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Abstract

This article proposes quantitative answers to meta-scientific questions including “how much
knowledge is attained by a research field?”, “how rapidly is a field making progress?”, “what is the
expected reproducibility of a result?”, “how much knowledge is lost from scientific bias and
misconduct?” “what do we mean by soft science?”, “what demarcates a pseudoscience?”.

Knowledge is suggested to be a system-specific property measured by K, a quantity determined
by how much of the information contained in an explanandum is compressed by an explanans, which
is composed of an information “input” and a “theory/methodology” conditioning factor. This
approach is justified on three grounds: 1) K is derived from postulating that information is finite
and knowledge is information compression; 2) K is compatible and convertible to ordinary measures
of effect size and algorithmic complexity; 3) K is physically interpretable as a measure of entropic
efficiency. Moreover, the K function has useful properties that support its potential as a measure of
knowledge.

Examples given to illustrate the possible uses of K include: the knowledge value of proving
Fermat’s last theorem; the accuracy of measurements of the mass of the electron; the half life of
predictions of solar eclipses; the usefulness of evolutionary models of reproductive skew; the
significance of gender differences in personality; the sources of irreproducibility in psychology; the
impact of scientific misconduct and questionable research practices; the knowledge value of astrology.
Furthermore, measures derived from K may complement ordinary meta-analysis and may give rise
to a universal classification of sciences and pseudosciences.

Simple and memorable mathematical formulae that summarize the theory’s key results may find
practical uses in meta-research, philosophy and research policy.
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1 Introduction 40

A science of science is flourishing in all disciplines and promises to boost discovery on all research 41

fronts [1]. Commonly branded “meta-science” or “meta-research”, this rapidly expanding literature 42

of empirical studies, experiments, interventions, and theoretical models explicitly aims to take a 43

“bird’s eye view” of science and a decidedly cross-disciplinary approach to studying the scientific 44

method, which is dissected and experimented upon as any other topic of academic inquiry. To fully 45

mature into an independent field, meta-research needs a fully cross-disciplinary, quantitative, and 46

operationalizable theory of scientific knowledge - a unifying paradigm that, in simple words, can help 47

tell apart “good” from “bad” science. 48

This article proposes such a meta-scientific theory and methodology. By means of analyses and 49

practical examples, it suggests that a system-specific quantity named “K” can help answer 50

meta-scientific questions including “how much knowledge is attained by a research field?”, “how 51

rapidly is a field making progress?”, “what is the expected reproducibility of a result?”, “how much 52

knowledge is lost from scientific bias and misconduct?” “what do we mean by soft science?”, “what 53

demarcates a pseudoscience?”. 54

The theoretical and methodological framework proposed in this article is built upon basic notions 55

of classic and algorithmic information theory, which have been rarely used in a meta-research context. 56

The key innovation introduced is a function of three variables that, it will be argued, quantifies the 57

essential phenomenology of knowledge, scientific or otherwise. This approach rests upon a long 58
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history of advances made in combining epistemology and information theory. The concept that 59

scientific knowledge consists in pattern encoding can be traced back at least to the polymath and 60

father of positive philosophy August Comte (1798-1857) [2], and the connection between knowledge 61

and information compression ante litteram to the writings of Ernst Mach (1838-1916) and his 62

concept of “economy of thought” [3]. Claude Shannon’s theory of communication gave academics a 63

mathematical language to quantify information [4], whose applications to physical science were soon 64

examined by Léon Brillouin (1889-1969) [5]. The independent works of Solomonoff, Kolmogorov and 65

Chaitin gave rise to algorithmic information theory, which dispenses of the notion of probability in 66

favour of that of complexity and compressibility of strings (see [6]). The notion of learning as 67

information compression was formalized in Rhissanen’s Minimum Description Length principle [7], 68

which has found fruitful and expanding applications in statistical inference and machine 69

learning [8, 9]. From a philosophical perspective, the relation between knowledge and information 70

was explored by Fred Dretske [10], and a computational philosophy of science was elaborated by 71

Paul Thagard [11]. To the best of the author’s knowledge, however, the main formulae and ideas 72

presented in this article were never proposed before (see Discussion for further details). 73

The article is organized as follows. In section 2, the core mathematical approach is presented. 74

This verges on a single equation, the K function, whose terms are described in section 2.1, and 75

whose derivation and justification are described in section 2.2 by a theoretical, a statistical and a 76

physical argument. Section 2.3 explains and discusses properties of the K function. These properties 77

further support the claim that K is a universal quantifier of knowledge, and they lay out the bases 78

for developing a methodology. The methodology is illustrated in section 3, which offers with 79

practical examples of how the theory may help to answer typical meta-research questions. These 80

questions include: how to quantify theoretical and empirical knowledge (sections 3.1 and 3.2, 81

respectively), how to quantify scientific progress within or across fields (section 3.3), how to forecast 82

reproducibility (section 3.4), how to estimate the knowledge value of null and negative results 83

(section 3.5), how to compare the knowledge costs of bias, misconduct and QRP (section 3.6), and 84

how to define a “soft” science (section 3.8) and a pseudoscience (section 3.7). These results are 85

summarized in a set of memorable formulae and discussed in section 4. These sections 86

cross-reference each other but can be read in any order with little loss of comprehensibility. 87

2 Analysis 88

2.1 The quantity of knowledge 89

At the core of the theory and methodology proposed, which will henceforth be called ”K-theory”, is 90

the claim that knowledge is a system-specific property measured by a quantity indicated as ”K” and 91

given by the function 92

K(Y nY ;XnX , τ) ≡ nYH(Y )− nYH(Y |X, τ)

nYH(Y ) + nXH(X)− log p(τ)
(1)

in which each term represents a quantify of information. What is information? In a very general 93

and intuitive sense, information consists in questions we don’t have answers to, or, equivalently, it 94

consists in answers to those questions. Any object or event y that has a probability p(y) carries a 95

quantity of information equal to 96

− logA p(y) = logA
1

p(y)
(2)

which quantifies the number of questions with A possible answers that we would need to ask to 97

determine y. The logarithm’s base, A, could have any value, but we will typically assume that A = 2 98

and therefore that information is measured in ”bits”, i.e. in binary questions. Shannon’s entropy 99

H(Y ) ≡ −
∑

pY (y) log pY (y) =
∑

pY (y) log
1

pY (y)
= E[log

1

PY (Y )
] (3)
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is the expected value of the information in a random variable Y . A sequence of events, objects or 100

random variables, for example a string of bits 101100011..., is of course just another object, event or 101

random variable, and therefore is quantifiable by the same logic [6, 12]. 102

The three terms in function 1 are defined as follows: 103

• Y constitutes the explanandum, latin for “what is to the explained. Examples of explananda 104

include: response variables in regression analysis, physical properties to be measured, 105

experimental outcomes, unknown answers to questions. 106

• X and τ together constitute the explanans, latin for “what does the explaining”. In particular 107

– X will be referred to as the “input”, and it will represent information acquired externally. 108

Examples of inputs include: results of any measurement, explanatory variables in 109

regression analysis, physical constants, arbitrary methodological decisions and all other 110

factors that are not “rigidly” encoded in the theory or methodology. 111

– τ will be referred to as the “theory” or “methodology”. A typical τ is likely to contain 112

both a description of the relation between Y and X, as well as a specification of all other 113

conditions that allow the relationship between X and Y to be expressed. Examples of τ 114

include: an algorithm to reproduce Y , a description of a physical law relating Y to X, a 115

description of the methodology of a study of field (i.e. description of how subjects are 116

selected, how measurements are made, etc.). 117

Specific examples of all of these terms will be offered repeatedly throughout the essay. 118

Mathematically, all three terms ultimately consist of sequences, produced by random variables, and 119

therefore characterized by a specific quantity of information. In the cases most typically discussed in 120

this essay, explanandum and input will be assumed to be sequences of lengths nY and nX , 121

respectively, resulting from a series of independent identically distributed random variables, Y and 122

X, with discrete alphabets Y,X , probability distributions pY , pX and therefore Shannon entropy 123

H(Y ) and H(X). 124

The object representing the theory or methodology τ will be typically more complex than Y and 125

X, because it will consist in a sequence of random variables (henceforth, RVs) that have distinctive 126

alphabets (are non-identical) and are all uniformly distributed. This sequence of RVs represents the 127

sequence of choices that define a theory and/or methodology. Indicating with T a RV with uniform 128

probability distribution PT , resulting from a sequence of l RVs Ti ∈ {T1, T2...Tl} each with a 129

probability distribution PTi , we have 130

log
1

pT (τ)
= log

1

Pr{T1 = τ1, T2 = τ2, ...Tl = τl}
=
∑
i≤l

log
1

PTi(Ti = τi)
(4)

The alphabet of each individual RV composing τ may have size ≥ 2, with equality corresponding 131

to a binary choice. For example, let τ correspond to the description of three components of a study’s 132

method: τ = (”randomized”, ”human subject”, ”female”). In the simplest possible condition, this 133

sequence represents a draw from three independent binary choices: 1 =”randomized vs. not”, 134

2 =”human vs not”, 3 =”female vs not”. Representing each choice as a binary RV Ti, the 135

probability of τ is Pr{T1 = τ1} × Pr{T2 = τ2} × Pr{T3 = τ3} = 0.53 = 0.125 and its information 136

content is 3 bits. 137

Equivalent and useful formulations of equation 1 are 138

K(Y nY ;XnX , τ) =
H(Y )−H(Y |X, τ)

H(Y ) + nX
nY
H(X)− 1

nY
log p(τ)

(5)

and 139

K(Y nY ;XnX , τ) = k × h (6)
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in which 140

k ≡ H(Y )−H(Y |X, τ)

H(Y )
(7)

will be referred to as the “effect” component, because it embodies what is often quantified by 141

ordinary measures of effect size (see section 2.2.2), and 142

h ≡ 1

1 + nXH(X)−log p(τ)
nYH(Y )

(8)

will be referred to as the “hardness” component, because it quantifies the informational costs of a 143

methodology, which is connected to the concept of “soft science”, as will be explained in section 3.8. 144

2.2 Why K is a measure of knowledge 145

Why do we claim that equation 1 quantifies the essence of knowledge? This section will offer three 146

different arguments. First, a theoretical argument, which illustrates the logic by which K function 147

was originally derived, i.e. following two postulates about the nature of information and knowledge. 148

Second, a statistical argument, which illustrates how the K function includes the quantities that are 149

typically computed in ordinary measures of effect size. Third, a physical argument, which explains 150

how the K function, unlike ordinary measures of effect size or information compression, has a direct 151

physical interpretation in terms of negentropic efficiency. 152

2.2.1 1) Theoretical argument: K as a measure of pattern encoding 153

Equation 1 is the mathematical translation of two postulates concerning the nature of the 154

phenomenon we call knowledge: 155

1. Information is finite. Whatever its ultimate nature may be, reality is knowable only to the 156

extent that it can be represented as a set of discrete, distinguishable states. Although in 157

theory the number of states could be infinite (countably infinite, that is), physical limitations 158

ensure that the number of states that are actually represented and processed never is or can be 159

infinite. 160

2. Knowledge is information compression. Knowledge is manifested as an encoding of patterns 161

that connect states, thereby permitting the anticipation of states not yet presented, based on 162

states that are presented. All forms of biological adaptation consist in the encoding of patterns 163

and regularities by means of natural selection, and human cognition and science are merely 164

highly derived manifestations of this process. 165

Physical, biological and philosophical arguments in support of these two postulates are offered in 166

S1 text. 167

The most general general quantification of patterns between finite states is given by Shannon’s 168

mutual information function 169

I(Y ;X) ≡ H(Y ) +H(X)−H(Y,X) = H(Y )−H(Y |X) (9)

in which H(·) is defined in 3. The Mutual Information function is completely free from any 170

assumption concerning the random variables involved (see figure 1). In order to turn equation 9 into 171

an operationalizable quantity of knowledge, we formalize the following properties: 172

1. the pattern between Y and X is explicitly expressed by a conditioning. We therefore posit the 173

existence of a third random variable, T with alphabet T = {τa, τb....}, such that 174

H(Y,X|T ) = H(Y |T ) +H(Y |X,T ) and H(Y,X|T ) = H(Y ) +H(X) if T = ∅. Unlike Y and 175

X, T is assumed to be uniformly distributed, and therefore the size of its alphabet is 176

z = |T | = 2n, where n the minimum number of bits required to describe each τ in the set. The 177

uniform distribution of T also implies that H(T ) = − logPr{T = τ} = n. 178
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2. the mutual information expressing the pattern as described above is standardized (i.e. divided 179

by the total information content of its own terms), in order to allow comparisons between 180

different systems. 181

Figure 1. Pictorial representation of the variety of patterns that the K function could quantify.
The description of the patterns τ are purely illustrative and are not necessarily literal descriptions of
what the pattern encodings would look in practice. A square’s level of gray is intended to convey the
relative frequency of cells.

.

The two requirement above lead us to formulate knowledge as resulting from the contextual, 182

system-specific connection of thee quantities, defined by the following equation 183

I(Y ;X|T )

H(Y ) +H(X) +H(T )
≡ H(Y )−H(Y |X,T )

H(Y ) +H(X) +H(T )
(10)

in which, to simplify the notation, we will typically use H(Y ) in place of H(Y |T ) and H(X) in 184

place of H(X|T ). 185

Note how, at this stage, the value computed by equation 10 is potentially very low, because 186

H(Y |X,T ) =
∑
τi∈T P (T = τi)H(Y |X,T = τi) is the average value of the conditional entropy for 187

every possible theory of description length − log p(τ). The more complex the average τ ∈ T is, the 188

larger the number of possible theories of equivalent description length, and thus the smaller the 189

proportion of theories τi that yield H(Y |X,T = τi) < H(Y ) (because most realizable theories are 190

likely to be nonsensical). 191

Knowledge is realized because, from all possible theories, only a specific theory (or possibly a 192

subset of theories) is selected (Figure 2). This selection is not merely a mathematical fiction, but is 193

typically the result of Darwinian natural selection and/or other analogous neurological, memetic and 194

computational processes. The details of how a τ is arrived at, however, need not concern us because, 195

in mathematical terms, the result of a selection process is the same: the selection “fixes” the random 196

variable T in equation 10 on a particular realization τ ∈ T , with two consequences. On the one 197

hand, the entropy of T goes to zero (because there is no longer any uncertainty about T ), but on the 198

other hand, the selection itself entails a non-zero amount of information. 199

Since T has a uniform distribution, the information necessary to identify this realization of T is 200

simply − logP (T = τ) = log2l(τ) = l(τ), which is the shortest description length of τ (e.g. the 201

minimum the number of binary questions needed to identify τ in the alphabet of T ). This quantity is 202

an informational cost that needs to be computed in the standardized equation 10. Therefore, we get 203

K(Y ;X, τ) =
H(Y |T = τ)−H(Y |X,T = τ)

H(Y |T = τ) +H(X|T = τ) +H(T |T = τ) + l(τ)
≡ H(Y )−H(Y |X, τ)

H(Y ) +H(X)− log p(τ)
(11)
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Figure 2. Pictorial representation of a set T = {τ1, τ2, ...τz} of theories of a given description
length that condition the relation between two variables. This set constitutes the alphabet of the
uniformly distributed random variable T , from which a specific theory/methodology, in this case τ55,
is selected. For further discussion, see text.

Equation 1 is arrived at by generalizing 11 to the case in which the knowledge encoded by τ is 204

applied to multiple independent realizations of explanandum and/or input, which are counted by the 205

nY and nX terms, respectively. 206

2.2.2 2) Statistical argument: K as a universal measure of effect size 207

Despite having been derived theoretically, and being potentially applicable to phenomena of any 208

kind, i.e. not merely statistical ones, equation 1 bears structural similarities with ordinary measures 209

of statistical effect size. Such similarities ought not to be surprising, in retrospect. Statistical 210

measures of effect size are intended to quantify knowledge about patterns between variables, and so 211

K would be expected to reflect them. Indeed, structural analogies between the K function and other 212

measures of effect size offer further support for the theoretical argument made above that K is a 213

general quantifier of knowledge. 214

To illustrate such similarities, it is useful to point out that the value of the K function can be 215

approximated from the quantization of any continuous probability distribution. For information to 216

be finite as required by the K function, the entropy of a normally distributed quantized random 217

variable X∆ can be approximated by H(X∆) = log
√

2πeσ, in which σ is the standard deviation 218

rescaled to a lowest decimal (for example, from σ = 0.123 to σ = 123, further details in S2 text). 219

There is a clear structural similarity between the k component of equation 6 and the coefficient 220

of determination R2. Since the entropy of a random variable is monotonically increasing function of 221

the variable’s dispersion (e.g. its variance) this measure is directly related to K. For example, if Y 222

and Y |X are continuous, normally distributed RVs with variance σY and σY |X, respectively, then 223

R2 is a function of K: 224

R2 ≡ TSS − SSE
TSS

≡
n× (σ2

Y − σ2
Y |X)

n× σ2
Y

= f

(
log σY − log σY |X

log σY + C

)
= f(K(Y ;X, τ)) (12)

in which TSS is the Total Sum of Squares, SSE is the Sum of Squares of the Residuals, and n is 225

sample size and f() represents an undefined function. The adjusted coefficient of determination R2
adj 226

7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1968v5 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018



is also directly related to K since 227

R2
adj ≡

TSS
n−1 −

SSE
n−k−1

TSS
n−1

= g

(
log σ2

y − log(σ2
y|x ×A)

log σ2
y

)
= f(K(Y ;X, τ)) (13)

with A = n−1
n−k−1 . 228

From this relation follows that multiple ordinary measures of statistical effects size used in 229

meta-analysis are also functions of K. In particular, for any two random variables, R2 = r2, with r 230

their Spearman’s correlation coefficient. And since most popular measures of effect size used in 231

meta-analysis, including Cohen’s d and Odds Ratios, are approximately convertible to and from 232

r [13], they are also convertible to K. 233

The direct connection between K and measures of effect size like Cohen’s d implies that K is also 234

related to the t and the F distribution, which are constructed as ratios between the amount of what 235

is explained and what remains to be explained, and are therefore constructed similarly to an “odds” 236

transformation of K 237

K(Y ;X, τ)

1−K(Y ;X, τ)
=

nY (H(Y )−H(Y |X, τ))

nYH(Y |X, τ) + nXH(X)− log p(τ)
(14)

Other more general tests, such as the Chi-squared test, can be shown to be an approximation of 238

the Kullback-Leibler distance between the probability distributions of observed and expected 239

frequencies [12] and therefore a measure of the mutual information between two random variables, 240

i.e. the same measure on which the K function is built. 241

Figure 3 illustrates how these are not merely structural analogies, because K can be 242

approximately or exactly converted to ordinary measures of effect size. As the figure illustrates, K 243

stands in one-to-one correspondence with ordinary measures of effect sizes, but its specific value is 244

modulated by other variables that are critical to knowledge and that are ignored by ordinary 245

measures of effect size. Such variables include the size of the theory or methodology describing the 246

pattern, which is always non-zero, the number of repetitions (which, depending on analyses, may 247

correspond to the sample size or to the intended total number of uses of a τ); accuracy of scale 248

(section 2.3.6); distance in time and space and methods (sections 2.3.5); and Ockham’s razor (section 249

2.3.1). The latter property also makes K conceptually analogous to measures of minimum 250

description length, discussed below. 251

Minimum Description Length Principle The Minimum Description Length principle is a 252

formalization of the principle of inductive inference and of Ockham’s razor that has many potential 253

applications in statistical inference, particularly with regards to the problem of model selection [8]. 254

In its most basic formulation, the MDL states that the best model to explain a data is the one that 255

minimizes the quantity 256

L(H) + L(D|H) (15)

in which L(H) is the description length of the hypothesis (i.e. a candidate model for the data) 257

and L(D|H) is the description length of the data given the model. The K equation has equivalent 258

properties to equation 15, with L(H) ≡ − log p(τ) and L(D|H) ≡ nYH(Y |X, τ). Therefore, the 259

values that minimize equation 15 maximize the K function. 260

*** 261

The reader may question why, if K is equivalent to existing statistical measures of effect size and 262

MDL, we couldn’t just use the one of the latter to quantify knowledge. There are at least three 263

reasons. First, because K is a truly universal measure of effect size. The quantity measured by K is 264

completely free from any distributional assumptions about the subject matter being assessed. It can 265

be applied not only to quantitative data produced by any probability distribution (e.g. Figure 1), 266

but also to any other explanandum that has a finite description length (although this potential 267

application will not be examined in detail in this essay). In essence, K can be applied to anything 268
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Figure 3. Relation between K and common measures of effect size, with varying conditions of
accuracy (i.e. of resolution, see section 2.3.6), number of repetitions n (i.e. the nY in equation 1)
and size of τ . The relation with R-squared and Cohen’s d was derived assuming a normal
distribution of the explanandum. Increasing accuracy thus corresponded to calculating entropies
with a standard deviation measured with one additional significant digit, at each step, from solid line
to dotted line. The values of n for R2 and Cohen’s d were, from dotted to solid line, {1, 2, 10, 100}
respectively. The relation with Chi-squared was derived from the probability distribution of a 2× 2
contingency table. From solid to dotted line, the value of n was 20, 40, 80, 100, and the description
length of τ was l(τ) = 1 bit for all panels on the left, and l(τ) = 100 for those on the right. The code
used to generate these and all other figures is available in S9 text

