., 2005, Fogarty, 1983, Harding et al., 1982). As such, laboratory553

tests may conflate larval response to a given cue with response to high concentrations of554

conspecifics. However, our results also indicate that this problem may arise primarily in555

experiments on very young larvae, or for measurements of horizontal diffusivity.556

Both our own and prior larval experiments measured aggregate distributions of larvae557

across a water column, rather than tracking individual larvae. As such, these experiments558

could not test for consistent differences in movement behaviour among individual larvae.559

For instance, although larvae often show a characteristic pattern of vertical distribution560

in response to light at each stage, these distributions vary considerably (Ennis, 1975,561

Boudreau et al., 1992). Because most studies measure vertical distributions (as counts562

of total numbers of larvae observed at different heights), they cannot determine whether563

individual larvae vary in vertical position over time, or if that variation reflects differ-564

ences in which depth stratum each larva would generally choose to occupy in response to565

light. For instance, Vikebø et al. (2007) used individual based models of larval cod dis-566

persal to show that the interaction between small consistent inter-individual differences567

in movement behaviour and complex ocean currents can result in larvae following rad-568

ically different dispersal paths. This result highlights the need to measure intraspecific569

variability in movement in addition to aggregate patterns in future work.570
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Variable movement and connectivity571

Techniques for modelling realistic patterns of larval transport have advanced substantially572

over the last two decades, incorporating complex patterns of marine currents (e.g. Xue573

et al., 2008, Chassé and Miller, 2010, White et al., 2010) and larval behaviour (e.g. Incze574

et al., 2010). However, these models do not account for interactions among dispersers.575

Many physical ocean processes aggregate dispersers at a wide range of scales as they576

move (see Martin, 2003, for a review). These mechanisms can keep larvae together for577

long periods, meaning that larvae travelling in water packets with high concentrations578

of conspecifics may also compete for suitable environments at settlement and thereafter.579

Further, these physical mechanisms could concentrate propagules of multiple species,580

potentially clustering both food sources (Olson and Olson, 1989) and predators (Godø581

et al., 2012). In this sense, the plankton could act as a dynamic meta-community, with582

multiple species interacting in patches that constantly break up and rejoin through the583

action of ocean currents and organism movement. These aggregation mechanisms can584

substantially increase the strength of density-dependent processes affecting the fitness of585

dispersing larvae (Pedersen and Guichard, in review).586

However, even simple behavioural responses, such as increasing diffusive swimming587

(Harrison et al., 2013) or changes in vertical distribution (Fiksen et al., 2007), may588

substantially affect how ocean currents cluster larvae. Spatial scales and patterns of589

clustering vary by taxa depending on relative swimming ability (Daigle et al., 2014),590

indicating that species-specific and concentration-dependent behaviours may be driving591

patterns of spatial clustering. The response of individual movement rates to the presence592

of conspecifics, as revealed by our study, may influence connectivity of adult populations593

over time and merits further research.594
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Scaling from laboratory behaviour to behaviour to patterns of595

large-scale dispersal596

Our study demonstrates that newly hatched lobster larvae increase their vertical disper-597

sion in the presence of higher concentrations of conspecifics. Furthermore, we demonstrate598

that stage IV larvae increase the rate at which they change direction at higher concen-599

trations (although this increase did not affect the average degree of over-dispersion in the600

experimental tanks). However, we do not suggest our study offers an accurate estimate601

of the magnitude of these effects in the field.602

The main issue with scaling these responses to the field is that even our low concentra-603

tion treatments greatly exceed natural concentrations, and we measured responses over604

very short timescales relative to the time scale of dispersal. Furthermore, we conducted605

our experiments in a well-lit environment over short distances, providing larvae strong606

visual cues on locations of other larvae. While this was necessary to be able to track the607

larvae with video, given the cannibalistic tendencies of lobster larvae, their behavioural608

responses may have reflected larvae alternately hunting one another and moving away to609

avoid predation. Lobster larvae are not purely visual predators given that they obtain610

much of their food at night (Juinio and Cobb, 1992), however they do visually detect, pur-611

sue, and attack potential prey (Herrick, 1909). Strong anti-predator responses also occur612

in postlarvae treated with predator scent (Boudreau et al., 1993). Although no study has613

measured rates of visual predator avoidance in H. americanus, we observed many pairs614

of post-larvae engaging in chase and evasion behaviour in our horizontal trials (personal615

observation).616

Summary617

We have shown that lobsters change their movement in the presence of conspecifics,618

which future studies of larvae behaviour should consider. Future work should focus619
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on understanding how larvae change their behaviours across a range of concentration,620

how the presence of conspecifics changes larval responses to other environmental cues,621

and how to incorporate these responses into large-scale models of larval connectivity622

