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Abstract

This essay unifies key epistemological concepts in a consistent mathematical framework
built on two postulates: 1-information is finite; 2-knowledge is information compression.
Knowledge is expressed by a function K(Y ;X) and two fundamental operations, ⊕,⊗.
This K function possesses fundamental properties that are intuitively ascribed to
knowledge: it embodies Occam’s razor, has one optimal level of accuracy, and declines
with distance in time. Empirical knowledge differs from logico-deductive knowledge
solely in having measurement error and therefore a ”chaos horizon”. The K function
characterizes knowledge as a cumulation and manipulation of patterns. It allows to
quantify the amount of knowledge gained by experience and to derive conditions that
favour the increase of knowledge complexity. Scientific knowledge operates exactly as
ordinary knowledge, but its patterns are conditioned on a ”methodology” component.
Analysis of scientific progress suggests that classic Popperian falsificationism only
occurs under special conditions that are rarely realised in practice, and that
reproducibility failures are virtually inevitable. Scientific ”softness” is simply an
encoding of weaker patterns, which are simultaneously cause and consequence of higher
complexity of subject matter and methodology. Bias consists in information that is
concealed in ante-hoc or post-hoc methodological choices. Disciplines typically classified
as pseudosciences are sciences expressing extreme bias and therefore yield K(Y ;X) ≤ 0.
All knowledge-producing activities can be ranked in terms of a parameter Ξ ∈ (−∞,∞),
measured in bits, which subsumes all quantities defined in the essay.

Author Summary

• Knowledge is just information compression.

• Science is just knowledge conditioned upon methodology.

• ”Soft” science is just relatively ”weak” science.

• Bias is just misplaced information.

• Pseudoscience is just extreme bias.
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Introduction 21

A science of science is flourishing in all disciplines and promises to boost discovery on 22

all research fronts [1]. This growing literature of empirical studies, intervention 23

experiments and theoretical models intensifies interest in a cross-disciplinary, 24

quantitative and operationalizable theory of ”good” and ”bad” science. 25

Textbook philosophy of science offers little guidance for meta-researchers. Despite a 26

century of debate, no consensus has been reached on the criteria that demarcate 27

genuinely scientific knowledge from metaphysics or pseudoscience (Table 1). Indeed, the 28

very existence of such universal criteria has been dismissed as a pseudo-problem. A 29

popular view amongst contemporary philosophers postulates that “science” is just a 30

word indicating a variety of practices. These practices bear a “family resemblance” to 31

each other but do not share a single universal property. To determine what is valid 32

science, according to this approach, we must use multiple criteria e.g. [2–4]. 33

The multi-criterial solution to the demarcation problem is of limited theoretical and 34

practical utility. It merely shifts the question from identifying a single property common 35

to all the sciences to identifying many properties that are common to some. Inevitably, 36

there is little consensus on what these properties consist in, and most proposals include 37

normative or behavioural (i.e. subjective) principles such as ”rigorously assessing 38

evidence”, ”openness to criticism”, etc... Furthemore, since the minimum number of 39

characteristics that a legitimate science should possess is arbitrary, virtually any 40

practice can be considered a ”science” according to one scheme or another (e.g. 41

intelligent design [13]). 42

In addition to potentially legitimizing pseudoscience, the family-resemblance 43

approach does little to explain the diversity of scientific disciplines. There is ample 44

evidence that scientific practices vary gradually and almost linearly if disciplines are 45

arranged according to the complexity of phenomena they are concerned with (i.e. 46

broadly speaking, mathematics, physical, biological, social sciences and 47

humanities) [24–27]. This suggests that general principles underlie and explain at least 48
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Table 1. Demarcation theories
principle science non-/pseudoscience author, ref
positivism reached the positive stage: builds knowl-

edge on empirical data
still in teological or meta-physical stages:
phenomena are explained by deities or non-
observables

Comte 1830 [5]

methodologism follows rigorous methods for selecting hy-
potheses, acquiring data and drawing con-
clusions

fails to follow the scientific method e.g. Pearson
1900, Poincare
1914 [6, 7]

verificationism builds upon verified statements relies on non-verifiable statements Wittgenstein
1922 [8]

falsificationism builds upon falsifiable, non falsified state-
ments

produces explanations devoid of verifiable
counterfactuals

Popper 1959 [9]

methodological fal-
sificationism

generates theories of increasing empirical
content, which are accepted when surpris-
ing predictions are confirmed

protects its theories with a growing belt of
auxilliary hypotheses, creating “degenerate”
research programs

Lakatos
1970 [10]

norms follows four fundamental norms: universal-
ism, communism, disinterestedness, orga-
nized scepticism

operates on other, if not opposite, sets of
norms

Merton
1942 [11]

paradigm is post-paradigmatic: solves puzzles defined
and deliminted by the rules of an accepted
paradigm

is pre-paradigmatic: lacks a unique and
unifying intellectual framework or is frag-
mented into multiple competing paradigms

Kuhn 1974 [12]

multi-criterial ap-
proaches

bears a sufficient ”family resemblance” to
other activities we call “science”

shares too few characteristics with activities
that we consider scientific

e.g. Laudan
1983, Dupre
1993, Pigliucci
2013 [2–4]

Table 2. Properties variably possessed by sciences
principle property author, ref
scientific hierarchy simplicity, generality, quantifiability, recency, human relevance Comte 1830 [5]
consilience ability to subsume disparate phenomena under general principles Whewell 1840 [14]
lawfulness nomoteticity, i.e. interest in uncovering general laws, as opposed to idioteticity, i.e.