.
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that is quantifiable in terms of information, which means any phenomenon that is the object of 269

cognition - any phenomenon amenable to being “known”. Second, as mentioned above, K is not only 270

free from assumptions but is also more complete than any individual measure of effect size or model 271

fit, and therefore is a more complete representation of knowledge phenomena. Third, because, unlike 272

any of the statistical and algorithmic approaches discussed above, K has a straightforward physical 273

interpretation, which is presented in the next section. 274

2.2.3 3) Physical argument: K as a measure of negentropic efficiency 275

The physical interpretation of equation 1 follows from the physical interpretation of information, 276

which was revealed by the solution to the famous paradox known as Maxwell’s Demon. In the most 277

general formulation of this Gedankenexperiment, the Demon is an organism or a machine that is able 278

to manipulate molecules of a gas, for example by operating a trap door, and thereby is able to 279

segregate molecules that move at higher speed from those that move at lower speed, seemingly 280

without dissipation. This created a theoretical paradox as it would contradict the second law of 281

thermodynamics, according to which no process can have as its only result the transfer of heat from 282

a cooler to a warmer body. 283

In one variant of this paradox, called the “pressure Demon”, a cylinder is immersed in a heat 284

bath and has a single “gas” molecule moving randomly inside it. The demon inserts a partition right 285

in the middle of the cylinder, thereby trapping the molecule in one half of the cylinder’s volume. It 286

then operates a measurement to assess in which half of the cylinder the molecule is, and pushes 287

down, with a reversible process, a piston in the half that is empty. The demon could then remove 288

the partition, allowing the gas molecule to push the piston up, and thus extract work from the 289

system, apparently without dissipating any energy. 290

Objections to the paradox that involve the energetic costs of operating the machine or of 291

measuring the position of the particle [5] were proven to be invalid, at least from a theoretical point 292

of view [6,14]. The conclusive solution to the paradox was given in 1982 by Charles Bennett, who 293

showed that dissipation in the process occurred as a byproduct of the Demon’s need to process 294

information [15]. In order to know which piston to lower, the Demon must memorize the position of 295

the molecule, storing one bit of information, and it must eventually re-set its memory to prepare it 296

for the next measurement. The recording of information can occur with no dissipation, but the 297

erasure of it is an irreversible process that will produce heat that is at least equivalent to the work 298

extracted from the system, i.e kT ln 2 joules. where k is Boltzmann’s constant. This solution to the 299

paradox proved that information is a measurable physical quantity. 300

Figure 4) illustrates how the K function relates to Maxwell’s pressure Demon. The explanandum 301

H(Y ) (which, as explained previously, is a short-hand for H(Y |τ) quantifies the entropy, i.e. the 302

amount of uncertainty about the molecule’s position relative to the partition in the cylynder. The 303

input H(X) is the external information obtained by a measurement. The input corresponds to the 304

colloquial notion of “information” as something that is acquired and ”gives form” (i.e. to subsequent 305

choices, actions etc,). Since this latter notion of information is a counterpart to the physical notion 306

of information as entropy, it may be perhaps more correctly defined as negentropy [5]. 307

The theory τ contains a description of the information-processing structure that allows the 308

pressure Demon to operate. The extent of this description will depend in part on how the system is 309

defined. A minimal description will include at least an encoding of the identity relation between the 310

state of X and that of Y , i.e. “X = Y ” as distinguished from its opposite “X 6= Y ”. This theory 311

requires at least a binary alphabet, and one bit of memory storage. A more comprehensive 312

description will include a description of the algorithm that enables the negentropy in X to be 313

exploited - something like “if X=left, press down right piston, else, press left piston”. Depending on 314

how the “system” is defined and delimited, virtually all other aspects giving rise to the process may 315

or may not be seen as determined by tau. The amount of information contained in the explanandum, 316

for example, is a function of where the partition is laid down, a variable that a truly complete 317

algorithm would need to specify. Therefore, the broadest possible physical description of the 318

pressure Demon ought to encode instructions to set up the entire system, i.e. the heat bath, the 319
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Figure 4. Illustration of Maxwell’s “Pressure Demon” paradox, and how it relates to K. See text
for explanations.

.

partition etc. In other words, a complete τ includes the genetic code to reproduce pressure Demons. 320

The description length of τ will, intuitively, also depend on the language used to describe it. 321

Moreover, some descriptions might be less succinct than others, and contain redundancies, 322

unnecessary complexities etc. From a physical point of view, however, it is well understood that each 323

τ would be characterized by its own specific minimum amount of information, a quantity known as 324

Kolmogorov Complexity [6]. This is defined as the shortest program that, if fed into a Universal 325

Turing Machine, would output the τ and then halt. Mathematical theorems prove that this quantity 326

cannot be computed directly - at least in the sense that one can never be sure to have found the 327

shortest possible program. In practice, however, the Kolmogorov Complexity of an object is 328

approximated, by excess, by any information compression algorithm, and is independent of the 329

encoding language used, up to a constant. This means that, even though we cannot measure the 330

Kolmogorov complexity in absolute terms, we can measure it rather reliably in relative terms. A τ 331

that is more complex, and/or more redundant than another τ will necessarily have, all else being 332

equal, a longer description length. 333

Whether we take τ to represent the theoretical shortest possible description length for the Demon 334

(in which case − log p(τ) quantifies its Kolmogorov Complexity), or whether we assume that it is a 335

realistic, suboptimal description (in which case the description length − log p(τ) is best interpreted 336

in relative terms), the K function expresses the efficiency with which the Demon converts 337

information into work. At the start of the cycle, the Demon’s K is zero. After measuring the 338

particle’s position, the demon has stored one bit of information (or less, if the partition is not placed 339

in the middle of the cylinder, but we will here assume that it is), and has knowledge K > 0, with the 340

magnitude of K inversely related to the description length of τ . By setting the piston and removing 341

the partition, the demon puts his knowledge to use, and extracts k ln 2 of work from it. Once the 342

piston is fully pushed out, the Demon no longer knows where the molecule is (K = 0) and yet still 343

has one bit stored in memory, a trace of its last experience. The Demon has now two possible 344

options. First, as in Bennett’s solution to the paradox, it can simply erase that bit, re-setting X to 345

the initial state H(X) = 0 and releasing k ln 2 in the environment. At each cycle, the negentropy is 346

renewed via a new measurement, whereas the fixed τ component remains unaltered. Since the 347

position of the molecule at each cycle is independent of previous positions, the total cumulative 348

explanandum (the total entropy that the Demon has reduced) grows by one bit, whereas the theory 349

component remains unaltered. For n cycles, the total K is therefore: 350
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K =
nH(Y )

nH(Y ) + nH(X)− log p(τ)
=

1

1 + 1− log p(τ)
n

(16)

Which, to the limit of infinite cycles is 351

lim
n→∞

K = 1/2 (17)

The value of K = 1/2 constitutes the absolute limit for knowledge that requires a direct 352

measurement and/or a complete and direct description of the explanandum. 353

Alternatively, the Demon could keep the value of X in memory, and allocate new memory space 354

for the information to be gathered in the next cycle (see [6]). As Bennett also pointed out, in 355

practice it could not do so forever. In any physical implementation of the experiment, the Demon 356

would eventually run out of memory space and would be forced to erase some of it, releasing the 357

entropy locked in it. If, ad absurdum the Demon stored an infinite amount of information, then at 358

each cycle the input would grow by one bit yielding: 359

K =
1

1 + n− log p(τ)
n

(18)

To the limit of infinite cycles, limn→∞K = 1/(1 + n) = 0, again independent of τ . This is a 360

further argument to illustrate how information is necessarily finite, as we postulated (section 2.2.1, 361

and see section 2.3.6 for another mathematical argument, and S1 text for philosophical and scientific 362

arguments). 363

More realistically, we can imagine that the number of physical bits available to the Demon is 364

finite. As cycles progress, the Demon could try to allocate as many resources as possible to the 365

memory nXX, for example by reducing the space occupied by τ . This is why knowledge entails 366

compression and pattern encoding (see also section 2.3.1). 367

Elaborations on the pressure Demon experiment shed further light on the meaning of K and its 368

implications for knowledge. First, let’s imagine that the movement of the gas molecule is not 369

actually random, but that, acted upon by some external force, the molecule periodically and 370

regularly finds itself alternatively on the right and left side of the cylinder, and expands from there. 371

If the Demon kept a sufficiently long record of past measurements, say a number z of bits, it might 372

be able to discover the pattern. Its τ could then store a new, slightly expanded algorithm, such as 373

“if last position was left, new position is right, else, new position is left”. With this new theory, and 374

one bit of input to determine the initial position of the molecule, the Demon could extract unlimited 375

amounts of energy from the heat bath. In this case, 376

K =
1

1 + 1
n −

log p(τ)
n

(19)

which to the limit of infinite cycles tends to limn→∞K = 1. Therefore, the maximum amount of 377

knowledge expressed in a system is asymptotically one. As we would expect, it is higher than the 378

maximum value of 1/2 attained by mere descriptions. Note however that K can never actually be 379

equal to 1, since n is never actually infinite and τ cannot be 0. 380

Intermediate cases are also easy to imagine, in which the behaviour of the molecule is predictable 381

only for a limited number of cycles, say m. In such case, K would increase as the number of 382

necessary measurements nX is reduced to nX/m. At any rate, this example illustrated how the 383

Demon’s ability to implement knowledge (in order to extract work, create order, etc.) is determined 384

by the presence of regularities in the explanandum as well as the efficiency with which the Demon 385

can identify and encode patterns. Since this ability is higher when the explanans is minimized, the 386

Demon (the τ) is selected to be as “intelligent” and “informed” as possible. 387

As a final case, let’s imagine instead that the gas molecule moves at random and that its position 388

is measurable only to limited accuracy. A single measurement yields the position of the molecule 389

with an error η. However, each additional measurement reduces η by a fraction a. The Demon, in 390
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this case, could benefit from increasing the number of measurements. Indicating with m the number 391

of measurements and with τm the corresponding theory: 392

K =
1− η × a−m

1 +m− log p(τm)
n

(20)

which to the limit of infinite cycles tends to 393

lim
n→∞

K =
1− η × a−m

1 +m
<

1

2
(21)

The work extracted at each cycle will be k ln 2(1− η × a−m). Therefore, K expresses the 394

efficiency with which work can be extracted from a system, given a certain error rate a and number 395

of measurements m (see S2 text for an illustration). 396

2.3 Properties of knowledge 397

This section will illustrate how K possesses properties that would be expected by a measure of 398

knowledge. In addition to offering support for the three arguments given above, these properties 399

underlie some of the results presented in section 3. 400

2.3.1 Ockham’s razor is relative 401

As discussed in section 2.2.2, the K function encompasses the MDL principle, and therefore 402

computes a quantification of Ockham’s razor. However, the K formulation of Ockham’s razor 403

highlights a property that not all MDL formulations encompass: that Ockham’s razor is relative to 404

the size of the explanandum. For a given Y and X and two alternative theories τ and τ ′ that have 405

the same effect H(Y |X, τ) = H(Y |X, τ ′) and that can be applied to a number of repetitions nY and 406

n′Y , respectively, we have that: 407

− log p(τ ′)

n′Y
<
− log p(τ)

nY
⇒ K(Y n

′
Y ;X, τ ′) > K(Y nY ;X, τ) (22)

and similarly for the case in which τ = τ ′ whilst nXH(X) 6= n′XH(X ′): 408

n′XH(X ′)

n′Y
<
nXH(X)

nY
⇒ K(Y n

′
Y ;Xn′

X′ , τ) > K(Y nY ;XnX , τ). (23)

Therefore, the knowledge relevance of an explanans’ simplicity, i.e. Ockham’s razor, is modulated 409

by the number of times that the explanans can be applied to the explanandum. 410

2.3.2 Prediction is more costly than explanation, but preferable to it 411

The K function can be used to quantify either explanatory or predictive efficiency. When the terms 412

of the K function are entropies, i.e. expectation values of uncertainties, then K quantifies the 413

expected (average) explanatory or predictive efficiency of an explanans with regards to an 414

explanandum. Conversely, if the explanandum is an event that has already occurred and that carries 415

information − logP (Y = y), K quantifies the value of an explanation, by minimizing the surprisal of 416

explanatory conditions − logP (X = x) and/or the complexity of the theory linking such conditions 417

to the event, − logP (T = τ), in order to maximize K. Conversely, if a theory and/or an input are 418

pre-determined, these give rise to a predicted probability distribution that can be compared to 419

observations. To any extent that observations do not match predictions, the observed and predicted 420

distribution will have a non-zero informational divergence. The latter is the extra amount of 421

information that would be needed to “adjust” the predictions, post-hoc or ante-hoc, to make them 422

match the observations. It follows that, indicating with the tilde sign the predictive theory, we can 423

calculate an “adjusted” K as 424
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Kadj = Kobs −D(Y |X, τ ||Y |X, τ̃)
h

H(Y )
(24)

in which Kobs = kobsh = K(Y ;X, τ) is the K observed, and D(·) is the Kullback-Leibler 425

divergence between the observed and the predicted distribution (proof in S3 text). Since 426

D(Y |X, τ ||Y |X, τ̃) ≥ 0, Kadj ≤ Kobs, with equality corresponding to perfect fit between 427

observations and predictions. An analogous formula could be derived for the case in which the 428

explanandum is a sequence, in which case the distance would be calculated following methods 429

suggested in section 3.3.3. 430

Now, note that the observed K is the explanatory K, and therefore is always greater or equal to 431

the predictive K for individual observations. When evidence cumulates, then the explanans of an 432

explanatory K is likely to expand, reducing the cumulative K (see section 3.3). Replacing a 433

“flexible” explanation with a fixed one avoids these latter cumulative costs, allowing a fixed explanans 434

to be applied to a larger number of cases nY , with no cumulative increase in its complexity. 435

Therefore, predictive knowledge is simply a more generalized, ideally unchanging form of 436

explanatory knowledge. As intuition would suggests, prediction can never yield more knowledge than 437

a post-hoc explanation for a given event (e.g., an experimental outcome). However, predictive 438

knowledge becomes cumulatively more valuable, to the extent that it allows to explain, with no 439

changes, a larger number of events, backwards or forward in time. 440

2.3.3 Causation entails correlation, and is preferable to it 441

Properties of the K function also suggests why the knowledge we gain from uncovering a cause-effect 442

relation is often, but not always, more valuable than that derived from a mere correlation. 443

Definitions of causality have a long history of subtle philsophical controversies [16], but no defintion 444

of causality can dispense with counterfactuals and/or with assuming that manipulating present 445

causes can change future effects [17]. The difference between a mere correlation and a causal relation 446

can be formalized as the difference between two types of conditional probabilities, P (Y = y|X = x) 447

and P (Y = y|do(X = x)), where “do(X = x)” is a shorthand for “X|do(X = x)” and the “do” 448

function indicates the manipulation of a variable. In general, correlation without causation entails 449

P (Y = y) ≤ P (Y = y|X = x) and P (Y = y) = P (Y = y|do(X = x)) whereas causation entails 450

P (Y = y) ≤ P (Y = y|X = x) ≤ P (Y = y|do(X = x)). 451

If knowledge is exclusively correlational, then, then K(Y ;X = x, τ) > 0 and 452

K(Y ; do(X = x), τ) = 0, otherwise K(Y ;X = x, τ) > 0 and K(Y ; do(X = x), τ) > 0. Hence, all else 453

being equal, the knowledge attainable via causation is larger under a broader set of conditions. 454

Moreover, note that in the correlational case knowledge is only attained once an external input of 455

information is obtained, which has an informational cost nYH(X) > 0. In the causal case, 456

conversely, the input has no informational cost, i.e. H(X|do(X = x)) = 0, because there is no 457

uncertainty (to the extent that the manipulation of the variable is successful). However the 458

explanans is expanded by an additional τdo(X=x), which is the description length of the methodology 459

that imposes a value to X. Therefore, the value of causal knowledge is defined as: 460

K(Y ; τ, τdo(X=x)) =
nYH(Y )− nYH(Y |X, τ)

nYH(Y )− log p(τ)− log p(τdo(X=x))
≡

H(Y )−H(Y |X, τ)

H(Y ) +
− log p(τdo(X=x))−log p(τ)

nY

(25)

It follows that there is always an n∗Y ∈ N such that K(Y n
∗
Y ; τ, τdo(X=x)) > K(Y n

∗
Y ;Xn∗Y , τ). 461

Specifically, assuming τ to be constant, causal knowledge is superior to correlational knowledge 462

when n∗Y > − log p(τdo(X=x))/H(X). 463
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2.3.4 Knowledge growth requires lossy information compression 464

Both theoretical and physical arguments suggest that K is maximized when τ is minimized (see 465

sections 2.2). A simple calculation shows that such minimization must eventually consist in the 466

encoding of concisely-describable patters, even if such patterns offer an incomplete account of the 467

explanandum, because otherwise knowledge cannot grow indefinitely. 468

Let τ be a theory that is not encoding a relation between RV X and Y , but merely lists all 469

possible (x, y) pairs of elements from the respective alphabets, i.e. x ∈ X and y ∈ Y. To take the 470

simplest possible example, let each element x ∈ X correspond to one element of y ∈ Y . Clearly, such 471

τ would always yield H(Y |X, τ) = 0, but its description length will grow with the factorial of the 472

size of the alphabet. Indicating with s the size of the two alphabets, which in our example have the 473

same length, the size of τ would be proportional to log s!. As the size of of the alphabet grows, 474

knowledge declines because 475

lim
s→+∞

K(Y ;X, τ) = lim
s→+∞

nYH(Y )

nYH(Y ) + nXH(X) + log(s!)
= 0 (26)

independent of the probability distribution of Y and X. Therefore, as the explanandum is 476

expanded (i.e. its total information and/or complexity grows), knowledge rapidly decreases, unless τ 477

is something other than a listing of (x, y) pairs. In other words, knowledge cannot grow unless τ 478

consists in a relatively short description of some pattern that exploits a redundancy. The knowledge 479

cost of a finite level of error or missing information H(Y |X, τ) > 0 will soon be preferable to an 480

exceedingly complex τ . 481

2.3.5 Decline with distance in time, space and/or explanans 482

Everyone’s experience of the physical world suggest that our ability to predict future states of 483

empirical phenomena tend to become less accurate the more ”distant” the phenomena are from us, 484

in time or space. Perhaps less immediately obvious, but the same applies to explanations: the 485

further back we try to go in time, the harder it becomes to connect the present state of phenomena 486

to past events. These experiences suggest that any spatio-temporal notion of ”distance” is closely 487

connected to the information-theoretic notion of information ”divergence”. Distance in time or space 488

between us and events is intimately connected, if not epistemologically equivalent, to our diminished 489

ability to process information about those states and, therefore, to our knowledge about them. 490

One of the most remarkable properties of K is that it can express and quantify if and how 491

knowledge within a system is lost as any kind of divergence between explanans and explanandum 492

increases. Even more remarkably, a similar logic applies to divergences between 493

theories/methodologies. Indeed, it can be shown that, under most conditions in which a system 494

contains knowledge, divergence in any component of the system will lead to a decline of K that can 495

be described by a simple exponential function of the form 496

K(Y ′;X ′, τ ′) = K(Y ;X, τ)×A−λλλ·ddd (27)

in which A is an arbitrary basis, Y ′, X ′, τ ′ are a system having an overall distance (i.e. 497

informational divergence) ddd from Y,X, τ , and λλλ · ddd = dY λY + dτ1λτ1 + dτ2λτ2 + ...+ dτlλτ1 defines 498

the decline rate depending on the divergence between explanandum and explanans and between 499

explanantia (proof in S4 text). 500

2.3.6 Knowledge has an optimal resolution 501

Accuracy of measurement is a special case of the general informational concept of resolution, 502

quantifiable as the number of bits that are available to describe explanandum and explanans. It can 503

be shown both analytically and empirically that any system Y,X, τ is characterized by an a unique 504

value of resolution that maximizes K (the full argument is offered in S5 text). 505
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We may start by noticing how, even if empirical data is assumed to be measurable to infinite 506

accuracy (against one of the postulates in section 2.2.1), the resulting K value will be inversely 507

proportional to measurement accuracy, unless special conditions are met. When K is measured on a 508

continuous, normal and quantized random variable Y ∆ (see section 2.2.2), to the limit of infinite 509

accuracy only one of two values is possible: 510

lim
n→∞

K(Y ∆;X, τ) =

{
limn→∞

h(Y )+n−h(Y |X,τ)−n
h(Y )+n+X+τ = 0

limn→∞
h(Y )+n

h(Y )+n+X+τ = 1
(28)

The upper limiting value occurs if and when h(Y |X, τ) > 0, i.e. by assumption there is a non-zero 511

residual uncertainty that needs to be measured. When this is the case, then the two information 512

terms n brought about by the quantization cancel each other out in the numerator (because the 513

explanandum and the residual error are necessarily measured at the same resolution).This is the 514

typical case of empirical knowledge. The lower limiting value in equation 28 presupposes a priori 515

that h(Y |X, τ) = 0, i.e. the explanandum is perfectly known via the explanans and there is no 516

residual error to be quantized. This case is only represented by logico-deductive knowledge. 517

We can define empirical systems as intermediate cases, i.e. cases that have a non-zero conditional 518

entropy and have a finite level of resolution. We can show that such systems, unlike logico-deductive 519

systems, have a system-specific ”K-optimal resolution” that maximizes the value of K. Let Xα be an 520

explanans or explanandum quantized to resolution α, and let α′ = α/q with q ∈ N, q ≥ 2 represent an 521

increase in resolution. We define as the maximal resolution of Xα a quantity e > 0, e ∈ Q such that: 522

H(Xα′)−H(Xα) = log(q),∀α ≤ e (29)

The symbol e is chosen to remark the fact that this value represents a fundamental error barrier, 523

i.e. a level of resolution beyond which any possible structure in the data is lost: noise beyond this 524

level is uniformly distributed and no information is gained by increasing resolution. We can show 525

(see S5 text) that all empirical systems have “K-optimal” resolutions α∗y and α∗x, which may be 526

larger than the variables’ maximal resolution, and such that: 527

K(Y α
∗
Y ;Xα∗X , τ) > K(Y αY ;XαX , τ)∀αY 6= α∗Y , αX 6= α∗X (30)

As the resolution of its terms increases, K will increase up to a maximal value and then decline. 528

Of particular interest is the resolution at which the explanandum is measured. If the resolution of Y 529

is progressively halved, K will only keep growing until: 530

K(Y
αY
2 ;XαX , τ) > K(Y αY ;XαX , τ) ⇐⇒

H(Y
αY
2 |XαX , τ)−H(Y αY |XαX , τ) < 1−K(Y αY ;XαX , τ) (31)

and will subsequently decline back to zero. For the increase of the resolution of X, the condition 531

is H(Y αY |XαX , τ)−H(Y αY |X
αxX

2 , τ) > K(Y αY ;XαX , τ) (see S5 text). 532

A system’s optimal resolution is determined by the shape of the relation between explanandum 533

and explanans. Two simulations in Figure 5 illustrate how both K and H(Y )K may vary depending 534

on resolution (the complete figures are in S5 text). 535

The dependence of K on resolution reflects its status as a measure of entropic efficiency (section 536

2.2.3) and entails that, to compare systems for which the explanandum is measured to different 537

levels of accuracy, the K value needs to be re-scaled. Such re-scaling can be attained rather simply, 538

by multiplying the value of K by the entropy of the corresponding explanandum: 539

H(Y )×K(Y ;X, τ) (re-scaled K)

The resulting product quantifies in absolute terms how many bits are extracted from the 540

explanandum by the explanans. 541
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Figure 5. Illustrative example of how K varies in relation to the resolution measured for Y and X,
depending on the shape of the pattern encoded. The figures and all the calculations were derived
from a simulated dataset, in which the pattern linking explanandum to explanans was assumed to
have a noise with uniform distribution, as described above the left-most panels. Black line: entropies
and K values calculated by maximum likelihood method (i.e. counting frequencies in each bin). Red
line: entropies and K values calculated using the “shrink” method described in [18] (the R code used
to generate the figures is provided in S9 text). Note how the value of K and its re-scaled version
H(Y )K have a unique maximum. A complete figure, showing graphs and values at different levels of
resolution, is available in S5 text.