(e.g. Katz et al., 1994, Incze et al., 2010). Our approach of tracking individual larvae623

and using random-walk models to assess behavioral response to outside stimuli, holds624

substantial promise for understanding what factors drive larval movement across scales,625

and measuring variation in behavioural responses to environmental cues.626
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Tables837

Treatment df F statistic R2 Pr(>F)
Stage I: 0 day old time period 1 3.14 0.03 0.04

mother 4 15.24 0.61 <0.01
concentration 1 3.05 0.03 0.04

Stage I: 1 day old time period 1 0.72 0.02 0.5
mother 4 2.01 0.23 0.05
concentration 1 0.76 0.02 0.5

Stage IV time period 1 0.79 0.04 0.5
concentration 1 1.39 0.07 0.2

Table 1: Analysis of variance of dissimilarities between vertical distributions of larvae
within each stage.
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Figures838
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Figure 1: Experimental set-up for vertical (A) and horizontal (B) swimming trials. A)
Paired 20 x 10 x 120 cm experimental tanks, marked in 10 cm increments. B) Top-down
view of flume arena for horizontal movement trials. Experimental area was in a 50 cm
wide flume, with 10 cm deep water. Arena ends were blocked off by mesh barriers, 75
cm from each other (in grey). An overhead camera recorded larval paths for 30-minute
periods.
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A B C D

Figure 2: Example of video processing of horizontal movement videos. Dotted circles
indicate larval positions. A) Original frame from a low-density concentration treatment,
with four larvae visible (fifth larvae obscured in this frame). The same frame after B)
cropping and C) thresholding. D) final paths, extracted by CASA program.
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Figure 3: Mean vertical distribution of larvae in experimental tanks, ± 1 st. dev. The
value at a given column height indicates the mean fraction of total larvae in the tank,
found between that height and the next 10 cm increment.
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Figure 4: Shannon diversity (unitless) of distribution of larvae in vertical tank experi-
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given tank, at a given time. Lines connect tanks measured at the same time with high
and low concentrations of larvae. Dashed lines indicate diversity measured in the first 15
minutes, and solid lines denote measurements from the end of the trial.
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and standard deviations.
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preventing calculating any standard error for it. A) Estimates for paths best fit by the
model without larval interactions. B) Estimates for paths best fit by interaction models.
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Appendix A: Circular auto-regressive models with larval839

interaction and turning angle persistence840

The random walk models we used were a modified form of the circular auto-regressive841

model described by Shimatani et al. (2012). The models were designed to account for842

three features of larval lobster movement:843

1. Directional persistence: larvae tended to move in a relatively constant direction844

(see Fig. 2D);845

2. Turning persistence: Larvae frequently looped, constantly turning in a single direc-846

tion for several frames (see Fig. 2D);847

3. Attraction or repulsion to neighbouring larvae;848

The circular auto-regressive model assumed that, for each time-step t, individual849

i had a preferred absolute θ̄i,t direction (from 0 to 2π), where absolute direction was850

measured from the the x-axis, counter-clockwise (Fig. A1A). The actual direction of step851

t, θi,t, was distributed around θ̄i,t following a Von Mises (circular normal) distribution:852

θi,t ∼ V onMises(θ̄i,t, κi), where κi denotes the concentration parameter for individual i.853

If κi → ∞, then larva i always move in its preferred direction, whereas if κ → 0, the854

angle of each step for larva i was entirely random.855

Three factors could affect θ̄i,t in the models: the absolute angle of the previous step,856

θi,t−1, the relative angle of the previous step, ψi,t−1 (how much the angle of the previous857

step deviated from the step before it; ψi,t−1 = θi,t−1− θi,t−2; Fig. A1A)), and the angle to858

the centroid of the locations of other larvae detected in the previous time step, ρi,t−1 (Fig.859

A1B). We chose movement toward or away from the centroid as a metric of attraction860

or repulsion because moving away from the centroid would maximize the mean distance861
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between that larva and all others. We used the link function, L, described in Shimatani862

et al. (2012) to combine the interacting effects of these different drivers:863

L(x, a, w) = a+ 2 · tan−1(w(tan(
x− a

2
)) (3)

This function interpolated between two angles, x and a. If w = 1, then L(x, a, 1) = x,864

if w = 0, L(x, a, 0) = a, and when 0 < w < 1, L would have a value between a and x.865

We fit three different models to each path:866

1. The null model of no interactions:867

θ̄i,t = L(θi,t−1, θi,t−1 + ψi,t−1, wp,i) (4)