interest in individuality
Windelband 1894
[15]

data hardness data that resist the solvent influence of critical reflection Russel 1914 [16]
empiricism ability to calculate in advance the results of an experiment Conant 1951 [17]
rigour rigour in relating data to theory Storer 1967 [18]
maturity ability to produce and test mechanistic hypotheses, as opposed to mere fact collection Bunge 1967 [19]
cumulativity cumulation of knowledge in tightly integrated structures Price 1970 [20]
codification consolidation of empirical knowledge into succinct and interdependent theoretical

formulations
Zuckerman and
Merton 1973 [21]

consensus levels of consensus on the significance of new knowledge and the continuing relevance
of old

Zuckerman and
Merton 1973 [21]

core cumulativity rapidly growing core of unquestioned general knowledge Cole 1983 [22]
invariance contextual invariance of phenomena Humphreys

1990 [23]

some of disciplines’ diversity. The source and nature of these differences have been 49

insightfully discussed in the literature (Table 2) but no consensual view has emerged. 50

This essay proposes a quantitative theory of science, which unifies in a coherent and 51

consistent mathematical framework a variety of fundamental concepts including 52

knowledge, bias, reproducibility, soft-science and pseudoscience. The theory rests on 53

two postulates: 1) information is finite; 2) knowledge is information compression. The 54

following section will introduce and justify these postulates. Subsequently, the Methods 55

section will give mathematical expression to the concept of knowledge and knowledge 56

progress. The Results section will first show that the proposed functions embody 57

properties expected of knowledge, and will then proceed with a brief analysis of each 58

concept in turn. The aim of this essay is to present the logic of the approach proposed 59

and to illustrate its potential uses. Complete analyses of specific issues are left to future 60

work. 61
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Figure 1. Pictorial representation of the nature of information, which can be of
arbitrary size and yet always be finite. Attributes are represented by bars that have no
defined ends. Information emerges from discontinuities which are always countable and
finite

.

0.1 Postulate 1: Information is finite 62

The first postulate appears to reflect a simple but easily overlooked fact of nature. The 63

universe - at least, the portion of it that we can see and have causal connection to - 64

contains finite amounts of matter and energy, and therefore cannot contain infinite 65

amounts of information. If each quantum state represents a bit, and each transition 66

between (orthogonal) states represents an operation, then the universe has performed 67

circa 10120 operations on 1090 bits since the Big Bang [28]. 68

Even if our understanding of physics turned out to be incorrect, there would be still 69

little doubt that information is finite for living organisms, because sensory organs are 70

finite structures. The sense of vision is constructed out of a limited number of cone and 71

rod cells; the sense of hearing is uses information from a limited number of hair cells, 72

each of which responds to a narrow band of acoustic frequencies, etc. 73

But even if we ignored both physical and biological arguments, the finitude of 74

information would be a reasonable assumption to make for scientific knowledge, because 75

measurement, by definition, is finite. Measurement is technically defined as the 76

partitioning of attributes in a set of mutually exclusive categories [29]. In principle this 77

partitioning can be infinite, but in practice it never is. Real measurements of empirical 78

phenomena always contemplate a range of plausible values and are delimited at one or 79

both ends by extreme values that capture all residual probability. 80

We can picture the process of measurement, and in general the generation of 81

information, as a progressive quantization of a unidimensional attribute. This 82

quantization operates ”from the inside out” so to speak, and by necessity always leaves 83

two ”open ends” of finite probability (Fig 1). 84

0.2 Postulate 2: Knowledge is information compression 85

The second postulate claims that the essence of any manifestation of what we call 86

”knowledge” consists in the encoding of a pattern, which reduces the amount of 87

information required to navigate the world successfully. Patterns are simply 88

dependencies between attributes, in other words relationships that makes one event (the 89

manifestation of one of possible instantiations of an attribute) more or less likely 90

depending on another event. By encoding patterns, an organism reduces the uncertainty 91

it confronts about its environment - in other words it adapts. Therefore, just like 92

postulate 1, postulate 2 also is likely to reflect an elementary fact of nature, which is 93

arguably the essence not just of human knowledge, but of life itself. 94

The idea that knowledge, or at least scientific knowledge, is information compression 95
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is far from new. Physicist and philosopher Ernst Mach famously argued, for example, 96

that the value of physical laws lied in the “economy of thought” that they permitted 97

[30]. Other famous scientists such as mathematician Henri Poincaré (1854-1912) 98

expressed similar ideas [7]. Following the discovery of information theory, scientific 99

knowledge and other cognitive activities have been examined in quantitative terms 100

e.g. [31]. Nonetheless, the equivalence between scientific knowledge and information 101

compression has been dismissed as a principle of secondary importance by later 102

philosophers (e.g. Karl Popper 1902–1994 [32]), and today clearly does not occupy the 103

foundational role that it arguably deserves [33]. 104

Philosophical resistance to equating science with information compression might 105

partially be explained by two common misconceptions. The first one is an apparent 106

conflation of lossy and lossless compression. Modern proponents of the hypothesis seem 107

to adopt a lossless compression model and therefore debate over whether empirical data 108

truly are compressible e.g. [34]. Clearly, however, science is a lossy form of compression: 109

the laws and relations that scientists discover typically include error terms and tolerate 110

large portions of unexplained variance. 111

The second, and most important, source of misplaced skepticism is a lack of 112

appreciation for the universality of the equivalence between knowledge and information 113

compression. As already mentioned, the encoding of patterns underlies not just 114

scientific knowledge but all forms of knowledge and all forms of biological adaptation. 115