.

3 Results 542

This section will illustrate, with practical examples, how the tools developed so far can be used to 543

answer meta-scientific questions. Each of the questions is briefly introduced by a problem statement, 544

followed by the answer, which comprises of a mathematical equation and an explanation, and one or 545

more examples. Most of the examples are offered as suggestions of potential applications of the 546

theory, and the specific results obtained should not be considered conclusive. 547

3.1 How much knowledge is contained in a theoretical system? 548

Problem: Unlike empirical knowledge, that is amenable to errors that can be verified against 549

experiences, knowledge derived from logical and deductive processes conveys absolute certainty. It 550

might therefore seem impossible to compare the knowledge yield of two different theories, for example 551

two mathematical theorems. The problem is made even deeper by the fact that any logico-deductive 552

system is effectively a tautology, i.e. a system that derives its own internal truths from a starting set 553

of principles taken to be true. How can we quantify the knowledge contained in a theorem? 554

Answer: The value of theoretical knowledge is quantified as 555

K = h (32)

in which K corresponds to equation 1 and h to equation 8. 556

Explanation: Logico-deductive knowledge, like all other forms of knowledge, ultimately consists 557

in the encoding of patterns. Mathematical knowledge, for example, is produced by revealing 558

previously unnoticed logical connections between a statement with uncertainty H(Y ) and another 559

statement, which may or may not have uncertainty H(X) (depending on whether X has been 560

proven, postulated or conjectured), via a set of passages described in a proof τ . The latter consists 561

in the derivation of identities, creating an error-free chain of connections such that P (Y |X, τ) = 1. 562

When the proof of the theorem is correct, the effect component k in equation 6, is always equal 563

to one, yielding equation 32. However, when the chain of connections τ is replaced with a τ ′ at a 564

distance dτ > 0 from it, k is likely to be zero, because even minor modifications of τ (for example, 565
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changing a passage in the proof of a theorem) break the chain of identities and invalidate the 566

conclusion. This is equivalent to assuming that λτ ≈ ∞. Therefore, the reproducibility of 567

mathematical knowledge, as it is embodied in a theorem, is either perfect or null: 568

Kr = K if dτ = 0, Kr = 0 otherwise (33)

Alternative theorem proofs τ ′, however, might also occur, and their K value will be inversely 569

proportional to their length, since the shorter proof yields a higher h. 570

Once a theorem is proven, its application will usually not require invoking the entire proof τ . In 571

K, we can formalize this fact by letting τ be replaced by a single symbol encoding the nature of the 572

relationship itself. The entropy of τ will in this case be minimized to that of a small set of symbols, 573

e.g. {=, 6=, >,< ...}. In such case, the value of the knowledge obtained will be mostly determined by 574

nY , which is the number of times that the theorem will be invoked and used. This leads to the 575

general conclusion that the value of a theory is inversely related to its length and directly related to 576

the frequency of its use. 577

3.1.1 Example: The proof of Fermat’s last theorem 578

Fermat’s last theorem (henceforth, FLT) states that there is no solution to the equation 579

an + bn = cn when all terms are positive integers and n > 2. The french mathematician Pierre de 580

Fermat (1607-1665) claimed to have proven such statement, but his proof was never found. In 1995, 581

Andrew Wiles published a proof of FLT, winning a challenge that had engaged mathematicians for 582

three centuries [19]. How valuable was Wiles’ contribution? 583

We can describe the explanandum of FLT’s as a binary question: “does an + bn = cn have a 584

solution”? In absence of any proof τ , the answer can only be obtained by calculating the result for 585

any given set of integers [a, b, c, n]. Let nY be the total plausible number of times that this result 586

could be calculated. Of course, we cannot estimate this number exactly, but we are assured that this 587

number is an integer (because a calculation is either made or not), and that it is finite (because the 588

number of individuals, human or otherwise, who have, will, or might do calculations is finite). 589

Therefore, the explanandum is nYH(Y ). For simplicity, we might assume that in absence of any 590

proof, individuals making the calculations are genuinely agnostic about the result, such that 591

H(Y ) = 1. 592

Indicating with τ the maximally succinct (i.e. maximally compressed) description of this proof, 593

the knowledge yielded by it is: 594

K(Y nY ; τ) =
nYH(Y )

nYH(Y )− log p(τ)
≡ 1

1 + − log p(τ)
nY

(34)

Here we assume that any input is contained in the proof τ . The information size of the latter is 595

certainly calculable in principle, since, in its most complete form, it will consists in an algorithm that 596

derives the result from a small set of axioms and operations. 597

Wiles’ proof of FLT is over 100 pages long and is based on highly advanced mathematical 598

concepts that were unknown in Fermat’s times. This suggest that, assuming Fermat had actually 599

discovered a correct proof of the theorem, then his proof was considerably simpler and shorter than 600

Wiles’. Mathematicians are now engaged in the challenge of discovering such a simple proof. 601

How would a new, simpler proof compare to the one given by Wiles? Indicating this simpler proof 602

with τ ′ and since nY is constant and independent of the proof, the proportional gain in knowledge is 603

K(Y ; τ ′)−K(Y ; τ) =
1

1− log p(τ ′)
− 1

1− log p(τ)
=

− log p(τ)− (− log p(τ ′))

(1− log p(τ ′))(1− log p(τ))
≈ log p(τ ′)− log p(τ)

log p(τ ′)× log p(τ)
(35)
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equation 35 reflects the gain in knowledge obtained by devising a simpler, shorter proof of a 604

previously proved theorem. 605

Given two theorems addressing different questions, instead, the difference in knowledge yield will 606

depend on the lengths of the respective proofs as well as the number of computations that each 607

theorem allows to be spared. The general formula is, indicating with Y ′ and τ ′ an explanandum and 608

explanans different from Y and τ : 609

K(Y ′; τ ′)−K(Y ; τ) =
n′ log p(τ ′)− n log p(τ)

(n′ − log p(τ ′))(n− log p(τ))
(36)

3.2 How much knowledge is contained in an empirical system? 610

Problem: Science is at once a unitary phenomenon and highly diversified and complex one. It is 611

unitary in its fundamental objectives and in general aspects of its procedures, but it takes a myriad 612

different forms when it is realized in individual research fields, whose diversity of theories, 613

methodologies, practices, sociologies and histories mirrors that of the phenomena being investigated. 614

How can we compare the knowledge obtained in different fields, about different subject matters? 615

Answer: The knowledge produced by a study, a research field, and generally a methodology is 616

quantified as 617

K = k × h (37)

in which K is given by equation 1, k by equation 7 and h by equation 8. 618

Explanation: Knowledge entails a reduction of uncertainty, attained by the processing of stored 619

information by means of an encoded procedure (an algorithm, a “theory”, a “methodology”). 620

Equation 37 quantifies the efficiency with which uncertainty is reduced. This is a scale-free, 621

system-specific property. The system is uniquely defined by a combination of explanandum, 622

explanans and theory, the information content of which is subject to physical constraints. Such 623

physical constraints ensure that, amongst other properties, every system Y,X, τ has an optimal 624

resolution, non-zero and non-infinite, and therefore a unique identifiable value K (section 2.3.6). As 625

discussed in section 2.3.6, this quantity can also be re-scaled to K ×H(Y ), which gives the total net 626

number of bits that are extracted from the explanandum by the explanans. Since k ≤ 1, theoretical 627

knowledge is typically, although not necessarily always, larger or larger than empirical knowledge. 628

Equation 37 applies to descriptive knowledge as well as correlational or causal knowledge, as 629

examples below illustrate. 630

3.2.1 Example 1: The mass of the electron 631

Centuries of progressively accurate measurements have led to a current estimate of the mass of the 632

electron of me = 9.10938356± 11× 10−31 Kg (based on the NIST recommended value [20]), with the 633

error term representing the standard deviation of normally distributed errors. Since this is a fixed 634

number of of thirty nine significant digits, the explanandum is quantified by the amount of storage 635

required to encode it, i.e. a string of information content − logP (Y = y) = 39× log(10), and the 636

residual uncertainty is quantified by the entropy of the normal distribution of errors with σ = 11. 637

These measurements are obtained by complex methodologies that are in principle quantifiable as a 638

string of inputs and algorithms, − log p(x)− log p(τ). However, the case of physical constants is 639

similar to that of a mathematical theorem, in that the explanans becomes negligible to the extent 640

that the value obtained can be used in a very large number of subsequent applications. Therefore, 641

we estimate our current knowledge of the mass of the electron to be 642

K(me) =
39 log 10− log

√
2πe11

39 log 10

1

1 + − log p(x)−log p(τ)
nY 39 log 10

≈ 0.957 (38)
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with the last approximation due to the case that the value can be stored and used for a very 643

large nY times, yielding h ≈ 1. More accurate calculations would require estimating the h 644

component, too. In particular, to compare K(me) to the K value of another constant, the relatively 645

frequency of use would need to be taken into account. The corresponding re-scaled value (equation 646

eq:re-scaledK) is K(me)× 39 log 10 ≈ 124 bits. 647

Note that the specific value of K depends on the scale or unit in which me is measured. If it is 648

measured in grams (10−3Kg), for example, then K(me) = 0.954. This reflects the fact that units of 649

measurement are just another definable component of the system: there is no ”absolute” value of K, 650

but solely one that is relative to how the system is defined. The relativity of K may leads to 651

theoretical difficulties when comparing systems that are widely different from each other (see section 652

3.8). However, results obtained comparing systems that are adequately similar to each other are 653

coherent and consistent, as illustrated in the next paragraph. 654

We could be tempted to ”cheat” by re-scaling the value of me to a lower number of digits, in 655

order ignore the current measurement error. For example, we could quantify knowledge for the mass 656

measured to 36 significant digits only (which is likely to cover over three standard deviations of 657

errors, and therefore over least 99% of possible values). By doing so, we would obtain K(me) ≈ 1, 658

suggesting that at that level of accuracy we have virtually perfect knowledge of the mass of the 659

electron. This is indeed the case: we have virtually no uncertainty about the value of m3 in the first 660

few dozen significant digits. However, note that the re-scaled value of K, 661

K(me)× 36× log 10 = 119.6 bits. Therefore, by lowering the resolution, our knowledge increased in 662

relative but not in absolute terms. 663

It should be emphasized that we are measuring here the knowledge value of the mass of the 664

electron in the narrowest possible sense, i.e. by restricting the system to the mass itself. However, 665

the knowledge we derive by measuring (describing) phenomena such as a physical constant has value 666

also in a broader context, in its role as as an input required to know other phenomena, as the next 667

example illustrates. 668

3.2.2 Example 2: Predicting an eclipse 669

The total solar eclipse that occurred in North America on August 21st 2017 (henceforth, E2017) was 670

predicted with a spatial accuracy of 1-3 km, at least in publicaly accessible calculations [21]. This 671

error is mainly due to irregularities in the Moon’s surface and, to a lesser extent, to irregularities of 672

the shape of the Earth. Both sources of error can be reduced further with additional information 673

and calculations (and thus a longer τ), but we will limit our analysis to this estimate and therefore 674

assume an average prediction error of 4 Km2. 675

What is the value of the explanans for this knowledge? The theory component of the explanans 676

consists in calculations based on the JPL DE405 solar system ephemeris, obtained via numerical 677

integration of 33 equations of motion, derived from a total of 21 computations [22]. In the words of 678

the authors, these equations are deemed to be “correct and complete to the level of accuracy of the 679

observational data” [22], which means that this τ can be used for an indefinite number nY of 680

computations, suggesting that we can assume − log p(τ)/nY ≈ 0. 681

The input is in this case not a random variable but a defined object of information content 682

H(X) = − log p(x). It contains 98 values of initial conditions, physical constants and parameters, 683

measured to up to 20 significant digits, plus 21 auxiliary constants used to correct previous data and 684

the radii of 297 asteroids [22]. Assuming for simplicity that on average these inputs take five digits, 685

we estimate the total information of the input to be at least (98 + 21 + 297)× 5× log 10 ≈ 6910 bits. 686

The accuracy of predictions is primarily determined by the accuracy of these estimations, which 687

moreover are in many cases subject to revision. Therefore, in this case nX/nY > 0, and the value of 688

H(X) is less appropriately neglected. Nonetheless, we will again assume for simplicity that 689

nY >> nX and thus h ≈ 1. 690

Therefore, since the surface of the Earth is circa 510, 072, 000 Km2 we estimate our astronomical 691

knowledge as: 692

20

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1968v5 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018



K(E2017;X, τ) ≈ log(510072000)− log(4)

log(510072000)
= 0.931 (39)

and a re-scaled value of K(E2017;X, τ)× log(510072000) = 26.9261. 693

Therefore, the value of K for predicting eclipses is smaller than that obtained for physical 694

constants (section 3.2.1). However, our analysis is not complete and it still over-estimates the K 695

value of predicting an eclipse for at least two reasons. First, because the assumption of a negligible 696

explanans for eclipse prediction is a coarser approximation than for physical constants, since physical 697

constant are required to predict eclipses, and not vice-versa. Secondly, and most importantly, our 698

knowledge about eclipses is susceptible to declining with distance between explanans and 699

explanandum. This is in stark contrast to the case of physical constants, which are, by definition, 700

fixed in time and space, such that λy ≈ 0. 701

What is λy in the case of eclipses? We will not examine here the possible effects of distance in 702

methods, and we will only estimate the knowledge loss rate over time. We can do so by taking the 703

most distant prediction made using the JPL DE405 ephemeris for a total solar eclipse: the one that 704

will occur in April 26 3000AD [23]. The estimated error is circa 7.8◦ of longitude, which at the 705

predicted latitude of peak eclipse (21.1N, 18.4W) corresponds to an error of circa 815 Km in either 706

direction. Therefore, the estimated K for predicting an eclipse 982 years from now is: 707

K(E3000;X, τ) ≈ log(510072000)− 2 log(815)

log(510072000)
= 0.3314 (40)

solving K(E3000;X, τ) = K(E2017;X, τ)× 2−λ×982 yields a knowledge loss rate of 708

λt = 0.0015 (41)

per year. Which corresponds to a knowledge half life of λ−1 ≈ 667 years. Therefore our 709

knowledge about the position of eclipses, based on the JPL DE405 methodology, is halved for every 710

667 years of time-distance to predictions. 711

3.3 How much progress is a research field making? 712

Problem: Knowledge is a dynamic quantity. Research fields are known to be constatly evolving, 713

splitting and merging [24]. As evidence cumulates, theories and methodologies are modified, 714

enlarged or simplified, and may be extended to encompass new explananda and explanantia, or 715

conversely may be re-defined to account more accurately for a narrower set of phenomena. To what 716

extent do these dynamics determine scientific progress? 717

Answer: Progress occurs if an only if the following condition is met: 718

nX∆H(X)−∆ log p(τ) < nYH(Y )
k′ − k
kh

(42)

in which ∆H(X) = H(X ′)−H(X) and −∆ log p(τ) = − log p(τ ′)− log p(τ) are expansions or 719

reductions of explanantia, and in which τ ′ ≡ τ ′Y |X,X′,τ , k =
H(Y )−H(Y |X,τY |X)

H(Y ) , 720

k′ =
H(Y )−H(Y |X,X′,τY |X ,τ ′Y |X,X′,τ )

H(Y ) , h = nYH(Y )
nYH(Y )+nXH(X)−log p(τY |X) (see S6 text). 721

Explanation: Knowledge occurs when prigressively larger explananda are accounted for by 722

relatively smaller explanantia. This is the essence of the process of consilience, which has been 723

recognized for a long time as the fundamental goal of the scientific enterprise [25]. Consilience drives 724

progress at all levels of scientific knowledge. At the research frontier, new research fields are being 725

created by identifying new explananda and/or new combinations of explanandum and explanans for 726

which K is low. Their K grows by a process of “micro-consilience”, whereas a “macro-consilience” 727

occurs when knowledge-containing systems are extended and unified across fields, disciplines and 728

entire domains. Equation 42 quantifies the conditions for consilience to occur. 729
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The inequality 42 is satisfied under several conditions. First, when the explanantia X ′ and/or τ ′ 730

produce a sufficiently large improvement in the effect, from k to k′. Second, equation 42 is satisfied 731

when k′ ≤ k, if ∆H(X)−∆ log p(τ) is sufficiently negative, i.e. the input, theory or methodology 732

are being reduced or simplified. Finally, if ∆H(X)−∆ log p(τ) = 0, condition 42 is satisfied 733

provided that k′ > k, which would occur by expansion of the explanandum. In all cases, the 734

conditions for consilience are modulated by the extent of application of the theories themselves, 735

quantified by the nX and nY indices. 736

3.3.1 Example 1: Evolutionary models of reproductive skew 737

Reproductive skew theory is an ambitious attempt to explain reproductive inequalities within animal 738

societies according to simple principles derived from kin selection theory (see [26] and references 739

within). In its earliest formulation, reproductive skew was predicted to be determined by a 740

“transactional” dynamic between dominant and subordinate individuals, according to the condition 741

pmin =
xs − r(k − xd)

k(1− r)
(43)

in which pmin is the minimum proportion of reproduction required by the subordinate to stay, xs 742

and xd are the number of offspring that the subordinate and dominant, respectively, would produce 743

if breeding independently, r is the genetic relatedness between subordinate and dominant, and k is 744

the productivity of the group. The theory was later expanded to include an alternative “compromise” 745

model approach, in which skew was determined by direct intra-group conflict. Subsequent 746

elaboration of this theory have extended its range of possible conditions and assumptions, leading to 747

a proliferation of models whose overall explanatory value has been increasingly questioned [26]. 748

We can use equation 42 to examine the conditions under which introducing a new parameter or a 749

new model would constitute net progress within reproductive skew theory, using data from a 750

comprehensive review of empirical tests [26]. In particular, we will focus on one of the earliest and 751

most stringent predictions of transactional models, which concerns the correlation between skew and 752

dominant-subordinate genetic relatedness. Contradicting earlier reported success [27], empirical tests 753

in populations of 21 different species unambiguously supported transactional models only in one case 754

(data taken from Table 2.2 in [26]). 755

Since this analysis is intended as a mere illustration, we will make several simplifying 756

assumptions. First, we will assume that all parameters in the model are measurable to two 757

significant digits, and that their prior expected distributions are uniform (in other words, any group 758

from any species may exhibit a skew and relatedness ranging from 0.00 to 0.99, and individual and 759

group productivities ranging from 0 to 99). Therefore, we assume that each of these parameters has 760

an information content equal to 2 log 10 = 6.64. Second, we will assume that the data reported 761

by [26] are a valid estimate of the average success rate of reproductive skew theory in any non-tested 762

species. Third, we will assume that all of the parameters relevant to the theory are measured with 763

no error. For example, we assume that for any organism in which a “success” for the theory is 764

reported, reproductive skew is explained or predicted exactly. Fourth, we will assume that the extent 765

of applications of skew theory, i.e. nY , is sufficiently large to make the τ component (which contains 766

a description of equation 43 as well as any other condition necessary to make reproductive skew 767

predictions work) negligible. These assumptions make our analysis extremely conservative, leading 768

to an over-estimation of K values. 769

Indicating with Y,Xs, Xd, Xr, Xk the information values of pmin, xs, xd, r, k in equation 43, we 770

obtain the value corresponding to the K of transactional models 771

k =
2 log 10− 20

212 log 10

2 log 10
=

1

21
= 0.048 (44)

and 772

h =
y

y + xs + xd + xr + xk − log p(τ)
=

1

5− log p(τ)
nY 2 log 10

≈ 0.2 (45)
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Plugging these values in equation 42 and re-arranging, we derive the minimal amount of increase 773

in explanatory power that would justify adding a new parameter or model X ′: 774

k′ > k

(
1 +

nXhH(X ′)

nYH(Y )

)
= 0.048

(
1 + 0.2

H(X ′)

6.64

)
(46)

This suggests, for example, that if X ′ is a new parameter measured to two significant digits, with 775

H(X ′) = 2 log 10, adding it to equation 43, would represent theoretical progress if k′ > 1.2k, in other 776

words if it increased the explanatory power of the theory by 20%. If instead X ′ represented the 777

choice between transactional theory and a new model then, assuming conservatively that H(X ′) = 1, 778

we have k′ > 1.03k, suggesting that any improvement above 3% would justify it. 779