θi,t ∼ V onMises(θ̄i,t, κi)

2. An attraction model, where a larva tends to move in the direction of the centroid868

of the larvae around it:869

Pi,t = L(θi,t−1, θi,t−1 + ψi,t−1, wp,i)

θ̄i,t = L(Pi,t, ρi,t, 1− wc,i) (5)

θi,t ∼ V onMises(θ̄i,t, κi)

3. A repulsion model, where a larva tends to move in the opposite direction of the870

centroid:871

Pi,t = L(θi,t−1, θi,t−1 + ψi,t−1, wp,i)

θ̄i,t = L(Pi,t, ρi,t − π, 1− wc,i) (6)

θi,t ∼ V onMises(θ̄i,t, κi)
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In all three models, the parameter wp determined how strongly the larval path is872

biased towards either its previous course or by relative angle of its previous step (that is,873

its tendency to loop); If wp approached one, the the larva continued in the same direction,874

and if it approached zero, it continued turning at the same rate (Fig. A1 C,E,G).875

The parameter wc in models 1&2 determined how strongly previous movement de-876

termines the path of a larva as opposed to the direction to the centroid (c) of the other877

larvae present. When wc approached zero, the direction towards the centroid would not878

affect direction of larval movement. When wc approached one, the larva tended to move879

directly towards the centroid for model 2, or directly away from it, for model 3 (Fig. A1880

D,F,H).881
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Figure A1: Parameters of the random walk model with intra-specific interactions. Solid
lines denote steps in a larval movement path. A) Movement angles for step i: The
absolute angle from the x axis (θ), and relative angle(ψ), the difference between the
current and last absolute step angles. B) Absolute angle to the point of attraction (grey
circle) of the rest of the larvae present (ρ). This angle would represent the centroid of the
other observed larvae in an attractive model, or the opposite direction of the centroid in
a repulsive model. C-E) effect of varying the persistence parameter, wp, on the expected
angle of the next step. Increasing wp leads to angles more biased towards the absolute
angle of the last step, and decreasing it leads to angles more biased towards the absolute
plus relative angle of the last step (maintaining constant turning rates). F-G) Effect of
varying the attraction parameter (wc) on the expected angle of the next step (assuming
wp = 1 for simplicity). When wc is zero (F) the expected angle points in the direction the
larva would travel if the other larvae were absent. As wc increases (G,H), the expected
angle is pulled toward the point of attraction.
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Appendix B: Goodness-of-fit tests of horizontal move-882

ment models883

Model selection procedures, such as likelihood ratio tests or information criteria, will tell884

which of a set of candidate models best fit the observed data, for some measure of fit885

(Johnson and Omland, 2004). However, even the best fitting model of a set of may be886

poorly specified. Goodness-of-fit tests are an important compliment to model selection,887

as they tell us which aspects of the data generating process our model is not effectively888

capturing (Mayo, 1996). Goodness-of-fit testing measures the absolute degree to which889

a given model accurately captures specific features of the data. Goodness-of-fit tests890

generally work by generating new sets of simulated data using the fitted model, and891

measuring how frequently the given feature would occur (Spanos, 2011).892

We used several goodness-of-fit tests to determine how accurately our attraction and893

repulsion models were capturing patterns in larval movement. We first tested how likely894

it would be to observe the fitted summed likelihood for each model, as a simple test895

of overall goodness-of-fit. We then tested whether the residual absolute and relative896

angles for each path were well-described by a Von-Mises distribution with the fitted κ897

parameter, to determine if the models were missing substantial directional biases. We898

tested how well the best fit model for each path explained the observed patterns of angular899

autocorrelation of absolute and relative angles for each path. If the model is accurately900

capturing the temporal dependence in movements, there should not be any substantial901

correlation between residual angles from one time-step to the next. Finally, we tested902

whether our model would falsely detect attractive behaviours if individual larvae were903

merely turning away from the boundary of the test chamber.904
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Global goodness of fit tests905

We tested overall goodness-of-fit by comparing the observed log-likelihood of our model906

to that of paths simulated from the fit parameters. The fitting procedure for each path907

i was:908

1. Determine the number of points in the path (n), and the fitted values of κi, wp,i909

from the model that best fit path i, as well as wc,i for those models best fit by either910

attraction or repulsion;911

2. Simulate 100 new paths, using the fitted parameters from 1 and the observed se-912

quence of nearest neighbour angles for path i;913

3. Fit a null (Eq. 4), attraction (Eq. 5), and repulsion (Eq. 6) model to each simulated914

path, j;915

4. For each simulated path, j, determine which model best fits using AIC;916

5. Extract the summed log-likelihood for the true path, Li, and for each simulated917

path, Lj;918

6. Calculate the p-value as the fraction of simulated paths with log-likelihoods lower919

than the observed paths (Lj < Li).920

This procedure tells us how frequently we would see a log-likelihood as low as that921