Changes in any species’ population genetic frequencies in response to environmental 116

pressures can be seen as a form of adaptive learning, in which a signal ”reinforces” (by 117

selecting favourably) certain responses, i.e. specific genomic structures, and ”weakens” 118

(selects out) others. Endocrine, immune and nervous systems are simply more advanced 119

pattern-encoding structures, which operate on a faster scale than natural (genetic) 120

selection. 121

Human cognition is just another higher-order manifestation of biological pattern 122

encoding, not qualitatively but quantitatively superior to other forms. When we say 123

that we “know” something, we are claiming that we have fewer uncertainties about it. 124

We “know a city”, for example, if and in proportion to how we are able to navigate in it. 125

We “know a song” when we are able to reproduce with no error or hesitation the 126

sequence of words and intonations that will recreate it. We “know a person” in 127

proportion to how many patterns about them we have encoded. We might, for example, 128

only be able to relate their facial features to their name. When we know them better, 129

however, we can predict how they might respond to the question “where are you from?”. 130

When we know them well, we can predict their behaviour rather accurately and foretell 131

what will make them happy, interested, etc. 132

Scientific knowledge is just another expression of human knowledge, and as such is 133

again nothing more than a pattern-encoding activity that reduces uncertainty about one 134

phenomenon by relating it to information about another phenomenon. The knowledge 135

produced by all fields of scientific research is structured in this way. A mathematical 136

theorem consists in drawing a logical connection between two seemingly unrelated 137

theoretical constructs. The laws of physics are obviously describing patterns, but even 138

research that appears purely descriptive, for example the measurement of values of 139

physical constants, consists in mapping and connecting properties of known objects. 140

Most biological and biomedical research consists in identifying correlations, causes 141

and/or describing properties of natural phenomena. Research in taxonomy and 142

systematics might appear to be an exception, but it is not: organizing a multitude of 143

species into a succint taxonomical tree is the most elementary form of data compression. 144

Quantitative social and behavioural sciences operate in a similar fashion to biological 145

sciences; and even qualitative, ethnographic, purely descriptive social research consists 146

in data compression, because it presupposes that there are general facts about human 147
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experiences, individuals or groups that can be described and synthesized. 148

Analysis 149

0.3 Mathematization of knowledge 150

Information theory offers a straightforward and universal measure of the pattern linking 151

two variables X,Y : the Mutual Information function 152

I(X;Y ) = H(Y )−H(Y |X) (1)

in which H(X) is Shannon’s entropy function: 153

H(X) = −
∑
x

p(x)log(p(x)) (2)

with X being a discrete random variable. A mathematically equivalent formulation 154

to 4 is 155

I(X;Y ) = H(Y ) +H(X)−H(Y,X) (3)

To quantify and compare knowledge across the sciences we need to modify this 156

equation, allowing the function to be: 157

1. Standardized: In order to allow meaningful comparisons between different domains 158

of knowledge and/or of knowledge growth, we need our quantities to be scale-free. 159

2. Accuracy-dependent: Following the first postulate, the objects of knowledge (both 160

terms in the equation) should be quantizable to arbitrary degrees. 161

3. Multi-dimensional: For similar reasons to the above, the objects of knowledge 162

need not be confined to two variables. Knowledge always connects two sets of 163

attributes, but each of these can include an arbitrary number of dimensions, i.e. 164

attributes of different classes. 165

4. Time-dependent: Following the second postulate, if knowledge is proportional to 166

the ability to anticipate events, then its function must accommodate varying levels 167

of ”distance” between events. This distance is probably spatio-temporal. However, 168

for the purposes of this essay, we will consider this separation to be exclusively on 169

a time dimension, which lends itself to an intuitive interpretation. 170

These three considerations lead to define a function K(Y;X) (“K” for “Knowledge”), 171

which in its most complete form is written as 172

K(Y ;X) ≡ K(Y
m;αy

t , X
n,αx

t0 ) =
H(Y

m,αy

t )−H(Y
m,αy

t |Xn,αx

t0 )

H(Y
m,αy

t ) +H(X
n,αx

t0 )
(knowledge function)

in which the underlined terms represent vectors, and subscripts and superscripts 173

indicate fixed properties of these vectors. For example, Y
m,αy

t represents a random 174

vector of length m, whose elements correspond to the joint distribution of m random 175

variables (attributes), each of which was measured at a time t with accuracies 176

represented by the m-length vector αy : {αy1, αy2, ...αym} , i.e. 177

Y
m,αy

t = {Y αy1
1,t , Y

αy2
2,t , ...Y

αym
m,t }. 178

This notation is burdensome, and for practical purposes will always be reduced to 179

the minimum necessary. Unless specified otherwise, we will assume 180
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Figure 2. Visual representation of the conditioning of a random variable, Y , on a
specific value of a second variable X = x, what in the essay we represent as Y |x.

m = 1, n = 1, αx = constant, αy = constant, t0 = 0, d0 = 0, t > 0, d = constant and 181

thus whenever possible we will use Y in place Y
m,αy

t and X in place of X
n,αx

t0 , leading 182

to: 183

K(Y ;X) =
H(Y )−H(Y |X)

H(Y ) +H(X)
(4)