Did the introduction of a single “compromise” model represent a valuable extension of 780

transactional theory? The informational cost of expanding transactional theory consists not only in 781

the equations τ ′ that need to be added to the theory, but also in the additional binary choice X ′ 782

that will need to be made between the two models for each new species to which the theory is 783

applied. The latter condition entails nXH(X ′) = nY . According to Nonacs et al [26], compromise 784

models were successfully tested in 2 out of the 21 species examined. Therefore, the k = 3/21 = 0.14 785

attained by adding a compromise model amply compensated for the corresponding increased 786

complexity of reproductive skew theory. 787

The analysis above refers to results for tests of reproductive skew theory across groups within 788

populations. When comparing the average skew of populations, conversely, transactional models 789

were compatible with virtually all of the species tested, especially with regards to the association of 790

relatedness with reproductive skew. In this case, if we interpret these data as suggesting that k ≈ 1, 791

i.e. that transactional models are compatible with every species encountered, then progress within 792

the field (the theory) could only be achieved by simplifying equation 43. This could be obtained by 793

removing or recoding the parameters with the lowest predictive power, or by deriving the theory in 794

question from more general theories. The latter is what the authors of the review did, by suggesting 795

that the cross-population success of the theory is explainable more economically in terms of kin 796

selection theory, from which these models are derived [26]. 797

These results, are merely preliminary and likely to over-estimate the benefits of expanding skew 798

theory. In addition to the conservative assumptions made above, we have assumed that only one 799

transactional model and one compromise model exist, whereas in reality several variants of these 800

models have been produced, which entails that the choice X ′ is not simply binary, and therefore 801

H(X ′) is larger than 1. Moreover, we have assumed that the choice between transactional and 802

compromise models is made a priori, for example based on some measurable property of organisms 803

that tells beforehand which type of model applies to which species. If the choice is made after the 804

variables are known then the costs of this choice have to be accounted for, with potentially 805

disastrous consequences (see section 3.6). 806

3.3.2 Example 2: Gender differences in personality factors 807

In 2005, psychologist Janet Hyde proposed a “gender similarity hypothesis”, according to which men 808

and women are more similar than different on most (but not all) psychological variables [28]. 809

According to her review of the literature, human males and females exhibit average differences that, 810

for most measured personality factors, are of small magnitude (i.e. Cohen’s d ≤ 0.35). Assuming 811

that these traits are normally distributed within each gender, this finding implies that the empirical 812

distributions of male and female personality factors overlap by more than 85% in most cases. 813

The gender similarity hypothesis was challenged by Del Giudice et al [29], on the basis that, even 814

assuming that the distributions of individual personality factors do overlap substantially, the joint 815

distribution of these factors might not. For example, if Mahalanobis distance D, which is the 816

multivariate equivalent of Cohen’s d, was applied to 15 psychological factors measured on a large 817

sample of adult males and females, the resulting effect was large (D=1.49), suggesting an overlap of 818

30% or less [29] (see Figure 6a). 819
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The multivariate approach proposed by Del Giudice was criticized by Hyde primarily for being 820

“uninterpretable” [30], because it is based on a distance in 15-dimensional space, calculated from the 821

discriminant function. This suggests that such a measure is intended to maximze the difference 822

between groups. Indeed, Mahalanobis’ D will always be larger than the largest uni-dimensional 823

Cohen’s d included in its calculation (see Figure 6a). 824

The K function offers an alternative approach to examine the gender differences vs. similarities 825

controversy, using simple and intuitive calculations. With K, we can quantify directly the amount of 826

knowledge that we gain, on average, about an individual’s personality by knowing their gender. 827

Since most people self-identify as male and female in roughly similar proportions, knowing the 828

gender of an individual corresponds to an input of one bit. In the most informative scenario, males 829

and females would be entirely separated along any given personality factor, and knowing gender 830

would return exactly one bit along any dimension. Therefore, we can test to what extent the gender 831

factor is informative by setting up a one-bit uncertainty in the explanandum: we divide the 832

population in two groups, above and below the median for each dimension. 833

The resulting measures, which we will call “multi-dimensional K” is psychologically realistic and 834

intuitively interpretable, and is calculated as 835

Kmd ≡
∑z
i=1H(Yi)−

∑z
i=1H(Yi|X, τYi|X)∑z

i=1H(Yi) +H(X)−
∑z
i=1 log p(τYi|X) 1

nY

(47)

in which z is the number of dimensions considered and τYi|X is the theory linking gender to each 836

dimension i. 837

Note that, whereas the maximum value attainable by the unidimensional K is 1/2, that of Kmd 838

is 15/16 = 0.938. This value illustrates how, as the explanandum is expanded to new dimensions, 839

Kmd could approach indefinitely the value of 1, value that would entail that input about gender 840

yields complete information about personality. Whether it does so, and therefore the extent to which 841

applying the concept of gender to multiple dimensions represent progress, is determined by 842

conditions in 42. 843

To illustrate the potential applications of these measures, the values of K, average K, as well as 844

Kmd were calculated from a data set (N=106) simulated using data on the variance and covariance 845

of personality factors estimated by [29,31]. All unidimensional personality measures were split in 846

lower and upper 50% percentile, yielding one bit of potentially knowable information. In Kmd, these 847

were then recombined, yielding a 15-bit total explanandum. 848

Figure 6b reports results of this analysis. As expected, the unidimensional K values are closely 849

correlated with their corresponding Cohen’s d values (Figure 6 a and b, black bars). However, the 850

multidimensional K values offer a rather different picture from that of Mahalanobis D. In particular, 851

both Kmd and Kmv are considerably smaller than the largest unidimensional effect measured, and 852

are in the range of the second-largest effect. They are, therefore, somewhat intermediate in 853

magnitude, although larger than a simple average (given by the orange bar in Figure 6b). 854

Therefore, we conclude that the overall knowledge conferred by gender about the 15 personality 855

factors together is comparable to some of the larger, but not the largest, values obtained on 856

individual factors. This is a more directly interpretable comparison of effects, which stems from the 857

unique properties of K. 858

We can also calculate the absolute number of bits that are gained about an individual’s 859

personality by knowing a person’s gender. For the unidimensional variables, where we assumed 860

H(Y ) = 1, this is equivalent to the K values shown. For the multidimensional Kmd, however, we 861

have to multiply by 15, obtaining 0.26 (Figure 6b). This value is larger that the largest 862

unidimensional K value of circa 0.08, and suggest that, at least among the 15 dimensions considered, 863

receiving the one-bit input about an individual’s gender allows to save, respectively, at least 1/4 of a 864

bit in predicting their personality. 865

These results are intended as mere illustrations of the potential utility of the methods proposed. 866

Such potential was under-exploited in this particular case, because the original data was not 867

available, and therefore our analyses were based on a re-simulation of the data, based on estimated 868
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Figure 6. Uni- and multivariate analyses of gender differences in personality factors. a) Cohen’s d
values and Mahalanobis D calculated in [29]. b) K values calculated on a data set of one million
individuals, reproduced using the covariance matrices for males and females estimated in [29].
Orange bar: average of uni-dimensional K values. Blue bar: Kmd, calculated assuming that all
factors are orthogonal, as in equation 47. The number above the blue bar represents the re-scaled
values H(Y )Kmd. For further details, see text.

variances and co-variances. Therefore, our analysis inherited the assumptions of normality and linear 869

covariance that are necessary but limiting components of traditional multivariate analyses, and were 870

a source of criticism for data on gender differences too [30]. 871

Unlike ordinary multivariate analyses, a K analysis requires no distributional assumptions. If it 872

were conducted on a real data set about gender, the analysis might reveal non-linear structures in 873

personality factors, and/or identify the optimal level of resolution at which each dimension of 874

personality ought to be measured (see section 2.3.6). This would yield a more accurate answer 875

concerning how much knowledge about people’s personality is gained by knowing their gender. 876

3.3.3 Example 3: Does cumulative evidence support a hypothesis? 877

The current tool of choice to assess whether the aggregate evidence of multiple studies supports an 878

empirical hypothesis is meta-analysis, in which effect sizes of primary studies are standardized and 879

pooled in a weighted summary [13]. The K function may offer a complementary tool in the form of 880

a cumulative K, Kcum. This is conceptually analogous to the Kmd described above but, instead of 881

assuming that the various composing explananda lie on orthogonal dimensions and the explanans is 882

fixed, it assumes that both explanandum and explanans lie on a single dimension, and their entropy 883

results from a mixture of different sources. 884

It can be shown that, for a set of RV Y1, Y2...Ym with probability distributions 885

pY1(·), pY2(·)...pYm(·), the entropy of their mixed distribution
∑
wipYi is given by: 886

H(
∑
i≤m

wipYi) =
∑
i≤m

wiH(Yi) +
∑
i≤m

wiD(pYi ||
∑
i≤m

wipYi) ≡ H(Y ) + dY (48)

where the right-hand terms are a notation introduced for convenience, and D(pYi ||
∑
i≤m wipYi) 887

represents the Kullback-Leibler divergence between each RV and the mixed distribution. 888
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For sequences, and particularly for those representing the theory τ , the mixture operates on an 889

element-by-element basis. For example, if Ti,p and Tj,p are the RVs representing choice p in τi and 890

τj , respectively, a mixture of τi and τj will lead to choice p now being represented by a RV Tij,p, say, 891

which has still uniform distribution and whose alphabet is the union set of the mixed alphabets 892

Tij,p = {Ti,p ∪ Tj,p}. 893

Remembering that the minimum alphabet size of any element of a τ is 2, it can be shown that, if 894

for example τi = (τi,1, τi,2...τi,l) and τj = (τj,1, τj,2...τj,m) are two sequences of length l and m with 895

l > m, their mixture will yield the quantity 896

τ + dτ ≡ l +
∑
u≤l

log
|Tu|

2
(49)

in which |Tu| is the size of the alphabet resulting from the mixture. For the mixing of s theories 897

{τ1, τ2...τs}, τ̄ will be equal to the description length of the longest τ in the set. Indicating the latter 898

with l∗, we have 899

0 ≤ dτ ≤ l∗ log
s+ 2

2
(50)

with the right-hand side condition occurring if all the elements of all the s sequences are different 900

from each other. 901

For example, if the methodology τi = (”randomized”, ”human”, ”female”) is mixed with 902

τj = (”randomized”, ”human”, ”male+ female”), the resulting mixture would have composing 903

RVs T1 = {”randomized”, ”not”}, T2 = {”humansubject”, ”not”}, 904

T3 = {”female”, ”male+ female”, ”not”}, and its information content would equal 905

− log(2)− log(2)− log(3) = 3.58 or equivalently τ + dτ = 3 + log(3/2) = 3 + 0.58. 906

Therefore, the value of the cumulative K is given by 907

Kcum ≡
nY

(
H(Y )−H(Y |X, τ) + dY − dY |X,τ

)
nYH(Y ) + nXH(X) + τ + nY dY + nXdX + dτ

(51)

in which the d̄ terms represent the average divergences from the mixed expananda or explanatia. 908

Equation 51 is subject to the same conditions of equation 42, which will determine whether the 909

cumulative knowledge (e.g. a cumulative literature) is overall leading to an increase or a decrease of 910

knowledge. 911

The peculiarity of equation 51, however, lies in the presence of additional divergence terms, which 912

allow knowledge to grow or decrease independently of the weighted averages of the measured effects. 913

In particular, 914

Kcum ≥ K ⇐⇒ dY |X,τ ≤ (1−K)dY −K(dX + dτ ) (52)

with K = H(Y )−H(Y |X,τ)

H(Y )+H(X)+τ
constituting the K value obtained by the simple averages of each term. 915

This property, combined with the presence of a cumulative theory/methodology component τ + dτ 916

component that penalizes the cumulation of diverse methodologies, make Kcum behave rather 917

differently from ordinary meta-analytical estimates. 918

Figure 7 illustrates the differences between meta-analysis and Kcum. Like ordinary meta-analysis, 919

Kcum depends on the within and between-study variance of effect sizes. However, Kcum also 920

decreases if the methodology of aggregated studies is heterogeneous, independent of the statistical 921

heterogeneity that is observed in the effect sizes (that is, K can decrease even if the effects are 922

statistically homogeneous). Moreover, Kcum can increase even when all included studies report null 923

findings, if the aggregated studies cover different ranges of the explanandum, making the cumulative 924

explanandum larger. 925

Note that we have not specified how the weights underlying the mixture are calculated. These 926

may consist in an inverse-variance weighting, as in ordinary meta-analysis, or could be computed 927
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based on other epistemologically-relevant variables, such as the relative divergence of studies’ 928

methodologies. The latter approach would offer an alternative to the practice of weighting studies by 929

measures of quality, a practice that used to be common in meta-analysis and has now largely been 930

abandoned due to its inherent subjectivity. 931

3.4 How reproducible is a research finding? 932

Problem: The concept of “reproducibility” is the subject of growing concerns and expanding 933

research programs, both of which risk being misled by epistemological confusions of at least two 934

kinds. The first source of confusion, is the conflation of the reproducibility of methods and that of 935

results [32]. The reproducibility of methods entails that identical results are reproduced if the same 936

data is used, indicating that data and methods were reported completely and transparently. The 937

reproducibility of results entails that identical results are obtained if the same methods are applied 938

to new data. Whereas the former is a relatively straightforward issue to assess and to address, the 939

latter is a complex phenomenon that has multiple causes that are hard to disentangle. When a study 940

is reproduced using new data, i.e. sampling from a similar but possibly not identical population and 941

using similar but not necessarily identical methods, results may differ for reasons that have nothing 942

to do with flawed methods in the original studies. This is a very intuitive idea, which however 943

struggles to be formally included in analyses of reproducibility. The latter typically follow the 944

meta-analytical paradigm of assuming that, in absence of research and publication biases, results of 945

two studies ought to be randomly distributed around a “true” underlying effect. 946

The second source of confusion comes from treating the concept of reproducibility as a dichotomy 947

- either a study is reproducible/reproduced or it is not - even though this is obviously a 948

simplification. A scientific finding may be reproduced to varying degress, depending on the nature of 949

what is being reproduced (is it an empirical datum? a relation between two operationalized 950

concepts? a generalized theory?) and contingent upon innumerable characteristics of a research 951

which include not just how the research was conducted and reported, but also by contingent 952

characteristics of the research’s subject matter and general methodology. 953

How can we distinguish the reproducibility of methods and results and define them in a single, 954

continuous measure? 955

Answer: The relation between a scientific study and one that reproduces it is described by the 956

relation 957

Kr = KA−λλλ·ddd (53)

in which Kr is the result of a replication study conducted at a study-specific “distance” given by 958

the inner-product of a vector ddd : [s, x, τ ] of distances and a vector λλλ : [λs, λx, λτ ] of corresponding 959

loss rates. 960

Explanation: A study that attempts to reproduce another study, is best understood as a new 961

system that is at a certain ”distance” from the previous one. An identical replication is guaranteed 962

to occurs only if the exact same methods and exact same data are used, in which case the divergence 963

between the two systems is likely to be zero on all dimensions, and the resulting K (and 964

corresponding measure of effect size produced by the study’s results) is expected to be identical. 965

Note that even this is an approximation, since the instruments (e.g. hardware and software) used to 966

repeat the analyses will be different, and this could in principle generate some discrepancies. 967

If attainable at all, a divergence of zero is only really likely to characterize the reproduciblity of 968

methods, and is unlikely to occur in the reproducibility of results (in which new data are being 969

collected). In the latter, different characteristics in the population being sampled (Y ), the 970

measurements or interventions made (X) or other critical choices made in the conduction of the 971

study (τ) may affect the outcome. Contrary to what is normally assumed in reproducibility studies, 972

these differences cannot be assumed to exert random and symmetric influences on the result. The 973

more likely direction of change is one of reduction: divergences in any element of the system, 974
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especially if not dictated by the objective to increase K, are likely to introduce noise in the system, 975

thus obfuscating the pattern encoded in the original study. 976

Section 2.3.5 showed how the exponential function 53 described the decline of a system’s K due 977

to divergences in subject matter or methodology. In practical terms, a divergence vector will consist 978

in classifiable, countable differences in components of the methods used and/or characteristics of 979

subject matter that, based on theory and prior data, are deemed likely to reduce the level of K by 980

some proportional factor. 981

Applications of equation 53 to individual cases require measuring study-specific divergences in 982

explanandum and explanans and their corresponding and field-specific loss rates. However, the 983

universality of the function in equation 53 allows us to derive general, population-level predictions 984

about reproducibility, as the example below illustrates. 985

Example: How reproducible is Psychological Science? 986

The Reproducibility Initiative in Psychology was a monumental project in which a consortium of 987

laboratories attempted to replicate 100 studies taken from recent issues of three main psychology 988

journals. Results were widely reported in the literature and mass media as suggesting that less than 989

40% of studies had been replicated, a figure deemed to be disappointingly low and indicative of 990

significant research and publication biases in the original studies [33]. This conclusion, however, was 991

questioned on various grounds, including: limitations in current statistical approaches used to 992

predict and estimate reproducibility (e.g. [34–36]), methodological differences between original and 993

replication studies [37], variable expertise of the replicators [38], and variable contextual sensitivity 994

of the phenomena studied [39,40]. The common element behind all these concerns is that the 995

replication study was not actually identical to the original, but diverged in details that affected the 996

results uni-directionally. This is the phenomenon that equation 53 can help to formalize, predict and 997

estimate empirically. 998

In theory, each replication study in the RIP could be examined individually using equation 53, 999

but doing so would require field-specific information on the impact of that various divergences may 1000

have on the results. This fine-grained analysis is not achievable, at least presently, because the 1001

necessary data are not available. However, we can use equation 53 to formulate a general prediction 1002

about the shape of the distribution of results of a reproducibility study, under varying frequencies 1003

and impacts of errors. 1004

Figure 8 simulated the distribution of effect sizes (here shown as correlation coefficients derived 1005

from the corresponding K) that would be observed in a set of replication studies, depending on their 1006

average distances d and impacts λ from an original or ideal study. Distances were assumed to follow 1007

a Poisson distribution, with a mean of 1, 5 and 20, respectively. The impact of these distances was 1008

increased moving from the top to the bottom row, by assuming the values of λ illustrated in the 1009

top-most panel. The dotted vertical line in each plot reports the initial value of K (i.e. the left-hand 1010

side of equation 53), whereas the solid vertical line shows the mean of the distribution of results. 1011

The figure can be given different interpretations. The distances simulated in Figure 8 may be 1012

interpreted as between-study differences in the explanandum or input (e.g. cultural differences in the 1013

studied populations), between-study differences in methodological choices, or as study-specific 1014

methodological errors and omissions, or a combination of all three. The dotted line may represent 1015

either the result of the original study or the effect that would be obtained by an ideal study (i.e. a 1016

study whose combination of Y,X, τ maximize the K attainable) that is never realised, from which 1017

all observed studies are at some distance. 1018

Irrespective of what we assume these distances to consist in, and to the extent that they represent 1019

a loss of information, their frequency and impact profoundly affects the expected distribution of 1020

replication results. The distribution is compact and right-skewed when distances are few and of 1021

minor impact (top-left). As the number of such minor-impact distances grows, the distribution tends 1022

to be symmetrical and bell-shaped (top-right). Indeed, if the number of distances was increased 1023

further, the shape would become indistinguishable from a Gaussian curve (mirroring the behaviour 1024

of a Poisson distribution). In such a (special) case, the distribution of replication results would meet 1025

29

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1968v5 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018



Figure 8. Distribution of results of reproducibility studies, under varying conditions of distances
(i.e. number of differences in methodologies) d and their average impact λ. The top panel shows how
K declines, as the number of divergences increases, depending on different values of λ. Panels in the
second row show the probability distribution of the simulated distances (i.e. Poisson distributions,
with mean 1, 5 and 20, respectively). The nine panels below show the distribution of correlation
coefficients of reproducibility studies under each combination of number of distances and their
impact (the impact is colour coded as in the top panel. For further discussion see text.
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Figure 9. Distributions of correlation coefficients reported by the studies examined in the
Reproducibility Initiative in Psychology [33]. Blue: effect sizes originally reported. Red: results of
replications. Numbers report the kurtosis of each distribution.

the assumption of symmetrical and normally distributed errors that current statistical models of 1026

reproducibility make. This condition however, is a rather extreme case and by no means the most 1027

plausible. As the impact of distances increases in magnitude, the distribution tends to become 1028

left-skewed if distances are numerous or bimodal if few (bottom-right and bottom-left, respectively.). 1029

This suggests that the conditions typically postulated in analyses of reproducibility (i.e. a normal 1030

distribution around the “true” or the “average” effect in a population of studies) are only realized 1031

under the special condition in which between studies differences, errors or omissions in 1032

methodologies are numerous and of minor impact. However, when important divergences in 1033

explanandum or explanans occur (presumably in the form of major discrepancies in methods used, 1034

populations examined etc.), the distribution becomes increasingly asymmetrical and concentrated 1035

around null results, and may either be left-skewed or bimodal, depending on whether the number of 1036

elements subject to divergence is large or small. 1037

Data from the RIP supports these predictions. Before being replicated, studies had been 1038

classified by RIP authors based on the level of expertise required to replicate them. As figure 9 1039

illustrates, replication results of studies that were deemed to require moderate or higher expertise 1040

are highly concentrated around zero, with a small subset of studies exhibiting medium to large 1041

effects. This distribution is markedly different from that of studies that required null or minimal 1042

expertise, which was close to normal. Note how the distribution of original results reported by both 1043

categories of studies are, instead, undistinguishable in shape. Additional differences between 1044

distributions might be explained by a similar classification concerning the stability and/or distances 1045

of the explanandum or explanans (e.g. the contextual sensitivity suggested by [40]). 1046

Although preliminary, these results suggest that a significant cause of reproducibility “failures” in 1047

the RIP may have been high-impact divergences in the systems or methodologies employed by the 1048

replicating studies. These divergences may have occurred despite the fact that many authors of the 1049

original studies had contributed to the design of the replication attempts. A significant component 1050

of a scientists’ expertise consists in “tacit knowledge” [41], which are correct methodological choices 1051

that are not codified or described in textbooks and research articles, and that are unconsciously 1052

acquired by researchers through practice. Therefore, authors of the original studies might have given 1053

for granted, or unwittingly overlooked, important aspects of their own research design when 1054

instructing the RIP replicators. The latter, even if professionally prepared, might have lacked 1055
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Figure 10. Relation between |T |, the total number of hypotheses/assumptions entering a study
and the main multiplicative factor that determines the upper limit to Knull in equation 54.