observed, if the model were true. If the overall model fit very poorly, each individual path922

would have a low log-likelihood relative to the simulated paths. We observed that for all923

paths, the p-value of observing the actual log-likelihood was greater than 0.05, meaning924

that no individual path was extremely unlikely to occur (Fig. B1).925
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Figure B1: P-values of log-likelihoods of random walk models. Each point is the p-value
of observing a log-likelihood at least as small as what was observed for a given path,
assuming the model was true. P-values calculate as per text.

Testing for misspecification of the Von Mises distribution926

There are, however, many ways in which this model could fit poorly and still pass the927

previous test. Our next set of tests looked at how well the distribution we assumed for928

the residuals, the Von Mises distribution, fit the observed pattern of steps. The Von929

Mises distribution is a symmetrical unimodal distribution, where the probability density930

of angles around the mean angle is determined purely by the concentration parameter931

κ (Shimatani et al., 2012). If this accurately described the path data, the distribution932

of residuals for each path should follow this distribution. To test this, we extracted933

the residuals for both absolute and relative angles for each path, i, using the following934

procedure:935

1. Extract the estimated values of κi, wp,i and wc,i from the model that best fit path936

i;937

2. Use the fitting equations (Eq.4, 5, or6) as well as the observed sequence of angles938
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to the centroid of other larvae to calculate what the mean angle for each step t for939

path i would be: θ̄i,t;940

3. Calculate the residual of the absolute angles as εi,t,abs = θi,t − θ̄i,t;941

4. Calculate the residual of the relative angles as εi,t,rel = θi,t − θi,t−1 − θ̄i,t;942

5. Remap each set of residuals so that all residual angles lie between −π and π,943

using the two-argument arctan function: εi,t,abs = atan2(sin(εi,t,abs), cos(εi,t,abs)),944

εi,t,rel = atan2(sin(εi,t,rel), cos(εi,t,rel));945

6. For each residual, calculate how likely it is to occur using the Von Mises distribution946

centered at zero with a dispersion parameter κi;947

The Von Mises distribution fit well for most paths for both absolute (Fig. B2) and948

relative (Fig. B3) distributions of residuals. No path showed signs of multimodal or949

strongly skewed residuals for either distribution. However, for both absolute and relative950

residuals, the distributions were more concentrated around zero, with longer tails than951

the Von Mises distribution predicted, given the estimated value of κ. This indicates that952

the actual step angle distribution may be more long-tailed than our model suggests.953

Testing for unexplained autocorrelation in turn angles954

Our third set of goodness-of-fit tests look at how well these models capture the time series955

dependence in the pattern of turn angles in our data. One of the standard tools to do this956

for time series is the auto-correlation function, which measures how strongly correlated957

data points in the time series are as a function of the time lag separating the points are.958

If the observed values of a given model show strong auto-correlation at multiple lags but959

the residuals of a given model fit to that data do not show any strong auto-correlations,960

this is evidence that the model is effectively capturing the dependence structure in the961

50
PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1969v1 | CC-BY 4.0 Open Access | rec: 19 Apr 2016, publ: 19 Apr 2016



time series. Model residuals should be unpatterned in a well-specified model (Spanos,962

2011).963

However, the standard auto-correlation function is not usable for angular data, as964

angles wrap around: while the Pearson correlation would assume that −π and π are965

different values, they are equivalent angles. Instead, we make use of the function proposed966

by Fisher and Lee (1983), ρT (θ1, θ2) to calculate the circular correlation between the two967

sets of angles, θ1 and θ2. This function preserves most of the basic properties of the968

Pearson correlation coefficient: it ranges between -1 and 1 and is zero only when there969

is no linear dependence between θ1 and θ2. Further, positive values of ρT indicate that970

angles in the two sets increase together, and negative values indicate that higher angles971

in one set are associated with lower angles in the other (see Fisher and Lee (1983) for972

more details on this function).973

For a given time series of angles i, and a given lag value, τ , the angular auto-974

correlation value for the series was the angular correlation between each angle and the an-975

gle τ steps ahead in the series: ρT (θi,t, θi,t+τ ). We calculated the angular auto-correlation976

function for the first 20 lags for the following time series: the observed absolute and977

relative angles of each path, and the residual absolute and relative angles (as calculated978

above).979

For each series of residuals, we calculated the 95% confidence intervals for the auto-980

correlation value at a given lag by drawing 1000 sets of n points (where n is the number981

of steps in the series) from a Von Mises distribution with zero mean angle and κ equal to982

the value estimated for that series. For each simulated series, we calculated the estimated983

autocorrelation function. For a given lag value τ for a given series, the 95% CI for the984

autocorrelation parameter, assuming no dependence, was the range from the 2.5% to the985