Since H(X) +H(Y |X) = H(Y X), equation 4 (henceforth referred to as ”K 184

function”) can also be written as 1− H(Y X)
(H(Y )+H(X) . The term H(Y ) will be referred to as 185

the explanandum, latin for ‘what is to be explained’, in other words the phenomenon 186

about which there is uncertainty. The H(X) term will be referred to as the explanans, 187

i.e. ‘what explains’, and represents the cue, the signal, the model, and any other entity 188

that reduces the uncertainty of the explanans. The combination of Y X constitutes what 189

we will refer to as a system. The denominator of equation 4, i.e. the sum of the 190

entropies of explanans and explanandum, will be called uncertainty space. The pattern 191

linking explanandum and explanans, which determines the extent to which the system is 192

knowable, is quantified by the conditional term H(Y |X) which, depending on the 193

context, will be referred to as the pattern, the law or the hypothesis. 194

Explanans and explanandum need not be classic random variables. Indeed, it is 195

crucial that they may consist in individual entities of non-zero probability, which are 196

best imagined as single instantiations (events, outcomes) of classic random variables. 197

We will refer to such entities as ”events” or ”objects” and represent them with 198

lower-case letters. The distinction between random variables and events or objects is 199

crucial to the mathematics of the K function. If explanans X and explanandum Y are 200

classic random variables, then I(Y ;X) ≤ min(H(Y );H(X)) and therefore 201

0 ≤ K(Y ;X) ≤ min(H(Y );H(X)/(H(Y ) +H(X)). However, if X = x and Y = y, 202

with x and y representing individual outcomes with probability P (x) and P (y), then 203

their mutual information may assume any value, I(y;x) ∈ (−∞,∞) and therefore 204

K(y;x) ∈ (−1, 1). Combined cases may also occur: K(Y ;x) and K(y;X). A pattern 205

H(Y ;x), for example, can be pictured as the conditional distribution of a random 206

variable Y conditioned on X = x (Fig 2). 207

Note, however, that if H(y) = 0 or H(x) = 0 or H(y) =∞ or H(x) =∞, then 208

K(y, x) = 0. Knowledge, in other words, requires uncertainty in both explanans and 209

explanandum to be finite and different from zero. The first postulate guarantees that 210

this is always the case. From a mathematical point of view, imposing a quantization for 211
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the objects of the K function implies that we cannot use Shannon’s differential entropy 212

function h(X) =
∫
f(x)logf(x)dx. Although it superficially looks like the continuous 213

equivalent of equation (2), differential entropy has a fundamentally different meaning 214

and different properties from its discrete counterpart [35]. In particular, the differential 215

entropy of a continuous distribution is not the limit of this quantization for 216

infinitesimally small values. Such limit actually equals −∞, revealing the existence of 217

an unbridgeable gap between discrete and differential entropy functions. Moreover, the 218

differential entropy of a continuous density function is scale-dependent and can assume 219

negative values. Plugged into the K function, differential entropy yields incongruous 220

results that further justify its exclusion from the theory - at least in its present form. 221

Complexity as information Shannon’s entropy is a measure of average uncertainty 222

or, equivalently, of the rarity of events. It is the expectation of the function log 1
p(x) , 223

which quantifies the rarity of the outcome x of X, and therefore the information that 224

event x conveys by means of its probability. 225

The nature of event x, in particular its structure, is irrelevant to its Shannon’s 226

information, but it too is a source of information. This latter information, quantifiable 227

as the minimum information necessary to reproduce the object itself, is measured by 228

Kolmogorov complexity [36,37]. Let x be a binary string (e.g. a sequence 010010110...), 229

U a universal Turing machine (i.e. akin to a general-purpose computer), π(x) a 230

computer program that recreates x and l(π) is the length of the program. The 231

Kolmogorov complexity of x is defined as: 232

C(x) = min
π:U(π)=x

l(π) (5)

i.e. it is the length of the shortest program that prints x and halts. Postulate n.1 233

guarantees that any object or event has a finite description. Therefore, since objects can 234

be described by computer programs, since programs can be translated into one another 235

and since Turing machines can simulate any other computer, Kolmogorov’s complexity 236

is a universal quantity. It is non-computable, but is approximated by data compression 237

algorithms. 238

Albeit conceived independently, Kolmogorov complexity and Shannon’s entropy turn 239

out be closely related. The latter represents the lower limit of the former: 240

lim
n→∞

E(C(x))

n
= H(X) (6)

For example, a binary string of length n will have Kolmogorov complexity 241

approximately equal to n times the entropy of the probability distribution of 0′s and 1′s 242

in the string, i.e. H(X). Even more remarkably, Kolmogorov complexity turns out to be 243

also definable in ways that are mathematically analogous to Shannon’s entropy, because: 244

C(x) ≈ log
1

PU (x)
(7)

in which PU (x) is the universal probability of x [36], defined as the probability that 245

a randomly drawn program (e.g. a string of 1’s and 0’s compiled by flipping a coin) 246

would print the string x and halt: 247

PU (x) =
∑

π:U(π)=x

2−l(π) = Pr(U(π) = x) (8)

This mathematical equivalence between information and algorithmic complexity can 248

made fully explicit by introducing the notion of ”Total Information”. 249
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Total information Let X : {x1, x2, ..., xn} be a set of n objects of Kolmogorov 250

complexities C(x1), C(x2)...C(xn). We define as ”Total Information Content” of X, 251

T (X), the sum of the complexities of its components: T (X) ≡
∑
C(x). Clearly: 252

∑
x

C(x) ≈
∑
x

log
1

PU (x)
= log

1

PU (x1)× PU (x1)× ....× PU (xn)
≡ log 1

PT (X)
(9)

in which PT (X) is just a new probability value. Therefore, the total information 253

contained in a set of objects can be represented as a single object or event of non-zero 254

and finite probability. At the same time, however, indicating with E[ ] the expectation 255

function and with P (x) the frequency-derived probability of each class of objects in X: 256