sufficient expertise about the systems that are the object of the replication attempt, and may 1056

therefore have made “tacit” errors that neither they or the authors of the original studies were able 1057

to document. 1058

It may still be the case that p-hacking and selective publication had affected some of the studies 1059

examined by RIP. However, if research biases were the sole factor leading to low reproducibility, then 1060

the two distributions in figure 9 should look similar. The fact that studies requiring higher level of 1061

expertise are harder to reproduce ought, in retrospect, not to surprise us. It simply suggests the very 1062

intuitive idea that many scientific experiments cannot be successfully conducted by anyone who 1063

simply follows the recipe, but need to be conducted by individuals with high levels of expertise 1064

about the methodology and the phenomena being studied. This fact still raises important questions 1065

about the generalizability of published results and how to improve it, but such questions should be 1066

disentangled as much as possible from questions about the integrity and objectivity of researchers. 1067

3.5 What is the value of a null or negative result? 1068

Problem: How scientists should handle “null” and “negative” results is the subject of considerable 1069

ambiguity and debate. On the one hand, and contrary to what their names might suggest, “null” 1070

and “negative” results undoubtedly play an important role in scientific progress, because it is by 1071

cumulation of such results that hypotheses and theories are refuted, allowing progress to be made by 1072

“theory falsification”, rather than verification, as Karl Popper famously argued [42]. Null and 1073

negative results are especially important in contexts in which multiple independent results are 1074

aggregated to test a single hypothesis, as is done in meta-analysis [43]. 1075

On the other hand, as Popper himself had noticed, the falsifiability of a hypothesis is typically 1076

suboptimal, because multiple “auxiliary” assumptions (or, equivalently, auxiliary hypotheses) may 1077

not be controlled for. Moreover, it is intuitively clear that a scientific “discovery” that leads to 1078

useful knowledge is made when a pattern is identified, and not merely when a pattern is proved not 1079

to subsist. 1080

This is why, if on the one hand there are increasing efforts to counter the “file-drawer problem”, 1081

on the other hand there are legitimate concerns that these efforts might generate a “cluttered office” 1082

problem, in which valuable knowledge is drowned in a chaotic see of uninformative publications of 1083

null results [44]. The problem is that the value of null and negative results is context-specific. How 1084

can we estimate it? 1085

Answer: The knowledge value of a null or negative result is given by 1086

Knull ≤
h

H(Y )
log

|T |
|T | − 1

(54)

in which h = H(Y )/(H(T ) +H(Y ) +H(T )), Knull is the knowledge gained by the conclusive 1087

refutation of a hypothesis, and |T | is the size of the set of hypotheses being potentially tested 1088

(including those not being controlled for) in the study. All else equal, the maximum value of Knull 1089

declines rapidly as |T | increases (Figure 10). 1090

Explanation: Section 2.2.1 described knowledge as resulting from the selection of a τ ∈ T , 1091

where T is the a set of possible theories (methodologies) determining a pattern between 1092
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explanandum and input. These theories can, as usual, be described by a uniform random variable T . 1093

It can be shown that, because of the symmetry property of the mutual information function 1094

K(Y ;X,T ) = K(T ;Y,X) (55)

i.e. the information that the set of theories contains about the data is equivalent to the 1095

information that the data contains about the theories (see S7 text). 1096

This is indeed how knowledge is attained. A theory τ is selected amongst available alternatives 1097

because it best fits an input data Y nY , XnX , and ideally maximizes kadj − kobs (see section 2.3.2). 1098

The data is obtained by experiment (or experiences) and the process is what we call learning, as it is 1099

embodied in the logic of Bayes’ theorem, the MDL principle and generally the objective of any 1100

statistical inference method. Since no knowledge, including knowledge about a theory, can be 1101

obtained in the absence of a “background” conditioning theory and methodology, a more accurate 1102

representation of an experiment entails the specification of an unvarying component which we will 1103

indicate as m, which quantifies the aspects of the theory and methodology of an experiment that are 1104

not subject to uncertainty, and the component for which knowledge is sought, the random variable 1105

T , which therefore represents the hypothesis or hypotheses being tested by the experiment. The 1106

knowledge attained by the experiment is then given by 1107

K(T ;Y nY , XnX ,m) =
h

H(Y )
(H(T )−H(T |Y,X,m)) (56)

It follows that the experiment is maximally informative when H(T ) is as large as possible and 1108

H(T |Y,X,m) = 0, that is, when the possible theories examined are multiple and each possible 1109

theory is a one-to-one correspondence with each of possible state of data Y,X. 1110

Real-life experiments depart from this ideal condition in two ways. First, they usually retain 1111

uncertainty about the result, H(T |Y,X,m) > 0, because multiple alternative hypotheses are 1112

compatible with the same experimental outcome. Second, real experiments usually test no more 1113

than one hypothesis at a time. This entails that H(T |Y,X,m) rapidly approaches H(T ), as the size 1114

of the alphabet of T , increases (see S8 text). These limitations suggest that, assuming maximally 1115

informative conditions in which all tested hypotheses are equally likely and one hypothesis is 1116

conclusively ruled out by the experiment, we have 1117

H(T )−H(T |Y = y,X = x,m) = log |T | − log(|T | − 1), which gives equation 54. 1118

As intuition would suggest, even if perfectly conclusive, a null finding is intrinsically less valuable 1119

than its corresponding “positive” one. This occurs because a tested hypothesis is ruled out when the 1120

result is positive as well as when it is negative, and therefore the value quantified in equation 54 is 1121

obtained with positive as well as negative results, a condition that we can express formally as 1122

K(T ;Y,X,m, T = τ1) = K(T ;Y,X,m, T = τ0). Positive results, however, also yield knowledge 1123

about a pattern. Therefore, whereas a conclusive rejection of a non-null hypothesis yields at most 1124

K(T ;Y,X,m, T = τ0) = h
H(Y ) , a conclusive rejection of the null hypothesis in favour of the 1125

alternative yields K(T ;Y,X,m, T = τ1) +K(Y,X, τ1) > h
H(Y ) . Perfect symmetry between “negative” 1126

and “positive” results is only attained in the ideal conditions mentioned above, in which 1127

H(T |Y,X,m) = 0 and H(T ) = H(Y ), and therefore each experimental outcome identifies a theory 1128

with empirical value and at the same time refutes other theories. This is the scenario in which 1129

“perfect” Popperian falsificationism can operate, and real-life experiments depart from this ideal in 1130

proportion to the number log(|T | − 1) of auxiliary hypotheses that are not addressed by the 1131

experiment. 1132

The maximum attainable value of Knull given by equation 54 rapidly declines as the number 1133

untested hypotheses T increases (SI figure)xxxx. 1134

The departure from ideal conditions is especially problematic in biological and social studies that 1135

are testing a fixed “null” hypothesis against a non-specified alternative τ0 that predicts 1136

K(Y ;X, τ0) = 0 as opposed to a generic non-null τ1 for which K(Y ;X, τ1) > 0. First of all, due to 1137

noise and limited sample size, P (T = τ0|Y nY , XnX ,m) > 0. This problem can be substantially 1138

reduced by increasing statistical power but can never be fully eliminated, especially in fields in which 1139
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Figure 11. K analysis of the informativeness of data with regards to a hypothesis h, in absence
(top) or presence (bottom) of a second condition τ that modulates results of the test. Numbers
report all parameters calculated from the analysis. The R code to generate the data and figure is in
S9 text. See text for further details and discussion.

large sample sizes and high accuracy (resolution) are difficult or impossible to obtain. Moreover, and 1140

regardless of statistical power, a null hypothesis is inherently more likely to be compatible with 1141

multiple “auxiliary” hypotheses/assumptions, which real-life experiments may be unable to control. 1142

Example: A simulation 1143

To offer a practical example of the theoretical argument made above, Figure 11 reports a simulation. 1144

The value of K(T ;X,Y ), i.e. How much we know about a hypothesis given a data, was first 1145

calculated when a single hypothesis h1 is at stake, and all other conditions are fixed (Figure 11, top). 1146

Subsequently, the alphabet of T (the set of hypotheses in the experiment) was expanded to include a 1147

second condition, with two possible states τa or τb, the former of which produces a null finding 1148

regardless of h1. The state of this latter condition (hypothesis/assumption) is not determined in the 1149

experiment. The corresponding value of K(T ;X,Y ) is measurably lower, even if re-scaled to account 1150

for the greater complexity of the explanandum (i.e. the number of tested hypotheses, Figure 11, 1151

bottom). 1152

This is a simple illustration of how the value of negative results depends on the number of 1153

uncontrolled conditions and/or possible hypotheses. If field-specific methods to estimate the number 1154

of auxiliary hypotheses are developed, the field-specific and study-specific informativeness of a null 1155

result could be estimated and compared. 1156

The conclusions reached in this section, combined with the limitations of replication studies 1157

discussed in section 3.4, may yield new insights into debates over the problem of publication bias 1158

and how to solve it. This aspect is briefly discussed in the example below. 1159
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Example: Should we publish all negative results? 1160

Debates on whether publication bias is a bane or boon in disguise recur in the literature of the 1161

biological and social sciences. A vivid example was offered by two recent studies that used virtually 1162

identical methods and arguments but reached opposite conclusions concerning whether “publishing 1163

everything is more effective than selective publishing of statistically significant results” [45,46]. 1164

Who is right? Both perspectives may be right or wrong, depending on specific conditions of a 1165

field, i.e. of a research question and a methodology. An explicit but rarely discussed assumption 1166

made by most analyses of publication bias is that the primary studies subjected to bias are of 1167

“similar quality”. What this quality specifically consists in is never defined concretely. Nonetheless, it 1168

seems plausible to assume that quality, like any other property of studies, will be unequally 1169

distributed within a literature, and the level of heterogeneity will vary across fields. This 1170

field-specific heterogeneity, however, cannot be overlooked, because it determines the value of 1171

H(T |Y,X,m) and |T |, i.e. the falsifiability of the main hypothesis being tested. Therefore, to 1172

properly estimate the true prevalence and impact of publication bias, and determine cost-effective 1173

solutions, the falsifiability of hypotheses needs to be estimated on a case-by-case (i.e. field-specific or 1174

methodology-specific) basis. 1175

In general, the analysis above suggests that current concerns for publication bias and investments 1176

to counter it are most justified in fields in which methodologies are well codified and hypotheses to 1177

be tested are simple and clearly defined. This is likely to be the condition of most physical sciences, 1178

in which not coincidentally negative results appear to be valued as much or more than positive 1179

results [47,48]. It may also reflect the condition of research in clinical medicine, in which clearly 1180

identified hypotheses (treatments) are tested with relatively well-codified methods (randomized 1181

controlled trials). This would explain why concerns for publication bias have been widspread and 1182

most proactively addressed in clinical medicine [43]). However, the value of negative results is likely 1183

to be lower in other research fields, and therefore the cost-benefit ratio of interventions to counter 1184

publication bias need to be assessed on a case by case basis. 1185

Methods proposed in this article might help us determine relevant field-specific and study-specific 1186

conditions. In particular, the statistical relevance of a null result produced by a study with regards 1187

to a specified hypothesis is likely to be inversely related to the expected divergence of the study from 1188

a standard (or an ideal) methodology and explanandum λ · d (section 3.4). This effect is in turn 1189

modulated by the complexity and flexibility of a field’s methodological choices and magnitude of 1190

effect sizes, both quantifiable in terms of the K function proposed in this study. 1191

3.6 How much knowledge do we lose from questionable research 1192

practices? 1193

Problem: In addition to relatively well-defined forms of scientific misconduct, studies and policies 1194

about research integrity typically address a broader category of “Questionable Research Practices” 1195

(QRP). This is a class of rather loosely defined behaviours such as “dropping outliers based on a 1196

feeling that they were inaccurate”, “failing to publish results that contracted one’s previous findings” 1197

that, by definition, may or may not be improper, depending on the context [49]. 1198

Since QRP are likely to be more frequent than outright fraud, it has long been argued that their 1199

impact on the reliability of the literature may be very high - indeed, even higher than that of data 1200

fabrication or falsification (e.g. [50]). However, besides obvious difficulties in quantifying the relative 1201

frequency of proper versus improper QRP, there is little epistemological or methodological basis for 1202

grouping together an extremely heterogeneous set of practices and brand them as equally 1203

worrying [51]. Setting aside ethical breaches that do not affect the validity of data or results - which 1204

will not be considered here - it is obvious that our concerns for QRP ought to be proportional to the 1205

frequency of their improper use and to the effect that this has in distorting the literature. How can 1206

we quantify the impact of misconduct and QRP? 1207

Answer: The impact on knowledge of a Questionable Research Practice is given by a 1208

“bias-corrected” K value 1209
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Kcorr ≡ Ku −
hu
hb
B (57)

in which Ku = K(Y ;X, τ) is the ”unbiased” K, hu = nYH(Y )/(nYH(Y ) + nXH(X)− log p(τ)) 1210

and hb = nYH(Y )/(nYH(Y ) + nXH(X)− log p(τ)− nβ − log p(β)) are the the hardness terms for 1211

the study, without and with bias, respectively, and 1212

B =
D(Y |X, τ ||Y |X, τ, β)

nYH(Y ) + nXH(X)− log p(τ)
(58)

is the bias caused by the practice. 1213

Explanation: Equation 57 is derived by a similar logic to that of predictive success, discussed 1214

in section 2.3.2. If a research practice is deemed epistemologically improper, that is because it must 1215

introduce a bias in the result. This implies that the claim made using the biased practice β is 1216

different from the claim that is declared or intended: K(Y ;X, τ, β) 6= K(Y ;X, τ). Just as in the 1217

case of prediction costs, therefore, we can adjust the K value by subtracting from it the costs 1218

required to derive the claimed result from the observed one, costs that are here quantified by B (see 1219

equation 24). 1220

Differently from the latter case, however, in the presence of bias the methods employed are of 1221

different size. In particular, the biased research has required an additional methodology β, which 1222

should not be present in the unbiased research (and/or is not declared in the research article). 1223

Following our standard approach, we posit that β is an element of the alphabet of a uniform random 1224

variable B. Similarly to τ , − log p(β) may represent the description of a complex methodology 1225

and/or the set of of possible choices that are made in the QRP, and nβ will be the number of times 1226

these choices have to be made in the research. For example, a biased research design (that is, an 1227

ante-hoc bias) will have nβ = 1, and therefore a cost − log p(β) corresponding to the description 1228

length of the additional components to be to be added to τ . Conversely, if the bias is a post-hoc 1229

manipulation of some data or variables, then β may be as simple as a binary choice between 1230

dropping and retaining data (see example below), and nβ may be as high as nY or higher. The term 1231

hu
hb

quantifies the relative costs of the biased methodology. 1232

An important property of equation 57 is that the condition holds regardless of the direction of 1233

the bias. The term B is always non-negative, independent of how results are shifted. Therefore, a 1234

QRP that nullified an otherwise large effect (in other words, a bias against a positive result) would 1235

require a downwards correction just as one that magnified it. 1236

3.6.1 Example 1: Knowledge cost of data fabrication 1237

The act of fabricating an entire study, its dataset, methods, analysis and results, can be considered 1238

an extreme form of ante-hoc bias, in which the claim of an effect was generated by the methods. 1239

Let β represent the method that fabricated the entire study. Clearly, the effect observed without 1240

that method is zero, yielding 1241

Kcorr = −hu
hb
B ≤ 0 (59)

Hence, a fabricated study yields no positive knowledge and is likely to yield negative knowledge. 1242

This result suggests a solution to an interesting epistemological conundrum raised by the scenario in 1243

which a fabricated study reports a true fact: If independent, genuine studies confirm the made-up 1244

finding, then technically the fabricated study did no damage to knowledge. Shall we therefore 1245

conclude that data fabrication can help make progress? 1246

Equation 57 may shed new light on this conundrum. We can let K represent the genuine 1247

knowledge that a body of literature produces. The fabricated study’s Kcorr is then K − hu
hb
B ≤ 0, 1248

because B = K and hu > hb. The extra information costs of fabricating the entire study generate a 1249

net loss of information, even if the underlying claim is correct. 1250
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3.6.2 Example 2: Knowledge cost of arbitrarily dropping data points 1251

Let’s imagine a researcher who collected a sample of n data points, and made a claim 1252

K(Y n;Xn, τ) > 0 without explicitly declaring that during the analysis she had dropped a certain 1253

number nβ of data points which made her results look “better” - i.e. her K appear larger than it is. 1254

How egregious was this behaviour? 1255

From equation 57, we derive the minimum conditions under which a bias is tolerable (Kcorr > 0) 1256

as 1257

K(Y ;X, τ) >
hu
hb
B (60)

The choice to drop or not a data point is binary, and therefore − log p(β) = 1. In the best-case 1258

scenario, the researcher identified possible outliers based on a conventional threshold of 3σ, and was 1259

therefore confronted with the choice of dropping only 0.3% of her data points, i.e. nβ = 0.003n. This 1260

leads to hu/hb ≈ 1 and the simplified condition, K > B, in which the bias has to be smaller than 1261

the total effect reported. To obtain the full reported effect by dropping no more than 0.3% of data 1262

points requires either that the reported effect K is extremely small, and therefore unlikely to be 1263

substantively significant, or that the outliers were extremely deviant from the normal range of data. 1264

In the latter case, the outliers arguably ought to have been removed and, if naively retained in the 1265

data set, their presence and influence would not go unnoticed to the reader. Therefore, arbitrariness 1266

in dropping such outliers has a minor impact. 1267

In the worst-case scenario, however, the researcher has inspected each of the n data points and 1268

decided whether to drop them or not based on their values. In this case, nβ = n, and 1269

− log p(β) >> 1 because the bias consists in a highly complex procedure in which each value of the 1270

data is assessed for its impact on the results, and then retained or dropped accordingly. For the 1271

purposes of illustration, we’ll assume that β is as complex as the data set, in which case 1272

hu
hb

= 1 +
− log p(β)

H(Y ) +H(X)− log p(τ)
n

≈ 2 (61)

with the latter approximation derived from assuming that n is large. In this case, therefore the 1273

QRP would be tolerable only if K > 2B, i.e. the result obtained without the QRP is twice as large 1274

as that produced with the QRP. However, if the K inclusive of data was very large, then the 1275

researcher would have little improper reasons to drop data points, unless she was biased against 1276

producing a result (in which case K = B and therefore Kcorr < 0). Therefore, we conclude that 1277

under the most likely conditions in which it occurs, selecting data points indiscriminately would be 1278

an extremely damaging practice, leading to Kcorr < 0. 1279

The two examples above are a preliminary illustration of the logic by which QRPs could be 1280

assessed for their context-specific impact, and how they could also be distinguished and ranked 1281

according to the actual damage the might do to knowledge in different research field. 1282

3.7 What characterizes a pseudoscience? 1283

Problem: Philosophers have proposed a vast and articulated panorama of criteria to demarcate 1284

genuine scientific activity from metaphysics or pseudoscience (S8 text). However, none of these 1285

criteria is accepted as universally valid, and prominent contemporary philosophers of science tend to 1286

endorse a “multicriteria” approach, in which the sciences share a “family resemblance” to each other 1287

but no single universal trait is common to all of them (e.g. [52–54]). 1288

The multi-criterial solution to the demarcation problem is appealing but has limited theoretical 1289

and practical utility. In particular, it shifts the question from identifying a single property common 1290

to all the sciences to identifying many properties common to some. Proposed lists of criteria 1291

typically include normative principles or behavioural standards such as “rigorously assessing 1292

evidence”, “openness to criticism”, etc. These standards are unobjectionable but are hard to assess 1293

rigorously. Furthermore, since the minimum number of characteristics that a legitimate science 1294
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should possess is somewhat arbitrary, virtually any practice may be considered a “science” according 1295

to one scheme or another (e.g. intelligent design [55]). 1296

Is there a single distinctive characteristic of pseudosciences and, if so, how can we measure it? 1297

Answer: A pseudoscientific field is characterized by Kcorr < 0, because 1298

K <
hu
hb
B (62)

where the terms K,B, hu, hb are the cumulative equivalent of the terms in equation 57. 1299

Explanation: 1300

Activities such as palmistry, astrology, homeopathy, or psychoanalysis are characterized by 1301

having a defined methodology, which contains its own laws, rules and procedures, let’s call it ψ. This 1302

ψ is what makes these practices appear scientific, and and it is blieved by its practitioners to 1303

produce a K(Y ;X,ψ) > 0. However, such activities are deemed epistemically worthless (and in 1304

many case have been so for many centuries before the concept of science was formalized), because 1305

they typically manifest three conditions: 1) they (appear to) produce large amounts of explanatory 1306

knowledge but typically little predictive or causal knowledge; 2) any predictive success or causal 1307

power that their practitioners attribute to the explanans is more economically explained by 1308

well-understood and unrelated phenomena and methodologies; and/or 3) their theories and 1309

methodologies are independent from, and often incompatible with, those of well-established and 1310

successful theories and methodologies (see [54]). 1311

All three properties are contained and quantified in equation 57. 1312

• Condition 1 implies that a field’s observed, as opposed to predicted, K is zero, leading to the 1313

condition Kadj < 0 (section 2.3.2) and therefore also to Kcorr < 0 (section 3.6). 1314

• Condition 2 entails that, to any extent that a pseudoscientific methodology (appears to) 1315

successfully explain, influence or predict an outcome, the same effect can be obtained with a τ 1316

without the specific component ψ. Conscious and unconscious biases in study design (e.g. 1317

failure to account for the placebo effect) and post-hoc biases (e.g. second-guessing one’s 1318

interpretation) fall into this category of explainable effects. We could also interpret K as being 1319

the effect produced by standard methods τ , and B as the (identical) effect produced by the 1320

pseudoscience, which however has a methodology that is more complex than necessary (the 1321

sum −(log p(τ) + log p(ψ))), leading to hu
hb
> 1 in equation 62. 1322

• Condition 3, finally can be computed, at least in principle, as an extra methodological cost 1323

required by combining the pseudoscientific theory ψ with other standard theories τ . The sum 1324