97.5% quantile of the autocorrelation values estimated for the random data at that lag.986

Any observed residual autocorrelation value outside of this CI was unlikely to be the987
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result of random fluctuations in the data, and thus represented a pattern not captured988

by our model.989

For the series of absolute angles, the fitted model generally captured the pattern of990

dependence in the turn angles (Fig. B4). While the original series of turn angles showed991

strong patterns of auto-correlation, often up to lags of 20 steps (indicating directional992

persistence, Fig. B4 solid lines), the residuals for most paths showed no pattern or weak993

patterns of auto-correlation. However, for several of the paths that were best fit by the994

repulsion model (Fig. B4 green lines), the model was not able to accurately capture995

the pattern of dependencies between steps, indicating that these paths showed stronger996

directional persistence than the fitted model predicted, over longer time horizons. This997

indicates that the attraction model may be misspecified, missing longer-term patterns of998

directional persistence.999

Our model did not do as well in predicting the time-dependence of relative turn angles1000

(Fig. B5). Many of the original series showed strong (if non-linear) patterns of autocor-1001

relation of relative turn angles, indicating complex patterns of persistent turning. While1002

for most time series, the residual relative turn angles showed weaker auto-correlation than1003

the original series (Fig. B5 dashed lines), for several series the model was not able to1004

account for any of the autocorrelation in relative turn angles (Fig. B5 row 3, columns1005

5&6). Further, the model induced autocorrelation in residual relative turn angles that1006

was not present in the original data for several paths fit by the attraction model (Fig.1007

B5 blue lines). This indicates that these models may be missing longer-scale patterns of1008

persistent turning, and the attraction model may be mi-specified.1009

Estimating boundary effects on random walk simulations1010

Our random walk models estimated how strongly individuals may have been moving1011

toward or away from one another based on their direction of travel relative to the centroid1012
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of other larvae present in the frame. However, our experimental chamber was bounded,1013

and thus all larvae would eventually have to turn toward the centre at some point in their1014

paths. This in turn may have biased our model select procedure toward attraction-driven1015

models. We used a simulation test to determine how this boundary effect might have1016

affected our results.1017

To do this, we simulated paths from a model that incorporated both directional and1018

turning angle persistence, but without any intraspecific attraction or repulsion (hereafter1019

our null model). We simulated two sets of paths for this test. The first set of paths1020

were unbounded (that is, each random walker was allowed to go in any direction for any1021

distance). For each of the 64 paths we had previously observed, we simulated 10 new1022

paths with the same number of steps as the observed one, and with wp and κ set equal to1023

value estimated for that path using our null model (equation 4). The second set of paths1024

were modified from the first set, but with a boundary condition imposed: any time a path1025

reached the limit of the experimental arena ( -140 and +140 units in the x-direction, or1026

-210 and +210 units in the y-direction), the path was reflected, by reversing the direction1027

of movement at the point where the path crossed the boundary. For each simulated path,1028

we then fit null, attraction, and repulsion models, and determined which model fit best1029

using AIC.1030

For both the bounded and unbounded set of simulated paths, 6̃5% were best fit by1031

the null model, 1̃7% were best fit by a model with attraction, and 1̃7% were best fit by1032

a model with repulsion. This indicates that the boundary itself is likely not biasing our1033

estimates toward attraction models.1034
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Figure B2: Probability density of observed and predicted residuals of absolute angles for
each path. Bars are the histogram of observed residuals, black lines denote the predicted
distribution of residuals. Histograms are coloured by which model best fit the path.
Within each model, paths are sorted in order of increasing κ.
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Figure B3: Probability density of observed and predicted residuals of absolute angles for
each path. Colours, lines, and histograms are as in Fig. B2.
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Figure B4: Autocorrelation functions of absolute turn angles. Solid lines represent the
angular autocorrelation of the movement paths themselves, and the dashed lines represent
the residuals of the absolute angles. The grey ribbon is the 95% CI assuming no temporal
dependence of angles. Lines are coloured by which model best fit the path, and within
models, are sorted in order of increasing κ.
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Figure B5: Autocorrelation functions of relative turn angles. Solid lines represent the
angular autocorrelation of the movement paths themselves, and the dashed lines represent
the residuals of the absolute angles. Colours, lines, and histograms are as in Fig. B2.
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