∑
x

C(x) ≈ n× E[C(x)] = n×
∑
x

P (x)log
1

PU (x)
=

= n× (
∑
x

P (x)log
1

P (x)
+
∑
x

P (x)log
P (x)

PU (x)
) ≡ n× (H(X) +D(X||XU )) (10)

where H(X) is Shannon’s entropy and D(X||XU ) is the Kullback-Leibler distance 257

between the probability distribution P (x) and the universal probability PU (x). Since 258

Shannon’s entropy is the limit of compressibility of X, PU (x) ≤ P (x) and thus 259

D(X||XU ) ≥ 0. Therefore, the same quantity, the total information of a set of objects, 260

can be represented as a single entity of non-zero probability and as a combination of 261

Shannon entropy and ”residual complexity” terms, multiplied by a constant. 262

In sum, virtually identical properties and mathematical treatments underlie the 263

concepts of information and complexity. Since the K function is a standardized 264

quantity, its calculation is identical whether its terms are based on Shannon’s entropy, 265

Kolmogorov’s complexity, or Total Information (if we plug 10 in the K function, the n 266

terms cancel out). This is true for all the results presented in this essay. For practical 267

purposes most analyses in the essay will be based on Shannon’s entropy notation as it 268

applies to classic random variables. Explicit reference to Kolmogorov complexity 269

(henceforth, simply complexity) or Total information will be made only when necessary. 270

0.4 Statistical interpretation 271

The K function is compatible with both a subjectivist (Bayesian) and a frequentist 272

interpretation of probability. 273

Bayesian interpretation Bayes’ theorem is a simple equivalence stating that: 274

P (Y |X) =
P (Y )× P (X|Y )

P (X)
(11)

Bayesian interpretation of the K function would posit that H(Y ) is the prior belief 275

about the probability (or probability distribution) of an event, H(Y |X) is the posterior 276

belief and K(Y ;X) quantifies the knowledge gained after new information X is obtained. 277

We can plug Bayes’ equivalence in the conditional entropy function and obtain: 278

H(Y |X) = −
∑

P (yx)logP (y|x) = −
∑

P (yx)log
P (y)× P (x|y)

P (x)
=

= −
∑

P (yx)[logP (y) + logP (x|y)− logP (x)] = H(Y ) +H(X|Y )−H(X) (12)
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Figure 3. Relation between the standard deviation of a normal distribution and the
corresponding Shannon entropy. The latter is a monotonic function of the former, but
its values vary depending on the accuracy with which entropy is measured.

Therefore, plugging Bayes’ theorem into the K function yields:

K(Y ;X) =
H(Y )−H(Y |X)

H(Y ) +H(X)
=

=
H(Y )−H(Y )−H(X|Y ) +H(X)

H(Y ) +H(X)
=
H(X)−H(X|Y )

H(Y ) +H(X)
= K(X;Y ) (13)

Hence, the equivalence contained in Bayes’ theorem is also contained in the K 279

function, and is expressed in K’s property of symmetry: K(Y ;X) = K(X;Y ). The 280

knowledge that we gain about a hypothesis given some data is equivalent to the 281

knowledge gained about that data given a hypothesis. 282

Frequentist interpretation The K function lends also itself to a non-subjectivist 283

interpretation, in which both explanandum and explanans are classic random variables 284

(or instantiations of them). For example, the explanandum may correspond to a 285

dependent variable and the explanans to the independent variable in regression analysis, 286

and the pattern (conditional entropy term) would quantify the residual (unexplained) 287

variance. Indeed, if we removed the H(X) term from the denominator of the K function, 288

the resulting equation would resemble a generalized non-directional measure of 289

statistical effect size such as Pearson’s η2: 290

η2 =
σ2
Y − σ2

Y |X

σ2
Y

(14)

in which σ2
Y is the total variance of the dependent variable and σ2

Y |X is its 291

conditional counterpart. 292

Unlike η2, K is based on the entropy function, which gives it distinctive 293

mathematical properties (Fig 3). However, the structural similarity suggests that η2
294

(and similar non-directional measures of statistical association) can be conceptualized as 295

analogous to the K function proposed here, and in particular analogous to special forms 296

of it in which the information costs of the predictor variables and the theoretical 297

appratus (e.g. the specification of a statistical model) are ignored. This particular form 298

of K is rather useful and will recur in this essay. We will refer to it as ”uncorrected K”, 299

and indicate it with a lower-cap k: 300

k(Y ;X) ≡ H(Y )−H(Y |X)

H(Y )
(Uncorrected K)
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0.5 Alternative forms of K 301

All manifestations of what we call knowledge can be quantified by a function with the 302

structure of the K function. In particular, 303

Explanatory Knowledge An event or a phenomenon is mysterious in proportion to 304

how improbable or unpredictable it is, and is said to be explained in proportion to how 305

much more likely it becomes once other circumstances (explanans) are invoked. 306

Translating into our notation, let y be an explanandum that occurs at time t0. An 307

explanation of it would consist in postulating the subsistence of events (or objects) that 308

occurred at time t ≤ t0, whose explanatory power is measured as: 309

K(yt0 ;xt) =
H(yt0)−H(yt0 |xt)
H(yt0) +H(xt)

(Explanatory K)

This is simply the function 4 applied to individual objects or events, and with 310

particular time values. Whilst K(Y ;X) quantifies knowledge, the overall ability to 311

explain one or a class of phenomena, K(y;x) quantifies the understanding about a 312

specific event or phenomenon (see section 0.9). 313

It might be objected that explanations require causes, and therefore that the pattern 314