−(log p(τ) + log p(ψ)) expresses the condition in which the two theories are united but not 1325

unified in a single, coherent theory. We can quantify the costs of a theoretical synthesis of the 1326

two in the form of a third theory, say υ, that provides a coherent account of the two. The 1327

relative length of υ will reflect the extent to which the two theories are incompatible and 1328

require additional explanations to be made to cohere. When two theories are entirely 1329

compatible with each other, indeed one is partially or entirely accounted for by the other, then 1330

− log p(υ) << − log p(τ)− log p(ψ). Conversely, to the extent that the two theories are not 1331

directly compatible, such that additional theory needs to be added and formulated to attain a 1332

coherent and unified account − log p(υ) >> − log p(τ)− log p(ψ), leading to hu
hb
>> 1 in 1333

equation 62. Formal methods to quantify theoretical discrepancies may be developed in future 1334

work. 1335

Example: How pseudoscientific is Astrology? 1336

Many studies have been conducted to test the predictions of Astrology, but their results were 1337

typically rejected by practising astrologers on various methodological grounds. A notable exception 1338

is represented by [56], a study that was designed and conducted with the collaboration and approval 1339

of the National Council for Geocosmic Research, a highly prominent organization of astrologers. 1340
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In the part of the experiment that was deemed most informative, practising astrologers were 1341

asked to match an astrological natal chart with one of three personality profiles produced using the 1342

California Personality Inventory. If the natal chart contains no useful information about an 1343

individual’s personality, the success rate is expected to be 33%, giving H(Y ) = 1.58. The astrologers 1344

predicted that their success rate would be at least 50%, suggesting H(Y |X,ψ) = 1.58/2 = 0.79. The 1345

astrologer’s explanans includes the production of a natal chart, which requires the input of the 1346

subject’s birth time (hh:mm), date (dd/mm/yyyy) and location (latitude and longitude, four digits 1347

each) for a total information of approximately 50 bits. The theory ψ includes the algorithm to 1348

compute the star and planet’s position, and the relation between these and the personality of the 1349

individual. The size of ψ could be estimated, but we will leave this task to future analyses. The 1350

alternative, scientific hypothesis according to which there is no effect to be observed, has hu = 1. 1351

Results of the experiment showed that the astrologers did not guess an individual’s personality 1352

above chance [56]. Therefore, K = 0 and equation 62 is certainly satisfied. The K value of astrology 1353

from this study is estimated to be 1354

K(Y ;X,ψ) = −hu
hb
B = −

1.58 + 50− log(ψ)
nψ
nY

1.58

1.58− 0.79

1.58
< −16.32 (63)

in which the inequality is due to the unspecified length of ψ.This analysis is still likely to 1355

over-estimate the K of astrology, because the experiment offered a conservative choice between only 1356

three alternatives, whereas astrology’s claimed explanandum is likely to be much larger, as it 1357

includes multiple personality dimensions (see section 3.3.3). 1358

3.8 What makes a science “soft”? 1359

Problem: There is extensive evidence that many aspects of scientific practices and literatures vary 1360

gradually and almost linearly if disciplines are arranged according to the complexity of their subject 1361

matters (i.e., broadly speaking, mathematics, physical, biological, social sciences, and 1362

humanities) [47,57–59]. This order reflects what people intuitively would consider an order of 1363

increasing scientific “softness”, yet this concept has no precise definition and the adjective “soft 1364

science” is mostly considered denigrative. This may be why the notion of a hierarchy of the sciences 1365

is nowadays disregarded in favour of a partial or complete epistemological pluralism (e.g. [53]). How 1366

do we define scientific softness? 1367

Answer: Given two fields studying systems YA, XA, τA and YB , XB , τB , field A is harder than 1368

B if 1369

kA
kB

>
hB
hA

(64)

in which kA, kB and hA, hB are representatively valid estimates of the fields’ bias-adjusted 1370

cumulative effects and hardness component, given by properties of their systems as well as the field’s 1371

average level of accuracy, reproducibility and bias. 1372

Explanation: Equation 64 is a re-arrangement of the condition 1373

K(YA;XA, τA) > K(YB ;XB , τB), i.e. the condition that field A is more negentropicly efficient than 1374

field B. As argued below, this condition reflects the intuitive concept of scientific hardness. 1375

The various criteria proposed to distinguish stereotypically “hard” sciences like physics from 1376

stereotypically “soft” ones like sociology cluster along two relevant dimensions: 1377

• Complexity: from the physical to the social sciences subject matters go from being simple and 1378

general to being complex and particular. This increase in complexity corresponds, intuitively, 1379

to an increase in the systems’ number of relevant variables and the intricacy of their 1380

interactions [60]. 1381

• Consensus: from the physical to the social sciences, there is a decline in the ability of scientists 1382

to reach agreement on the relevance of findings, on the correct methodologies to use, even on 1383
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the relevant research questions to ask, and therefore ultimately on the validity of any 1384

particular theory [61]. 1385

(see Table S8 text, and [59] for further references). 1386

Both concepts have a straightforward mathematical interpretation, which points to the same 1387

underlying characteristic: having a relatively complex explanans and therefore a low K. A system 1388

with many interacting variables is a system for which H(X) and/or H(Y |X, τ) are high. 1389

Consequently, progress is low (section 3.3). A system in which consensus is low is one in which the 1390

cumulative methodology τ̄ + d̄τ expands rapidly as the literature grows. Moreover, higher 1391

complexity and particularity of subject matter entails that a given knowledge is applicable to a 1392

limited number of phenomena, entailing smaller nY . Therefore, all the typical traits associated with 1393

a “soft” science lead to predict a lower value of K. 1394

Example: Mapping a Hierarchy of the Sciences 1395

The idea that the sciences can be ordered by a hierarchy, which reflects the growing complexity of 1396

subject matter and, in reverse order, the speed of scientific progress, can be traced back at least to 1397

the ideas of Auguste Comte (1798-1857). The K values estimated in previous sections for various 1398

disciplines approximately reflect the order expected based on equation 64, particularly if the 1399

re-scaled K values are compared instead, i.e. 1400

H(YA)kAhA > H(YB)kBhB (65)

Mathematics is a partial exception, in that its K value is likely to be in most cases higher than 1401

that of any empirical field, but its re-scaled K is not (at least, not if we quantify the explanandum 1402

as a binary question). Intriguingly, mathematics were considered an exception also in August 1403

Comte’s scheme, due to their non-empirical nature. Therefore, the K account of the hierarchy of the 1404

sciences appears to mirror Comte’s hierarchy. 1405

However, the hierarchy suggested by results in this essay is merely suggestive, because the 1406

examples we used are preliminary. In addition to making frequent simplifying assumptions, the 1407

estimates of K derived in this essay were usually based on individual cases (not on cumulative 1408

evidence coming from a body of literature) and have overlooked characteristics of a field that may be 1409

relevant to determine the hierarchy (e.g. the average reproducibility of a literature). Moreover, there 1410

may be yet unresolved problems of scaling that impede a direct comparison between widely different 1411

systems. Therefore, at present equation 65 can at best be used to rank fields that are relatively 1412

similar to each other, whereas methods to compare widely different systems may require further 1413

methodological developments of K theory. 1414

If produced, a K-based hierarchy of the sciences would considerably extend Comte’s vision in at 1415

least two respects. Firstly, it would rank not quite ”the sciences” but rather scientific ”fields”, i.e. 1416

literatures and/or research communities identified by a common explanandum and/or explanans. 1417

Although the average K values of research fields in the physical, biological and social sciences are 1418

predicted to reflect Comte’s hierarchy, the variance within each science is likely to be great. It is 1419

entirely possible that some fields within the physical sciences may turn out to have lower K values 1420

(and therefore to be ”softer”) than some fields in the biological and social sciences, and vice-versa. 1421

Secondly, as illustrated in section 3.7, a K-based hierarchy would encompass not just sciences but 1422

also pseudosciences. Whereas the former extend in the positive range of K values, the latter extend 1423

in the negative direction. The more negative the value, the more pseudoscientific the field. 1424

4 Discussion 1425

This article proposed that K, a quantity derived from a simple function, is a general quantifier of 1426

knowledge that could find useful applications in meta-research and beyond. It was shown that, in 1427

addition to providing a universal measure of effect size, K theory yields concise and memorable 1428
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equations that answer meta-scientific questions and may help understand and forecast phenomena of 1429

great interest, including reproducibility, bias and misconduct, and scientific progress (see Table 1). 1430

This section will first discuss how K theory may solve limitations of current meta-science (sections 1431

4.0.1 and 4.0.2) then address the most likely sources of criticisms (4.0.3, and finally it will suggest 1432

how the theory can be tested (section 4.0.4). 1433

Table 1. Summary of results

Question Formula Interpretation
How much knowl-
edge is contained
in a theoretical sys-
tem?

K = h Logico-deductive knowledge is a lossless
compression of noise-free systems. Its
value is inversely related to its complex-
ity and directly related to the extent of
its domain of application.

How much knowl-
edge is contained
in an empirical sys-
tem?

K = k × h Empirical knowledge is lossy com-
pression. It is encoded in a the-
ory/methodology whose predictions
have a non-zero error. It follows that
Kempirical < Ktheoretical

How much progress
is a field making?

m∆X + ∆τ < nY ∆k
K Progress occurs to the extent that ex-

planandum and/or explanatory power
expand more than the explanans. This
is the essence of consilience.

How reproducible is
a research finding?

Kr = KA−λλλ·ddd The difference between the K of a study
and its replication Kr is an exponential
function of the distance between their
systems and/or methodologies.

What is the value of
a null or negative re-
sult?

Knull ≤ h
H(Y ) log |T |

|T |−1 The knowledge yielded by a single con-
clusive negative result is an exponen-
tially declining function of the total num-
ber of hypotheses (theories, methods, ex-
planations or outcomes) |T | that remain
untested.

What is the cost
of research fabri-
cation, falsification,
bias and QRP?

Kcorr = K − hu
hb
B The K corrected for a questioned

methodology is inversely proportional
to the methodology’s relative descrip-
tion length times the bias it generates
(B).

What makes a sci-
ence “soft”?

kH
kS

> hS
hH

Compared to a harder science (H), a
softer science (S) yields relatively lower
knowledge at the cost of relatively more
complex theories and methods.

When is a field a
pseudo-science?

K < hu
hb
B A pseudoscience results from a hyper-

biased theory/methodology that pro-
duces net negative knowledge. Con-
versely, a science has K > B hu

hb
.

4.0.1 Limitations of current meta-science 1434

The growing success and importance of meta-research have made the need for a meta-theory ever 1435

more salient and pressing. Growing resources are invested, for example, in ensuring 1436

reproducibility [1], but there is little agreement on how reproducibility ought to be predicted, 1437
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measured and understood in different fields (see [32,62]). Graduate students are trained in courses 1438

to avoid scientific misconduct and questionable research practices, and yet the definition, prevalence 1439

and impact of questionable behaviours across science are far from well established [51]. Increasing 1440

efforts are devoted to measuring and countering well-documented problems such as publication bias, 1441

even though inconclusive empirical evidence [43] and past failures of similar initiatives (e.g. the 1442

withering and closure of most journals of negative results [63]) suggest that the causes of these 1443

problems are incompletely understood. 1444

At present, meta-scientific questions are addressed using theoretical models derived from very 1445

specific fields. As a consequence, their results are not easily extrapolated to other contexts. The 1446

most prominent example is offered by the famous claim that most published research findings are 1447

false [64]. This land-mark analysis has deservedly inspired meta-studies in all disciplines. However, 1448

its predictions are based on an extrapolation of statistical techniques used in genetic epidemiology 1449

that have several limiting assumptions. These assumptions include: that all findings are generated 1450

by stable underlying phenomena, independently of one another, with no information on their 1451

individual plausibility or posterior odds, and with low prior odds of any one effect being true. These 1452

assumptions are unlikely to be fully met even within genetic studies [65], and the extent to which 1453

they apply to any given research field remains to be determined. 1454

Similar limiting assumptions are increasingly noted in the application of meta-research 1455

methodologies. Reproducibility and bias, for example, are measured using meta-analytical techniques 1456

that treat sources of variation between studies as either fixed or random [13,66]. This assumption 1457

may be valid when aggregating results of randomized control trials [67], but may be inadequate 1458

when comparing results of fields that use varying and evolving methods (e.g. ecology [68]) and that 1459

study complex systems subject to non-random variation (e.g. reaction norms [69]). 1460

Statistical models can be used to explore the effects of different theoretical assumptions 1461

(e.g. [70–73]) as well as other conditions that are believed to conduce to bias and irreproducibility 1462

(e.g. [74, 75]). However, the plural of ”model” is not ”theory”. A genuine “theory of meta-science” 1463

ought to offer a general framework that, from maximally simple and universal assumptions, helps to 1464

explain how and why scientific knowledge is shaped by local conditions. 1465

4.0.2 K theory as a meta-theory of science 1466

Why does K theory offer the needed framework? First and foremost, this theory provides a 1467

quantitative language to discuss meta-scientific concepts in terms that are general and abstract and 1468

yet specific enough to avoid confusing over-simplifications. For example, the concept of bias is often 1469

operationalized in meta-research as an excess of statistically significant findings [64] or as an 1470

exaggeration of findings due to QRPs [76]. Depending on the meta-research question, however, these 1471

definitions may be too narrow, because they exclude biases against positive findings and only apply 1472

to studies that use null-hypothesis significance testing, or they may be too generic, because they 1473

aggregate research practices that differ in relevant ways from each other. Similar difficulties in how 1474

reproducibility, negative results and other concepts are used have emerged in the literature and have 1475

been discussed in the Results section. As illustrated by the examples offered, K theory avoids these 1476

limitations by proposing concepts and measures that are at once extremely abstract and flexibly 1477

adapted to reflect field-specific contexts. 1478

Beyond the conceptual level, K theory contextualizes meta-research results at an appropriate 1479

level of generalization. Current meta-research models and empirical studies face a conundrum: they 1480

usually aim to draw general conclusions about phenomena that may occur anywhere in science, but 1481

these phenomena find contextual expression in fields that vary widely in characteristics of subject 1482

matter, theory, methodology and other aspects. As a result, meta-research studies are forced to 1483

chose between under-generalizing their conclusions by restricting them to the specific field or 1484

literature they assessed, and over-generalizing them to an entire field, discipline or science. One of 1485

the unfortunate side effects of over-generalizing results has been the development of a “science in 1486

crisis” narrative, which has no empirical or pragmatic justification [62]. Excessive under-and 1487

over-generalizations may be avoided by systematizing meta-research results with K theory, which 1488
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offers a mid-level understanding of meta-scientific phenomena that is independent of subject matter 1489

and yet measurable in context. 1490

An example of the mid-level generalizations permitted by K theory is the hierarchy of sciences 1491

and pseudosciences proposed in section 3.8. A classification based on this approach, for example, 1492

could lead us to abandon traditional disciplinary categories (e.g. “physics” or “social psychology”) in 1493

favour of epistemologically relevant categories such as “high-h” fields, or “low-lambda” systems. 1494

Other classifications and theories about science may be derived from K theory. An alternative to 1495

the rather ill-defined “hard-soft” dimension, for example, could be a continuum between two 1496

strategies. At one end of the spectrum, is what we might call a “τ -strategy”, which invests more 1497

resources in identifying and encoding rigid laws that allow long-term predictions. At the other end, 1498

is a “X-strategy”, which invests greater resources in acquiring large amounts of contingent, 1499

descriptive information, which enables accurate explanations and short-term predictions. Depending 1500

on characteristics of the explananda and the amount of resources available for the storage and 1501

processing of information, each scientific field expresses an optimal balance between τ -strategy and 1502

X-strategy. 1503

4.0.3 Foreseeable criticisms and limitations 1504

At least five criticisms of this essay may be expected. The first is a philosophical concern with the 1505

notion of knowledge, which in this article is defined as information compression by pattern encoding. 1506

Critics might argue that this definition does not correspond to the epistemological notion of 1507

knowledge as “true, justified belief” [77]. Even Fred Dretske, whose work extensively explored the 1508

connection between knowledge and information [10], maintained that “false information” was not 1509

genuine information and that knowledge required the latter [78]. The notion of knowledge proposed 1510

in this text, however, is only apparently unorthodox. In the K formalism, a true justified belief 1511

corresponds to a system for which K > 0. It can be shown that a “false, unjustified” belief is one in 1512

which K ≤ 0. Therefore, far from contradicting information-theoretic epistemologies, K theory may 1513

give quantitative answer to open epistemological questions such as “how much information is 1514

enough”? [78]. 1515

The second criticism may be that the ideas proposed in this essay are too simple and general not 1516

to have been proposed before. The claim made by this essay, however, is not that every concept in it 1517

is new. Rather to the contrary, the claim is that K theory unifies and synthesizes innumerable 1518

previous approaches to combining knowledge and information theory, and it does so in a formulation 1519

that, to the best of the author’s knowledge, is entirely new and original. Earlier ideas that have 1520

inspired the K function are found, for example, in Brillouin’s book ”Science and information 1521

theory”, which discussed the information value of experiments and calculated the information 1522

content of a physical law [5]. Brillouin’s analysis, however, did not include factors that are key to the 1523

K function, including the standardization on logarithm space, the decline rate of knowledge, the 1524

number of nY of potential applications of knowledge, and the inclusion of the information costs of 1525

the theory τ . The description length of theories (at least, statistical models) is a key component of 1526

the Minimum Description Length principle, which was first proposed by Rhissanen [7] and is finding 1527

growing applications in problems of statistical inference and computation (e.g. [6, 8]). The methods 1528

developed by MDL proponents and by algorithmic information theory are entirely compatible with 1529

the K function (and could be used to quantify τ), but differ from it in important theoretical and 1530

mathematical aspects (see section 2.2.2). Within philosophy, Paul Thaggard’s “computational 1531

philosophy of science” [11] offers numerous insights into the nature of scientific theories and 1532

methodologies. Thaggard’s ideas may be relevant to K theory because, amongst other things, they 1533

illustrate what a τ encoding a scientific theory might actually contain. However, Thaggard’s theory 1534

differs from K theory in substantive conceptual and mathematical aspects, and it does not offer a 1535

general quantifier of knowledge nor does it produce a meta-scientific methodology. 1536

The third criticism might be methodological, because entropy is a difficult quantity to measure. 1537

Estimates of entropy based on empirical frequencies can be biased when samples sizes are small, and 1538

they can be computationally demanding when data is large and multidimensional. Neither of these 1539
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limitations, however, is critical. With regards to the former problem, as demonstrated in section 1540

2.3.6, powerful computational methods to estimate entropy with limited sample size are already 1541

available [18]. With regards to the latter problem, we may note that the “multidimensional” Kmd 1542

used in section 3.3 is the most complex measure proposed and yet it is not computationally 1543

demanding, because it is derived from computing uni-dimensional entropies. The ”cumulative” Kcum 1544

may also be computationally demanding, as it requires estimating the entropy of mixed distributions. 1545

However, analytical approaches to estimate the entropy of mixed distributions and other complex 1546

data structures are already available and are likely to be developed further (e.g. [79, 80]). 1547

The fourth criticism may regard the empirical validity of the measures proposed. As it was 1548

emphasized throught the text, all the practical examples offered were merely illustrative and 1549

preliminary, because they generally relied on incomplete data and simplifying assumptions. In 1550

particular, it appears to be difficult to quantify exactly the information content of τ , particularly for 1551

what concerns the description of a methodology. This limitation, however, is often avoidable. In 1552

most contexts of interests, it will suffice to estimate τ with some approximation and/or in relative 1553

terms. It may be a common objective in K theory, for example, to estimate the divergence between 1554

two methodologies. Even if complete information about a methodology in unavailable (if anything, 1555

because it is likely to include ”tacit” components that are hidden by definition) relative differences 1556

documented in the methods’ description are simple to verify and therefore to quantify by K 1557

methods. These relative quantifications could become remarkably accurate and extend across 1558

research fields, if they were based on a reliable taxonomy of methods that provided a fixed 1559

“alphabet” T of methodological choices characterizing a study. Taxonomies for research methods are 1560

already being developed in many fields to improve reporting standards (e.g. [81]), and could be 1561

extended by meta-scientists for meta-research purposes. 1562

The fifth criticism that may be moved to K theory is that it is naively reductionist, because it 1563

appears to overlook the preponderance of historical, economic, sociological and psychological 1564

conditions in shaping scientific practices. Quite to the contrary, K theory is not proposed as an 1565

alternative to historical and social analyses of science, but as a useful complement to them, which is 1566

necessary to fully understand the history and sociology of a research field. A parallel may be drawn 1567

with evolutionary biology: to explain why a particular species evolved a certain phenotype or to 1568

forecast its risk of extinction, we need to combine contingent facts about the species’ natural history 1569

with general theories about fitness dynamics; similarly, to better understand and forecast the 1570

trajectory taken by a field we need to combine contingent and historical information with general 1571

principles about knowledge dynamics. 1572

4.0.4 Testable predictions, and conclusions 1573

We can summarize the overall prediction of K theory in a generalized rule: An activity will exhibit 1574

the epistemological, historical, sociological and psychological properties associated with a science if 1575

and to the extent that: 1576

k >
h

hb
B (66)

in which k is the activity’s explanatory power, h is its ”hardness” and hb and B are the costs and 1577

impacts of ”biases”, i.e. distorting influences internal or external to the system. In the absence of 1578

the latter the rule simplifies to 1579

K > 0 (67)

. 1580

This overall prediction finds specific expression in the relations reported in Table 1, each of which 1581

leads to predict observable phenomena in the history and sociology of science. These predictions 1582

include: 1583
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• Scientific theories and fields fail or thrive in proportion to the their rate of consilience, 1584

measured at all levels - from the micro (Kcum) to the macro (Kmd, and see inequality 42). For 1585

example, we predict that discredited theories, such as that of phlogiston or phrenology, were 1586

characterized by a K that was steadily declining and were abandoned when K ≤ 0. Conversely, 1587

fields and theories that grow in size and importance are predicted to exhibit a positive growth 1588

rate of K. When the rate of growth of K slows down and/or when it reaches a plateau, it is 1589