H(Y |X) is of a special kind. Causes, however, as argued below, are just patterns, and 315

are quantifiable as such. 316

Causal Knowledge The word “cause” indicates an event that will give rise to 317

another event, a concept that is as intuitive to human cognition as it is hard to define 318

logically and quantify empirically. A necessary condition for causation, recognized by all 319

definitions, is temporal asymmetry: causes always precede their effects. However, 320

temporal asymmetry alone is an insufficient to distinguish causation from correlation or 321

indeed from mere coincidence [38,39]. 322

In systems that can be extensively manipulated, causal knowledge is achieved by 323

stabilizing or randomizing all non-relevant factors, and altering the state of the 324

explanans of interest - what we call ”experiment”. Fields of knowledge that cannot rely 325

on direct experimentation, such as many medical and social sciences, have developed 326

additional criteria to identify causality. These criteria include strength, consistency, 327

specificity, plausibility, coherence, analogy [40] - all factors that, in essence, require the 328

pattern to be large and relatively independent from contingent aspects of the system. 329

Whether causation can be proven or even conceived of without recurring to 330

experimental evidence is the subject of a growing debate [41]. However, the difference 331

between experimental and non-experimental approaches to proving causation might be 332

less substantive than it seems. A causal link is just a peculiarly reliable pattern; one 333

that entails that, if the state of an explanans is known at time t0, then the state of the 334

explanandum is expected to occur with higher probability at a time t > t0. The 335

manipulations entailed by experimental evidence are deemed superior to observational 336

inferences simply because they greatly reduce the likelihood of false positives and false 337

negatives (it would be very unlikely to observe event y occur after manipulation of event 338

x by chance, especially if the experiment is repeated), thereby yielding more reliable 339

and accurate quantification of the pattern at hand. 340

Therefore, whilst distinguishing causal patterns from mere correlations is a complex, 341

fascinating and still unsolved problem, operating such distinction is not strictly 342

necessary for the purpose of quantifying knowledge. At the root of any definition and 343

any approach to causation lies a the same, intuitive principle: a causal relation is a 344

relatively robust and universal pattern which makes a particular state of an 345

explanandum more probable in response to an earlier state of an explanans. The state 346
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of the explanans could be imposed or could simply be known. We can translate the 347

former condition using a “do” notation [39], i.e. X|do(X = x) and we translate the 348

latter simply as X = x. In either case, the uncertainty of the explanans disappears, i.e. 349

H(X|do(X = x)) = 0 and H(X = x) = 0. Therefore, in terms of the K function, causal 350

knowledge is quantified as 351

K(Yt;X|do(Xt0 = x)) ≡ H(Yt)−H(Yt|Xt0 = x)

H(Yt) +H(Xt0 |do(Xt0 = x)
=

=
H(Yt)−H(Yt|Xt0 = x)

H(Yt) +H(Xt0 = x)
=

=
H(Yt)−H(Yt|Xt0 = x)

H(Yt)
≡ k(Yt;Xt0) (Causal K)

Note that K(Yt;X|do(Xt0 = x)) > k(Yt;Xt0) for all systems, which is consistent 352

with the fact that causal knowledge is generally valued more highly than non-causal or 353

correlational knowledge. 354

Theoretical Knowledge Theories, hypotheses, models play, in our functions, 355

exactly the same role as empirical events or objects, and are quantified in the same way 356

(further details are given in section 0.11). When taking the role of explanans, in 357

particular, theoretical constructs are just devices that reduces the uncertainty of an 358

explanandum. To illustrate the role of theories and models in acting as explanantia, let 359

explanandum Y be the joint distribution of two variables, i.e. Y : {Y1, Y2}. Since 360

H(Y ) = H(Y1) +H(Y2|Y1), this explanandum is a system in itself, the knowledge of 361

which depends on the size of conditional term H(Y1|Y2). Let X ≡ T : {τ1, τ2, ...} be a 362

set of alternative models or theories that determine the value of H(Y1|Y2). Each τi has 363

an associated entropy H(τi) which might express either the theory’s plausibility relative 364

to competing theories or its complexity measured in a relative or absolute sense (see 365

sections 0.3 and 0.11). In either case, we get: 366

K(Y ; τi) =
H(Y1) +H(Y2|Y1)− (H(Y1|τi) +H(Y2|Y1, τi))

H(Y1) +H(Y2|Y1) +H(τi)
(15)

Since τi is only relevant to the relation between Y1 and Y2 then we can assume 367

H(Y1|τi) = H(Y1) for every τi, and the equation simplifies to: 368

K(Y ; τi) =
H(Y2|Y1)−H(Y2|Y1, τi))

H(Y1) +H(Y2|Y1) +H(τi)
(Theoretical K)

which expresses the explanatory power of a single τi. The average over all 369

alternative theories is given by K(Y ;T ). The similarity of this function with the 370

standard K function illustrates how a theory (model, etc...) T is just a device that 371

modulates the relative uncertainty of elements within a system. 372

0.6 Operations on Information 373

We now define two simple operations that, combined with their respective inverses, 374

capture the essence of information processing. We will always refer to classic random 375

variables, with corresponding Probability Mass Function (PMF) and Probability Mass 376

Vector (PMV). A random variable X with alphabet |χ| = {x1, x2...xn} will have: 377
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Figure 4. Visual representation of the two fundamental operations defined in the text.
A) The ⊗ operation joins attributes along separate dimensions. Here attributes are
symbolized by dotted lines which could represent quantized random variable with a
uniform distribution. B) The ⊕ operation joins attributes along the same dimension.
Here attributes are represented by quantized random variables with a normal
distribution. See text for further details.