”re-set” to zero by the splitting in sub-fields and/or the expansion to new explananda or 1590

explanantia. 1591

• The expected reproducibility of results is < 100% for all empirical fields, and is inversely 1592

related to the average informational divergence between the systems constituting those fields. 1593

In some instances, the ”divergence” of methods might reflect the differential presence of bias. 1594

However, the prediction is independent of the presence of bias. 1595

• The value of null and contradictory findings is smaller or equal to that of ”positive” findings, 1596

and is directly related to the level of a field’s theoretical and methodological codification (|T |) 1597

and explanatory power (k). This value may be reflected, for example, in the rate of citation 1598

and the rate of publication of null results, and in the space they occupy within an article. 1599

• The prevalence of questionable, problematic and openly egregious research practices is 1600

inversely related to their knowledge cost. Therefore, their prevalence will vary depending on 1601

details of the practice (e.g. how it is defined) as well as the level of codification and 1602

explanatory power of the field. 1603

• The relative prestige and influence of a field is directly related to its K (scaled and/or not 1604

scaled). All else being equal, activities that can account for greater explananda with smaller 1605

explanantia are granted a higher status, reflected in symbolic and/or material investments (e.g. 1606

societal recognition and/or public research funds). 1607

• The relative popularity and influence of a pseudoscience is inversely related to its K. An 1608

activity that (pretends) to yield knowledge will acquire relatively more prestige to the extent 1609

that it promises to explain a wider range of phenomena, using methods that appear to be 1610

highly codified and very complex. 1611

The testability of these predictions is limited by the need to keep ”all else equal”. As discussed 1612

above, there is no denying that contingent and idiosyncratic factors shape the observable phenomena 1613

of science to a significant, possibly preponderant extent. Indeed, as data starts cumulating, we will 1614

eventually be able to apply K theory to itself, and it may turn out that the empirical K value of K 1615

theory is relatively small and that, to any extent that external confounding effects are not accounted 1616

for, the |T | of K theory will be large leading to low falsifiability. 1617

However, the predictions and implications of the theory extend beyond the cases examined in this 1618

essay, and this expands the theory’s testability. Within the context of meta-science, more 1619

contextualized analyses about a field or a theory will lead to more specific and localized predictions. 1620

These localized predictions will be more accurately testable, because most irrelevant factors will be 1621

kept constant. Furthermore, the theory makes predictions that concern knowledge phenomena 1622

beyond science. 1623

The focus of this article has been quantitative scientific research, which was the subject matter 1624

that inspired the theory and which represents the manifestation of knowledge that is easier to 1625

conceptualize and quantify. However, the theory and methods proposed in this essay could be 1626

adapted to measure qualitative research and other forms of knowledge. Indeed, with further 1627

development, the K function could be used to quantify any expression of cognition and learning, 1628

including humour, art, biological evolution or artificial intelligence (see S1 text), generating new 1629

explanations and predictions that may be explored in future analyses. 1630
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5 Supporting information 1631

S1 text Postulate 1: Information is finite 1632

The first postulate appears to reflect a simple but easily overlooked fact of nature. The 1633

universe—at least, the portion of it that we can see and have causal connection to—contains finite 1634

amounts of matter and energy, and therefore cannot contain infinite amounts of information. If each 1635

quantum state represents a bit, and each transition between (orthogonal) states represents an 1636

operation, then the universe has performed circa 10120 operations on 1090 bits since the Big 1637

Bang [82]. 1638

Advances in quantum information theory suggests that our universe may have access to 1639

unlimited amounts of information, or at least of information processing capabilities [83] (but see [84] 1640

for a critique). However, even if this were the case, there would still be little doubt that information 1641

is finite as it pertains to knowledge attainable by organisms. Sensory organs, brains, genomes and all 1642

other pattern-encoding structures that underlie learning are finite. The sense of vision is constructed 1643

from a limited number of cone and rod cells; the sense of hearing uses information from a limited 1644

number of hair cells, each of which responds to a narrow band of acoustic frequencies; brains contain 1645

a limited number of connections; genomes a countable number of bases, etc. The finitude of all 1646

biological structures is one of the considerations that has led cognitive scientists and biologists to 1647

assume information is finite when attempting, for example, to model the evolution of animal 1648

cognitive abilities [85]. Even mathematicians have been looking with suspicion to the notion of 1649

infinity for a long time [86]. For example, it has been repeatedly and independently shown that, if 1650

rational numbers were actually infinite, then infinite information could be stored in them and this 1651

would lead to insurmountable contradictions [87]. 1652

Independent of physical, biological, and mathematical considerations, the postulate that 1653

information is finite is justifiable on instrumentalist grounds, because it is the most realistic 1654

assumption to make when analyzing scientific knowledge. Quantitative empirical knowledge is based 1655

on measurements, which are technically defined as partitionings of attributes in sets of mutually 1656

exclusive categories [88]. In principle this partitioning could recur an infinite number of times, but in 1657

practice it never does. Measurement scales used by researchers to measure empirical phenomena 1658

might be idealized as extending to infinity, but in practice they always consist in a range of plausible 1659

values that is delimited at one or both ends. Values beyond these ends can be imagined as 1660

constituting a single set of extreme values that may occur with very small but finite probability. 1661

Therefore, following either theoretical or instrumentalist arguments, we are compelled to 1662

postulate that information, i.e. the source of knowledge, is a finite quantity. Its fundamental unit of 1663

measurement is discrete and is called the bit, i.e. the “difference that makes a difference”, according 1664

to Gregory Bateson’s famous definition [89]. For this difference to make any difference it must be 1665

perceivable. Hence, information presupposes the capacity to dichotomize signals into “same” and 1666

“not same”. This dichotomization can occur recursively and we can picture the process by which 1667

information is generated as a progressive subdivision (quantization) of a unidimensional attribute. 1668

This quantization operates “from the inside out”, so to speak, and by necessity always leaves two 1669

“open ends” of finite probability. 1670

Postulate 2: Knowledge is information compression 1671

The second postulate claims that the essence of any manifestation of what we call “knowledge” 1672

consists in the encoding of a pattern, which reduces the amount of information required to navigate 1673

the world successfully. By “pattern” we intend here simply a dependency between attributes—in 1674

other words a relationship that makes one event more or less likely, from the point of view of an 1675

organism, depending on another event. By encoding patterns, an organism reduces the uncertainty it 1676

confronts about its environment—in other words, it adapts. Therefore, postulate 2, just like 1677

postulate 1, is likely to reflect an elementary fact of nature; a fact that arguably underlies not just 1678

human knowledge but all manifestations of life. 1679

The idea that knowledge, or at least scientific knowledge, is information compression is far from 1680

new. For example, in the late 1800s, physicist and philosopher Ernst Mach argued that the value of 1681

physical laws lay in the “economy of thought” that they permitted [3]. Other prominent scientists 1682
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and philosophers of the time, such as mathematician Henri Poincaré, expressed similar ideas [90]. 1683

Following the development of information theory, scientific knowledge and other cognitive activities 1684

have been examined in quantitative terms ( e.g. [5], [91]). Nonetheless, the equivalence between 1685

scientific knowledge and information compression has been presented as a principle of secondary 1686

importance by later philosophers (includig for example Popper [42]), and today does not appear to 1687

occupy the foundational role that it arguably deserves [92]. 1688

The reluctance to equate science with information compression might be partially explained by 1689

two common misconceptions. The first one is an apparent conflation of lossless compression, which 1690

allows data to be reconstructed exactly, with lossy compression, in which instead information from 1691

the original source is partially lost. Some proponents of the compression hypothesis adopt 1692

exclusively a lossless compression model, and therefore debate whether empirical data are truly 1693

compressible in this sense (e.g. [93]). However, science is clearly a lossy form of compression: the 1694

laws and relations that scientists discover typically include error terms and tolerate large portions of 1695

unexplained variance. 1696

The second, and most important, source of scepticism seems to lie in an insufficient appreciation 1697

for the fundamental role that information compression plays not only in science, but also knowledge 1698

and all other manifestations of biological adaptation. Even scientists who equate information 1699

compression with learning appear to under-estimate the fundamental role that pattern-encoding and 1700

information compression play in all manifestations of life. In their seminal introductory text to 1701

Kolmogorov complexity [6], for example, Li and Vitanyi unhesitatingly claim that “science may be 1702

regarded as the art of data compression” (pp. 713), that “learning, in general, appears to involve 1703

compression of observed data or the results of experiments”, and that “in everyday life, we 1704

continuously compress information that is presented to us by the environment”, but then appear 1705

cautious and conservative in extending this principle to non-human species, by merely suggesting 1706

that “perhaps animals do this as well”, and citing results of studies on tactile information 1707

transmission in ants ( [6] pp. 711). Is seems that even the most prominent experts and proponents 1708

of information compression methodologies can be disinclined to apply their favoured principle 1709

beyond the realm of human cognition and animal behaviour. 1710

Information compression by pattern encoding is the quintessence of biological adaptation, in all 1711

of its manifestations. Changes in a population’s genetic frequencies in response to environmental 1712

pressures can be seen as a form of adaptive learning, in which natural selection reinforces a certain 1713

phenotypic response to a certain environment and weakens other responses, thereby allowing a 1714

population’s genetic codes to “remember” fruitful responses and “forget” erroneous (i.e. 1715

non-adaptive) ones. For these reinforcement processes to occur at all, environmental conditions must 1716

be heterogeneous and yet partially predictable. Natural selection, in other words, allows regularities 1717

in the environment to be genetically encoded. This process gives rise to biodiversity that may mirror 1718

environmental heterogeneity at multiple levels (populations, varieties, species, etc.). Such 1719

environmental heterogeneity is not exclusively spatial (geographical). Temporal heterogeneity in 1720

environmental conditions gives rise to various forms of phenotypic plasticity, in which identical 1721

genomes express different phenotypes depending on cues and signals received from the 1722

environment [94]. Whether genetic or phenotypic, adaptation will be measurable as a correlation 1723

between possible environmental conditions and alternative genotypes or phenotypes. This correlation 1724

is in itself a measurable pattern. 1725

As environments are increasingly shaped by biological processes, they become more complex and 1726

heterogeneous, and they therefore select for ever more efficient adaptive capabilities—ever more 1727

rapid and accurate ways to detect and process environmental cues and signals. Immune systems, for 1728

example, allow large multicellular plants and animals to protect themselves from infective agents and 1729

other biological threats whose rate of change far out-competes their own speed of genetic adaptation; 1730

endocrine systems allow the various parts of an organism to communicate or coordinate their internal 1731

activities in order to respond more rapidly to changes in external conditions. Similar selective 1732

pressures have favoured organisms with nervous systems of increasing size and complexity. Animal 1733

behaviour and cognition, in other words, are simply higher-order manifestations of phenotypic 1734
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plasticity, which allow an organism to respond to environmental challenges on shorter temporal 1735

scales. Behavioural responses may be hard-wired in a genome or acquired during an organism’s life 1736

time, but in either case they entail “learning” in the more conventional sense of encoding, processing, 1737

and storing memories of patterns and regularities abstracted from environmental cues and signals. 1738

Human cognition, therefore, may be best understood as just another manifestation of biological 1739

adaptation by pattern encoding. At the core of human cognition, as with all other forms of 1740

biological adaptation, lies the ability to anticipate events and thus minimize error. When we say 1741

that we “know” something, we are claiming that we have fewer uncertainties about it because, given 1742

an input, we can predict above chance what will come next. We “know a city”, for example, in 1743

proportion to how well we are able to find our way around it, by going purposely from one street to 1744

the next and/or navigating it by means of a simplified representation of it (i.e. a mental map). This 1745

ability embodies the kind of information we may communicate to a stranger when asked for 1746

directions: if we “know the place”, we can provide them with a series of “if-then” statements about 1747

what direction to take once identifiable points are reached. In another example, we “know a song” in 1748

proportion to how accurately we can reproduce the sequence of words and intonations that recreate 1749

it with no error or hesitation or how readily we can recognize it when we hear a few notes from it. 1750

Similarly, we “know a person” in proportion to how many patterns about them we have encoded: at 1751

first, we might only be able to recognize their facial features; after making superficial acquaintance 1752

with them, we will be able to connect these features to their name; when we know them better, we 1753

can tell how they will respond to simple questions such as “where are you from?”; eventually we 1754

might “know them well” enough to predict their behaviour rather accurately and foretell, for 1755

example, the conditions that will make them feel happy, interested, angry, etc. 1756

The examples above aim to illustrate how the concept of “prediction” underlies all forms of 1757

knowledge, not just scientific knowledge, and applies to both time (e.g., knowing a song) and space 1758

(e.g., knowing a city). Memory and recognition, too, can be qualified as forms of prediction and 1759

therefore as manifestations of information compression, whereby sequences of sensory impressions 1760

are encoded and recalled (memory) or matched to new experiences (recognition) in response to 1761

perception of endogenous or exogenous signals. Language is also a pattern encoding, information 1762

compression tool. A typical sentence, i.e. the fundamental structure of human language and thought, 1763

expresses the connection between one entity, the subject, and another entity or property, via a 1764

relation condition encoded in a verb. It is not a coincidence that the most elementary verb of 1765

all—one that is fundamental to all human languages—is the verb “to be.” This verb conveys a direct 1766

relation between two entities, and thus represents the simplest pattern that can be encoded: “same” 1767

versus “not same”, as discussed in relation to Postulate 1. Even a seemingly abstract processes like 1768

logical deduction and inference can be understood as resulting form pattern-encoding. According to 1769

some analyses, computing itself, and all other manifestations of artificial and biological intelligence, 1770

may result from a simple process of pattern matching [95]. 1771

Scientific knowledge, therefore, is most naturally characterized as just one manifestation of 1772

human cognition amongst many and, therefore, as nothing more than a pattern-encoding activity 1773

that reduces uncertainty about one phenomenon by relating it to information about other 1774

phenomena. The knowledge produced by all fields of scientific research is structured in this way. 1775

• Mathematical theorems uncover logical connections between two seemingly unrelated 1776

theoretical constructs, generally proving that the two are one and the same. 1777

• Research in the physical sciences typically aims at uncovering mathematical laws, which are 1778

rather explicitly encoding patterns (i.e. relationships between quantities). Even when purely 1779

descriptive, however, physical research actually consists in the encoding of pattern and 1780

relations between phenomena—for example, measuring the atomic weight of a known substance 1781

might appear to be a purely descriptive activity, but the substance itself is identified by its 1782

reactive properties. Therefore, such research is about drawing connections between properties. 1783

• Most biological and biomedical research consists in identifying correlations or causes and/or in 1784

describing properties of natural phenomena, all of which are pattern-encoding activities. 1785
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Research in taxonomy and systematics might appear to be an exception, but it is not: 1786

organizing the traits of a multitude of species into a succinct taxonomical tree is the most 1787

elementary form of data compression. 1788

• Quantitative social and behavioural sciences operate in a similar fashion to the biological 1789

sciences. Even qualitative, ethnographic, purely descriptive social and historical research 1790

consists in data compression, because it presupposes that there are general facts about human 1791

experiences, individuals, or groups that can be communicated, entailing that they can be 1792

described, connected to each other and/or summarized in a finite amount of text. 1793

• The humanities aim to give understanding about complex and often unique human experiences, 1794

and might therefore appear to have fundamentally different objectives from the natural and 1795

social sciences. To any extent that they offer knowledge and understanding, however, these 1796

come in the form of information compression. Research in History, for example, is guided by 1797

the recostruction and succinct description of events, which is based on logic, inference and 1798

drawing connections to other events, and therefore it follows the principles of economy of 1799

thought and compression. The study of works of literature, to make another example, produce 1800

knowledge by drawing connections and similarities between texts, identifying general schemata, 1801

and/or uncovering new meaning in texts by recurring to similes and metaphors [96]. 1802

Similarities, connections, schemata, similes, and metaphors arguably constitute the basis of 1803

human cognition [96] and are all manifestations of information compression by 1804

pattern-encoding. 1805

Other non-academic manifestations of human cognition, creativity and communication can be 1806

understood as stemming from a process of information compression, too. The sensual and 1807

intellectual pleasure that humans gain from music and art, for example, seems to derive from an 1808

optimal balance between perception of structure (pattern that generates predictions and 1809

expectations) and perception of novelty (which stimulates interest by presenting new and knowable 1810

information) [97]. The sense of humour similarly seems to arise from the sudden and unexpected 1811

overturning of the predicted pattern, which occurs when an initially plausible explanation of a 1812

condition is suddenly replaced by an alternative, unusual, and yet equally valid one [98]. The 1813

intellectual and artistic value of a work of art lies in its ability to reveal previously unnoticed 1814

connections between events or phenomena in the world (thereby revealing a pattern) and/or in its 1815

capacity to synthesize and communicate effectively what are otherwise highly individual, complex, 1816

and ineffable human experiences - thereby lssy-compressing and transmitting the experience. 1817

S2 text Relation with continuous distribution Indicating with f(x) a probability density 1818

function and with h(X) = −
∫
f(x)logf(x)d(x) the corresponding differential entropy, we have 1819

H(X∆) ≈ h(X) + log
1

∆
= h(X) + n (68)

in which ∆ = 2−n is the size of the length of the bin in which f(x) is quantized, and n 1820

corresponds to the number of bits required to describe the function to n− bit accuracy. Evidently, 1821

we can always re-scale X in order to have ∆ = 1. 1822

Equation 68 applies to any probability density function. Here we will consider in particular the 1823

case of the normal distribution, the differential entropy of which is simply h(x) = log
√

2πeσy. 1824

Therefore, if y is a continuous RV, quantized to n bits, for a given x and τ we have 1825
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S1 Figure K values plotted against measurements, for an imaginary Maxwell Pressure Demon.
Calculations based on equation 20. See text for further details

.

K(y;x, τ) =
log(
√

2πeσy) + n− log(
√

2πeσy|x,τ )− n
log(
√

2πeσy) + n+ x+ τ
=

log
√

2πe+ log σy − log
√

2πe− log σy|x,τ

log
√

2πe+ log σ2
y + n+ x+ τ

=

log σy − log σy|x,τ

log σy + x+ τ + log
√

2πe+ n
→

log σ′y − log σ′y|x,τ

log σ′y + x+ τ + log
√

2πe
=

log σ′y − log σ′y|x,τ

log σ′y + x+ τ + C
(69)

In which C = log
√

2πe and σ′ corresponds to σ rescaled to a common lowest significant digit (for 1826

example, from σ = 0.123 to sigma = 123. 1827

S3 text 1828

Proof.

Kadj ≡ h

(
H(Y )−

∑
p(y, x|τ) log 1

p(y|x,τ̂)

H(Y )

)
=

h

H(Y )−
∑
p(y, x|τ) log 1

p(y|x,τ) −
∑
p(y, x|τ) log p(y|x,τ)

p(y|x,τ̂)

H(Y )

 =

K(Y ;X, τ)−D(Y |X, τ ||Y |X, τ̂)
h

H(Y )
≡ Kobs −D(Y |X, τ ||Y |X, τ̂)

h

H(Y )
(70)

1829

S4 text Firstly note that, independently of the size of the vectors λλλ and ddd in equation 27, their 1830

inner product yields a number. Therefore, for the purposes of our discussion we can assume λ and d 1831

to be single numbers. Equation 27 claims that there exist a λ ∈ R such that 1832

λ =
1

d
logA

K(Y ;X, τ)

K(Y ′;X ′, τ ′)
(71)

in which d > 0 expresses the divergence between systems, and A is an arbitrary basis. This 1833

statement is self-evidently true, as long as K(Y ′;X ′, τ ′) 6= 0 and K(Y ;X, τ) 6= 0 or, equivalently, if 1834
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we allow λ to be approximately infinite in the case that K goes to zero in one step d = 1. However, 1835

two rather remarkable conclusions can be derived about this equation: 1836

1. Under most conditions, K is a non-increasing function of divergence. That is, 1837

K(Y ′;X, τ ′) ≤ K(Y ;X, τ) and therefore λ ≥ 0. 1838

2. The larger the divergence, the larger the decline of K, such that under typical conditions 1839

K(Yd+1;X, τ) = K(Yd;X, τ)A−λ = K(Y ;X, τ)A−λ(d+1). 1840

We will review each argument separately. 1841

Statement i 1842

From equation 71, if λ ≥ 0, and regardless of the base A chosen for the logarithm, we have 1843

log
H(Y ′) +H(X ′)− log p(τ ′)

H(Y ) +H(X)− log p(τ)
≥ log

H(Y ′)−H(Y ′|X ′, τ ′)
H(Y )−H(Y |X, τ)

≡ log
I(Y ′;X ′, τ ′)

I(Y ;X, τ)
(72)

in which I(Y ;X) = H(Y )−H(Y |X) is the mutual information function. 1844

Claiming that the explanandum Yd is at a divergence d from Y implies that not all information 1845

about Yd may be contained in Y . This condition is typically described mathematically as a Markov 1846

Chain (MC). A MC is said to be formed by random variables (RVs) X,Y, Z in that order, and is 1847

indicated as X → Y → Z, when the conditional distribution of Z is conditionally independent of X. 1848

In other words, the best predictor of Z is Y , and if Y is known, X adds nothing. In entropy terms, 1849

this entails that H(Z|Y,X) = H(Z|Y ), and it formalizes our intuition that information transmitted 1850

along a noisy channel tends to be lost. 1851

Markov chains are used to model a variety of systems in the physical, biological and social 1852

sciences. An isolated physical system, for example, would be represented as a MC, in which the 1853

transition probabilities from one state of the system to the next are determined by the laws of 1854

physics. In the K formalism, the laws of physics would be encoded in a τ , whereas a Markov Chain 1855

may consist in the input X measured at some starting step and subsequent states of Y , i.e. 1856