FX =



PX(x1) for X = x1

PX(x2) for X = x2

...

...
PX(xn) for X = xn

0 otherwise

(Probability Mass Function)

And will have a Probability Mass Vector: 378

−→
F X =


PX(x1)
PX(x2)
...
...

PX(xn)

 (Probability Mass Vector)

⊗: Expanding This operation expands the number of attributes that are processed 379

about a phenomenon or event, thereby augmenting the information about it. Let X and 380

Z be two random variables with alphabets χ = {x1, x2, ..., xn} and ζ = {z1, z2, ..., zm}, 381

and PMFs FX and FZ . The o-product X ⊗Z is a new random variable, the alphabet of 382

which is the outer product of the two alphabets and the PMV is the corresponding joint 383

probability: 384

X ⊗ Z → {X,Z} :

−→
F X ×

−→
F Z|X =


PX(x1) ∗ PZ|X(z1|x1)
PX(x1) ∗ PZ|X(z2|x1)

...
PX(x2) ∗ PZ|X(z1|x2)

...
PX(xn) ∗ PZ|X(zm|xn)

 ≡

P (x1, z1)
P (x1, z2))

...
P (x2, z1)

...
P (xn, zm)

 (16)

The joining of two random variables can be effectively visualized as yielding a matrix 385

(Fig 4), which is an intuitive and useful representation. However, a joint distribution is 386
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for all means and purposes just a new variable, and can be equivalently thought of as a 387

vector (e.g. a column vector). The extension of the ⊗ operation to multiple dimensions 388

is straightforward: 389

◦∏
i∈n

Xi = X1 ⊗X2 ⊗ ...⊗Xn :

−→
F X =

−→
F X1 ⊗

−→
F X2|X1

⊗
−→
F X3|X2X1

⊗ ...⊗
−→
F Xn|Xn−1...X1

(17)

The conditional probability distributions underlying the ⊗ operation may be 390

calculated theoretically (as is done, for example, in quantum mechanics) but is more 391

commonly derived empirically. An important condition correspond to the case in which 392

these values are unknown and/or the variables are assumed to be independent i.e. 393

FZ|X = FZ , which simplifies the ⊗ operation to: 394

−→
F X ×

−→
F Z =


PX(x1) ∗ PZ(z1)
PX(x1) ∗ PZ(z2)

...
PX(x2) ∗ PZ(z1)

...
PX(xn) ∗ PZ(zm)

 (18)

When, as in this case, independent of the random variables is assumed, the ⊗ 395

operation is effectively equivalent to an outer product (Kronecker product) of PMVs, 396

and the notation used is intended to recall this fact. 397

�: Reducing The � operation reverses ⊗. Let 1 and 2 be two different attributes, 398

and let them be represented by the random variables X1 and X2 with alphabets 399

χ1 = {1, 2, ..., n} and χ2 = {1, 2, ...,m} and PMFs FX1
and FX2

, and let X = X1 ⊗X2. 400

Then we define � as: 401

X �X2 → {X1} :
−→
F X�X2

=
−→
F X ×

1
−→
F X2|X1

=

=


P (x1x1) ∗ 1

P2|1(x1|x1) + P (x1x2) ∗ 1
P2|1(x2|x1) + ...+ P (x1xm) ∗ 1

P2|1(xm|x1)

P (x2x1) ∗ 1
P2|1(x1|x2) + P (x2x2) ∗ 1

P2|1(x2|x2) + ...+ P (x2xm) ∗ 1
P2|1(xm|x2)

...
P (xnx1) ∗ 1

P2|1(x1|xn) + P (xnx2) ∗ 1
P2|1(x2|xn) + ...+ P (xnxm) ∗ 1

P2|1(xm|xn)

 (19)

The � operation re-extracts marginal probabilities. When applied to the joint 402

distribution of two variables, as above, it re-creates one of them, e.g. X1. In the general 403

case of a multidimensional random vector X = {X1, X2, ...Xn}, the operation extracts a 404

subset of dimensions, which we will often indicate as a “complementary” random vector 405

Xc = X 	Xn. 406

⊕: Cumulating This operation cumulates attributes that are processed about a 407

phenomenon or event, thus generating and updating the total information contained in 408

it. Let X1 and X2 be two random variables with alphabets χ1 = {x1, x2, ..., xn} and 409

χ2 = {x1, x2, ..., xm} and PMFs FX1
and FX2

, the operation X1 ⊕X2 yields a new 410

random variable whose alphabet is the union set of the alphabets after appropriate 411

re-scaling, i.e. χ1 ∪ χ2 = {x′1, x′2, ..., xu} and whose PMV is the weighted sum of the 412

corresponding re-scaled PMVs
−→
F X1

and
−→
F X2

: 413
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X1 ⊕X2 :

w1
−→
F ′X1

+ w2
−→
F ′X2

=


w1Px1

(x′1) + w2P2(x′1)
w1Px1(x′2) + w2Px2(x′2)

...
w1Px1

(xu) + w2Px2
(xu)

 =


PX̃(x′1)
PX̃(x′2)
...
...