X → Y → Yd → Yd+1.... Other representations are possible. For example, if no input is present, 1857

then the MC would consist in Y → Yd → Yd+1... or, if the state of both input and explanandum is 1858

allowed to change, then the MC is (X,Y )→ (Xd, Yd)→ (Xd+1, Yd+1).... 1859

Regardless of how it is formalized in K, a system describable by a MC is subject to a central 1860

result of information theory, the Data Processing Inequality, which states that the mutual 1861

information between explanandum and explanans will be non-increasing. We will repeat here the 1862

proof of the DPI assuming a constant τ and a Markov Chain X → Y → Yd. We consider the mutual 1863

information between input and two states of the explanandum, and note that it can be expressed in 1864

two different ways: 1865

I(Y, Yd;X) = I(Y ;X) + I(Yd;X|Y ) = I(Yd;X) + I(Y ;X|Yd) (73)

since by Markovity, I(Yd;X|Y ) = 0, and remembering that the mutual information is always 1866

non-negative we re-arrange and conclude that 1867

I(Yd;X) = I(Y ;X)− I(Y ;X|Yd) ≤ I(Y ;X) (74)

which proves the DPI. Applying this result to the inequality 71, we obtain 1868

log
H(Yd) +H(X)− log p(τ)

H(Y ) +H(X)− log p(τ)
≥ log

I(Yd;X, τ)

I(Y ;X, τ)
≤ 0 (75)

Therefore, the inequality 71 is always satisfied when H(Yd) ≥ H(Y ) (which makes the left-hand 1869

side of the inequality larger or equal to 0). In other words, K will always be non-increasing, as long 1870

as the entropy in the explanandum is stable or increasing. A stable or increasing entropy is the most 1871

probable condition of physical phenomena. 1872
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Although a less likely occurrence, it may be the case that the entropy of the explanandum 1873

actually declines with divergence, in which case inequality 71 may or may not be satisfied. To 1874

examine this case, let H(Yd) < H(Y ) = H(Yd) + dY , with dY > 0 quantifying the divergence. And, 1875

similarly, let H(Y |X, τ) = H(Yd|X, τ) + dY |X . Then inequality 71 can be re-arranged as 1876

H(Yd) + dY +H(X)− log p(τ)

H(Yd) +H(X)− log p(τ)
≤
H(Yd) + dY −H(Yd|X, τ)− dY |X

H(Yd)−H(Yd|X, τ)
(76)

which with a few re-arrangements leads to the condition 1877

K(Yd;X, τ) ≤
dY − dY |X

dY
(77)

which is not guaranteed to be true, but can in principle always be met. This follows because by 1878

definition either dY |X > 0 and dY ≥ dY |X (otherwise we would have I(Yd;X, τ) > I(Y ;X, τ), 1879

contradicting the DPI), or dY |X < 0, and again dY ≥ dY |X , because dY ≥ 0. Therefore, the 1880

right-hand side is always non-negative, so it could in principle be larger than the K value on the 1881

left-hand side. However, if dY = dY |X , then the inequality is certainly false because in that case 1882

K(Yd;X, τ) > 0. Therefore, we conclude that K may increase with divergence, when the information 1883

in (uncertainty, complexity of) the explanandum decreases, which however is a less likely occurrence. 1884

1885

For the case of a theory/methodology τ ′ = τd at a divergence d from another τ , the argument is 1886

only slightly different. Crucial, in this case, is the assumption that the divergence d represents a 1887

random deviation from τ , i.e. one that is independent of τ itself and is not determined by the value 1888

of K(Y ;X, τd). This assumption is equivalent to that of made for a Markov Chain, in which the τ is 1889

subjected to a level of noise proportional to d. However, the effects on K require a different analysis. 1890

Firstly, note that the two components may have same description length, log p(τd) = log p(τ), or 1891

not. In the former case, τ and τ ′ differ solely in some of the symbols that compose them - in other 1892

words, they encode the same number and types of choices, but differ in some of the specific choices 1893

made. In the latter case, the distance d quantifies the information that is missing from τd - in other 1894

words, the choices encoded in τ that are not specified in τd - and log p(τ) = log p(τd) + d. 1895

Whether or not τd is shorter than τ , the consequences of a divergence d can be understood by 1896

definining a set Td : {τ1, τ2...τd} of all possible theories of finite description length log p(τ), that are 1897

at an information distance d from the ”original” theory/methodology τ . To avoid confusion, we will 1898

henceforth indicate the latter with τ∗. Now, let Td the uniform RV corresponding to this set, and let 1899

Kd : {K(Y ;X, τi) : τi ∈ Td} be the set of K values corresponding to each instantiation of Td. Clearly, 1900

Kd has one maximum, except for the special case in which K(Y ;X, τi) = K(Y ;X, τj) ∀τi, τj ∈ Td, 1901

and all K have exactly the same value irrespective of the theory. If the latter were the case, then τi 1902

would be a redundant element of the theory/methodology, in other words an unnecessary 1903

specification. However, such redundancies should not be a common occurrence, if τi is fixed to 1904

maximize K. 1905

Therefore, excluding the improbable case in which τi is redundant, then Kd has a maximum. If 1906

τ∗ is the theory corresponding to the maximum value K(Y ;X, τ∗) in Kd, then for all the remaining 1907

τi 6= τ∗, 0 ≤ K(Y ;X, τi) < K(Y ;X, τ∗) and therefore K(Y ;X, τd) < K(Y ;X, τ∗) or equivalently 1908

H(Y )−H(Y |X, τd) < H(Y )−H(Y |X, τ∗), which satisfies inequality 71. 1909

Lastly, if τ∗ and τb are both elements drawn at random from Td (in other words, neither was 1910

fixed because of its resulting value of K), then their respective effects will both correspond, on the 1911

average, to the expected value of the set: 1912

H(Y )−H(Y |X, τd) = H(Y )−H(Y |X, τ∗) = H(Y )−
∑
τi∈T

Pr{T = τi}H(Y |X,T = τi) (78)

which, on the average, would meet condition 71 as it entails equality (no decline in K). In 1913

practice, the difference in K between two randomly chosen τ∗ and τd would be randomly distributed 1914

around the value of zero. 1915
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The case of τ∗ and τb being random elements, however, is again generally implausible and 1916

unrealistic. In the most probable scenario, a τ was selected because it optimized the value of K in 1917

specific conditions. If those conditions remain and the τ is altered, then the default assumption 1918

ought to be that the corresponding K is more likely to be lower. 1919

This assumption of random differences is a rarely questioned standard in statistical modelling. In 1920

meta-analysis, for example, between-study heterogeneity is assumed to be random and normally 1921

distributed, which translates into assuming that the variance of effects produced by methodologically 1922

heterogeneous studies is symmetrically distributed around a true underlying effect [66]. However, 1923

examined from the perspective of how methods are developed to produce knowledge, a random 1924

distribution of between-study differences does not appear to be the most likely, indeed the most 1925

realistic, assumption. 1926

The logic above can be extended to the case in which the two τ components do not have the 1927

same description length. In particular, let τd represent a theory/methodology of shorter description 1928

length, log p(τ) = log p(τd) + d, and let Td be a RV with alphabet Td : {τ1, τ2...τd} representing the 1929

set of all possible theories that have description length distance d from τ . Then inequality 71 can be 1930

re-arranged as 1931

H(Y ) +H(X)− log p(τd) + d

H(Y ) +H(X)− log p(τd)
≤ H(Y )−H(Y |X,Td = τ∗)

H(Y )−
∑
τi∈Td Pr{Td = τi}H(Y |X,Td = τi)

(79)

which leads to the condition 1932

d ≤ E[H(Y |X,Td)]−H(Y |X,Td = τ∗)

K(Y ;X, τd)
(80)

in which E[H(Y |X,Td)] =
∑
τi∈Td Pr{Td = τi}H(Y |X,Td = τi) is the expected value of the 1933

residual entropy across every possible specification of the τ . Since d > 0, the inequality will not be 1934

satisfied if E[H(Y |X,Td)] ≤ H(Y |X,Td = τ∗), i.e. τ∗ yields a larger residual entropy than the 1935

average element in Td. However, as argued above, this is the least likely scenario, as it would 1936

presuppose that the original and longer theory/methodology τ∗ had not been selected because it 1937

generated a relatively large K value. 1938

Statement ii 1939

With regards to divergences in the explanandum, the statement follows from the recursive 1940

validity of the DPI. The statement entails that 1941

λ = log
H(Yd+1) +H(X)− log p(τ)

H(Yd +H(X)− log p(τ)
− log

H(Yd+1)−H(Yd+1|X, τ)

H(Yd)−H(Yd|X, τ)
=

log
H(Yd+1) +H(X)− log p(τ)

H(Yd +H(X)− log p(τ)
− log

H(Yd)−H(Yd|X, τ)− (H(Yd|Yd+1)−H(Yd|Yd+1, X, τ))

H(Yd)−H(Yd|X, τ)
=

log
H(Yd+1) +H(X)− log p(τ)

H(Yd +H(X)− log p(τ)
− log

(
1− I(Yd;X, τ |Yd+1)

I(Yd;X, τ)

)
(81)

Therefore, λ is a constant as long as the proportional loss of mutual information and/or the 1942

increase in entropy of Y is constant. As before, whereas there may be peculiar circumstances in 1943

which this not the case, in general a proportional change follows from assuming that the loss is due 1944

to genuine noise. 1945

Indeed, exponential curves describe how a Markov Chain reaches a steady state (see [99]). 1946

Exponential curves are also used to model the evolution of chaotic systems. A system is said to be 1947

chaotic when it is highly sensitive to initial conditions. Since accuracy of measurement of initial 1948

states is limited, future states of the system become rapidly unpredictable even when the system is 1949

seemingly simple and deterministic. Paradigmatic chaotic systems, such as the 3-body problem or 1950

the Lorenz weather equations, share the characteristics of being strikingly simple and yet are 1951

extremely sensitive to initial conditions, which make their instability particularly notable [100,101]. 1952
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In standard chaos theory, the rapidity with which a system diverges from the predicted trajectory 1953

is measured by an exponential function in the form: 1954

dN
d0
≈ eλN (82)

in which dN/d0 is the relative offset after N steps (i.e. recalculations of the state of the system), 1955

and λ is known as Liapunov exponent, a parameter that quantifies sensitivity of the system to initial 1956

conditions. Positive Liapunov exponents correspond to a chaotic system, and negative values 1957

correspond to stable systems, i.e. systems that are resilient to perturbation. There is a clear analogy 1958

between Lipunov exponents and λ in equation 27, but the two are not equivalent, and the relation 1959

between chaos theory and K theory remains to be explored in future research. 1960

1961

The argument for a proportionality between the divergence d between τ and the corresponding 1962

decline of K is weaker, although rather intuitive. As already argued when formulating the 1963

theoretical argument for K, the larger the set Tb of possible theories, the lower the expected value of 1964

K in the set, K(Y,X, Tb), because most of the theories/methodologies in the set are likely to be 1965

nonsensical and yield K ≈ 0. Therefore, at least in very general terms, the relation of equation 27 1966

holds for divergences in τ as well. 1967

The argument is this case weaker because the relation between the divergence of τ , dτ , and 1968

K(Y ;X, τd) is likely to be complex and idiosyncratic. For any given d, multiple different τd are 1969

possible. For example, if one binary choice in τ is missing from τd, d = 1 but the values of 1970

K(Y ;X, τd) may vary greatly, from being approximately identical to K to being approximately zero, 1971

depending on what element of the methodology is missing. Mathematically, this fact can be 1972

expressed by allowing different values of λ for any given distance. These values will be highly 1973

specific to a system and will need to be estimated on a case-by-case basis. 1974

Therefore, to allow practical applications, the relation between K and dτ is best modelled as the 1975

inner product of two vectors, e.g. λλλ · ddd = dY λY + dτ1λτ1 + dτ2λτ2 + ...+ dτlλτ1, in which 1976

λλλ = λτ1 + λτ2 + ...+ λτ1 contains empirically derived estimates of the impact that distances of 1977

specific elements of the theory/methodology have on K. Extending this model to divergences in 1978

explanandum and input leads to the general formulation of 27 . 1979

S5 text Let Xα be a RV quantized to resolution (i.e. bin size, or accuracy) α, and let a ∈ N be 1980

the size of the alphabet of X, such that αx = 1
ax

. At no cost to generality, let an increase of 1981

resolution consist in the progressive sub-partitioning of α, such that α′ = α/q with q ∈ N, q ≥ 2 is an 1982

increased accuracy. Then: 1983

0 < H(Xα′)−H(Xα) ≤ log(q) (83)

Proof. If H(Xα) = −
∑a

1 p(x)logp(x), with x representing any one of the a partitions, then 1984

H(Xα′) = −
∑a×n

1 p(x′)logp(x′) = −
∑a

1

∑q
1 p(a)p(q|a)log[p(a)p(q|a)] ≡ H(A) +H(Q|A), where Q 1985

and A are the random variables resulting from the partitions. Known properties of entropy tell us 1986

that the entropy of the n-partition of α, H(Q|A) is smaller or equal to the logarithm of the number 1987

q of partitions with equality if and only if the n-partitions of α have all the same probability, i.e. 1988

H(Q|A) ≤ log q. 1989

Definition: maximal resolution Let Xα be a generic quantized random variable with 1990

resolution α, and let α′ = α/q represent a higher resolution. The measurement error of Xα is a 1991

quantity e > 0, e ∈ Q such that: 1992

H(Xα′)−H(Xα) = log(q), ∀α ≤ e (84)

Definition: empirical system A system is said to be empirical if the quantization of 1993

explanandum and input has a maximal resolution. Equivalently, a non-empirical, (i.e. 1994

logico-deductive) system is a system for which e = 0. 1995
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The effect that a change in resolution has on K depends on the characteristic of the system, and 1996

in particular on the speed with which the entropy of the explanandum and/or explanans increase 1997

relative to their joint distribution. 1998

For every empirical system for which there is a τ 6= ∅ such that K(Y ;X, τ) > 0, the system’s 1999

quantization Y αY , XαX has optimal values of resolution α∗y and α∗x such that: 2000

K(Y α
∗
Y ;Xα∗X , τ) > K(Y αY ;XαX , τ), ∀αY 6= α∗Y , αX 6= α∗X (85)

Proof. If α is the resolution of Y and α′ = α/n is a higher resolution then, assuming for simplicity 2001

that τ is constant: 2002

K(Y α
′
;X, τ) > K(Y α;X, τ) ⇐⇒ H(Y α

′
)−H(Y α

′ |X, τ)

H(Y α)−H(Y α|X, τ)
>
H(Y α

′
) +H(X) + τ

H(Y α) +H(X) + τ
(86)

From equation 83 we know that H(Y α
′
) ≤ H(Y α) + log(q), assuming equality and re-arranging 2003

equation 86 we get the condition: 2004

H(Y α
′
|X, τ)−H(Y α|Xτ) < (1−K(Y α;X, τ))log(q) (87)

which if q = 2 yields equation 31. Condition 87 is only satisfied when K(Y α;X, τ) is small and 2005

H(Y α
′ |X, τ)−H(Y α|X, τ) << log(q). 2006

The corresponding condition for X is: 2007

H(Y |Xα′ , τ)−H(Y |Xα, τ) < − log(n)K(Y ;Xα, τ) (88)

where the left-hand side has a lower bound in −H(Y |Xα, τ), whereas the left hand side can be 2008

arbitrarily large. 2009

Combining equations 86 and 88 yields the general condition: 2010

K(Y
αY
qY ;X

αX
qX , τ) > K(Y αY ;XαX , τ) ⇐⇒

H(Y
αY
qY |X

αX
qX , τ)−H(Y αY |XαX , τ) < (1−K) log qY −K log qX (89)

in which K = K(Y αY ;XαX , τ). The left-hand size of equation 89 is bounded between H(Y αY ) 2011

and −H(Y αY |XαX , τ), whereas the right hand side is bounded between log qY when K = 0 and 2012

− log qX when K = 1. 2013

The only scenario in which K never ceases to grow with increasing resolution entails e = 0 and 2014

thus a non-empirical system (definition 5). Two simulations illustrate how K may change as a 2015

function of resolution depending on characteristics of the system (in this case, of the shape of the 2016

pattern). 2017

2018

S6 text 2019

55

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1968v5 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018



S5 Figure A Illustrative example of how, as the resolution with which explanandum and explanans
is changed, K varies dependong in the shape of the pattern. The figures and all the calculations
were derived from a simulated dataset, in which the pattern linking explanandum to explanans was
assumed to have a noise with uniform distribution. Black line: entropies and K values calculated by
maximum likelihood method (i.e. bin counting). Red line: entropies and K values calculated using
the “shrink” method described in [18] (the R code used to generate the figures is provided in S9
text). Note how the value of K and its re-scaled version H(Y )K are maximized at a single optimal
resolution.

.
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S5 Figure B Illustrative example of how, as the resolution with which explanandum and explanans
is changed, K varies dependong in the shape of the pattern. The figures and all the calculations
were derived from a simulated dataset, in which the pattern linking explanandum to explanans was
assumed to have a noise with uniform distribution. Black line: entropies and K values calculated by
maximum likelihood method (i.e. bin counting). Red line: entropies and K values calculated using
the “shrink” method described in [18] (the R code used to generate the figures is provided in S9
text). Note how the value of K and its re-scaled version H(Y )K are maximized at a single optimal
resolution.

.
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Proof. to simplify the notation, let τ ≡ τY |X be the theory and τ ′ ≡ τ ′Y |X,X′,τY |X

K(Y nY ;XnX , X ′nX , τ, τ ′) > K(Y nY ;XnX , τ)→
nYH(Y )− nYH(Y |X,X ′, τ, τ ′)

nYH(Y ) + nXH(X) + nXH(X ′)− log p(τ)− log p(τ ′)
>

nYH(Y )− nYH(Y |X, τ)
nYH(Y ) + nXH(X)− log p(τ)

→

(nYH(Y ) + nXH(X)− log p(τ))(nYH(Y )− nYH(Y |X,X ′, τ, τ ′))−
− (nYH(Y ) + nXH(X) + nXH(X ′)− log p(τ)− log p(τ ′))(nYH(Y )− nYH(Y |X, τ)) > 0→

(nYH(Y ) + nXH(X)− log p(τ))(nYH(Y |X, τ)− nYH(Y |X,X ′, τ, τ ′)) >

(nXH(X ′)− log p(τ ′))(nYH(Y )− nYH(Y |X, τ))→
nYH(Y |X, τ)− nYH(Y |X,X ′, τ, τ ′) > (nXH(X ′)− log p(τ ′))K(Y ;X, τ)→

(nYH(Y )− nYH(Y |X,X ′, τ, τ ′))− (nYH(Y )− nYH(Y |X, τ)) > (nXH(X ′)− log p(τ ′))K(Y ;X, τ)→

k′ − k > nXH(X ′)− log p(τ ′)

nYH(Y )
kh (90)

2020

S7 text 2021

Proof.

K(Y ;XT ) =
h

H(Y )
(H(Y )−H(Y |XT )) =

h

H(Y )
(H(Y )−H(Y XT ) +H(XT )) =

h

H(Y )
(H(Y )−H(Y XT ) +H(X) +H(T )) =

h

H(Y )
(H(T )− (H(Y XT )−H(Y )−H(X)) =

h

H(Y )
(H(T )− (H(T |Y X)) = K(T ;Y,X) (91)

2022

S8 text 2023

Proof. Let T be a RV or alphabet T = {τ1, τ2...τz}, probability distribution p(τ) and entropy 2024

H(T ) = −
∑
i p(τi) log p(τi). Let T ′ be a random variable derived from T by removing from its 2025

alphabet the element τj ∈ T of probability p(τj). Then 2026

H(T ′) =
1

1− p(τj)
∑
i 6=j

p(τi) log
1

p(τi)
− log

1

1− p(τj)
(92)

When |T | = 2, H(T ′) = 0 regardless of the probability distribution of T . Otherwise, the value 2027

rapidly approaches H(T ) as p(τj) decreases (e.g. as the alphabet of T increases in size). Note that 2028

under specific conditions H(T ′) > H(T ) - for example, if T equals 2029

p(τj) = 0.9, p(τk) = 0.05, P (τk) = 0.05). This entails that the uncertainty about a condition might 2030

momentarily increase, if the most probable case is excluded. However, the effect is circumscribed 2031

since, as more elements are removed from the alphabet, H(T ′) tends to 0. 2032

S9 text R code used to generate all figures and analyses. 2033
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S1 Table: Demarcation theories

Principle Science Non-
/pseudoscience

Author, [ref]

positivism reached the positive
stage: builds knowl-
edge on empirical data

still in teological
or meta-physical
stages: phenomena
are explained by
recurring to deities
or non-observables
entitites

Comte 1830 [2]

methodologism follows rigorous meth-
ods for selecting
hypotheses, acquiring
data, and drawing
conclusions

fails to follow the scien-
tific method

e.g. Pearson
1900, Poincare
1914 [90,102]

verificationism builds upon verified
statements

relies on non-verifiable
statements

Wittgenstein
1922 [103]

falsificationism builds upon falsifi-
able, non-falsified
statements

produces explanations
devoid of verifiable
counterfactuals

Popper 1959
[42]

methodological
falsification-
ism

generates theories of in-
creasing empirical con-
tent, which are ac-
cepted when surpris-
ing predictions are con-
firmed

protects its theories
with a growing belt
of auxiliary hypotheses,
giving rise to “degener-
ate” research programs

Lakatos 1970
[104]

norms follows four fundamen-
tal norms, namely: uni-
versalism, communism,
disinterestedness, orga-
nized scepticism

operates on different, if
not the opposite, sets
of norms

Merton 1942
[105]

paradigm is post-paradigmatic,
meaning it: solves puz-
zles defined and delim-
ited by the rules of an
accepted paradigm

is pre-paradigmatic:
lacks a unique and
unifying intellectual
framework or is frag-
mented into multiple
competing paradigms

Kuhn
1974 [106]

multi-criterial
approaches

bears a sufficient “fam-
ily resemblance” to
other activities we call
“science”

shares too few charac-
teristics with activities
that we consider scien-
tific

e.g. Laudan
1983, Dupre
1993, Pigliucci
2013 [52–54]
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