PX̃(xu)

 (20)

in which u is the alphabet size of the union set, |χ| = |χ1 ∪ χ2| and w1 and w2 414

correspond to the weights: 415

w1 =
w∗1

w∗1 + w∗2
and w2 =

w∗2
w∗1 + w∗2

, w1 + w2 = 1 (21)

It is straightforward to generalize the example above to the case of k random 416

variables: 417

◦∑
i∈k

Xi = X1 ⊕X2 ⊕ ...⊕Xk =
∑
i∈k

wi
−→
F Xi (22)

in which wi is an element of a vector weights w = {w1, w2, ..., wk} in turn derived from 418

a vector w∗ = {w∗1, w∗2, ..., w∗k} through the same calculations indicated above. 419

Therefore, the ⊕ operation always subtends vectors of weights that are 420

pre-determined empirically or theoretically. The simplest and most natural condition, 421

however, is one in which w∗ = 1, and the cumulated weights w directly reflect the 422

frequencies experienced. 423

The o-plus operation applies also in the case of individual events and absence of 424

information. Let x1 and x2 be experienced attributes of two separate objects or event, 425

with x1 6= x2 . x1 and x2 can be represented as random variables, X1 and X2 with 426

PMFs: 427

FX1
=

{
1 for X1 = x1

0 otherwise
FX2

=

{
1 for X2 = x2

0 otherwise
(23)

The PMF of their o-sum will be: 428

FX1⊕X2 =

w1 × 1 + w2 × 0 for X̃ = x1

w1 × 0 + w2 × 1 for X̃ = x2

0 otherwise

=

w1 for X̃ = x1

w2 for X̃ = x2

0 otherwise

(24)

In which, as before, w1 =
w∗1∑
i∈k wi

and w2 =
w∗2∑
i∈k wi

. As argued before, whilst the 429

weights can in principle have any value, the default assumption is w∗ = 1, which is a 430

case particularly fitting when information about attributes is acquired at the most 431

elementary level. With such weights, the resulting PMV is: 432

−→
F X1⊕X2

=

(
w1

w2

)
=

(
1
2
1
2

)
(25)

Now, to illustrate how frequency distributions of an attribute are built by the 433

cumulation of experiences, let’s o-sum to the previous two events a third event with 434

attribute equivalent to one of the previous two, i.e x′2 = x2. As before, we can represent 435

x′2 as a single-valued random variable X3: 436

FX3
=

{
1 for X3 = x2

0 otherwise
(26)
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Using equal weights, the operation
◦∑
X ≡ X1 ⊕X2 ⊕X3 will yield a new PMF: 437

−→
F ◦∑

X
=

w1 × 1 + w2 × 0 + w3 × 0
w1 × 0 + w2 × 1 + w3 × 1

0 otherwise
=


1
3 for X̃ = x1
2
3 for X̃ = x2

0 otherwise

(27)

And this of course produces the corresponding PMV: 438

−→
F ◦∑

X
=

(
w1

w2 + w3

)
=

(
1
3
2
3

)
≡
(
ν1

ν2

)
(28)

In which ν is used to indicate a frequency-derived probability. A mathematically 439

equivalent operation would consist in o-summing not each variable anew, as we did 440

above, but to o-sum the cumulative variable X̃ to the new variable X3, using 441

appropriate weights. Let X̃ ≡ X1 ⊕X2 and let w∗ = {1, 2} such that 442

w1 = 2/3, w2 = 1/3, then 443

−→
F X̃⊕X3

≡ w1
−→
F X̃ + w2

−→
F X3

=
2

3

(
1
2
1
2

)
+

1

3

(
0
1

)
=

(
1
3
2
3

)
≡
(
ν1

ν2

)
(29)

	: Removing This operation reverses of the ⊕ operation. Let X̃ = X1 ⊕X2 be a 444

cumulated random variable of alphabet χ = {x1, x2, ..., xu} and PMV 445

−→
F X̃ ≡ w1

−→
F X1

+ w2
−→
F X2

. The 	 operation is defined as: 446

X̃ 	X2 = X1 :
−→
F X̃	X2

=
FX̃ − w2FX2

1− w2
=


PX̃(1)−w2P2(1)

1−w2
PX̃(2)−w2P2(2)

1−w2

...
PX̃(u)−w2P2(u)

1−w2

 (30)

It is theoretically possible to extend this operation to cases in which none of the 447

variables involved is a cumulated variable, but this would require setting restrictions on 448

the applicable PMVs or alternatively allow probabilities to be negative, a concept of 449

unclear meaning. The possibility of extending this operation should be explored in 450

future work. 451

0.7 Shannon Entropy with ⊗ and ⊕ 452

In this section we examine how the two operations defined above affect the entropy and 453

K functions. 454

Lemma 0.1. Let 1, 2, ...n be attributes, let x1, x2...xn be corresponding events (i.e. 455

instantiations of the attributes), and let X1, X2, ..., Xn be corresponding random 456

variables, i.e. random variables whose probability distributions P1, P2...Pn are the result 457

of cumulations of instantiations of each attribute. 458

H(

◦∏
n
x) = log

1

PX1
(x1)

+log
1

PX2|X1
(x2|x1)

+...+log
1

PXn|Xn−1Xn−2...X1
(xn|xn−1xn−2...x1)

H(

◦∏
n
X) = H(X1)+H(X2|X1)+...+H(Xn|Xn−1Xn−2...X1)... =

∑
n

H(X|Xn−1, Xn−2, ...X1)

459

H(

◦∏
n
X �Xm) =

∑
n 6=m

H(Xn|Xn−1, Xn−2, ...X1)
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Proof. Follows directly from our definition of the operation ⊗ and � and the chain rule 460

of entropy, according to which if X and Y are two random variables and XY is their 461

joint distribution, then H(XY ) = H(X) +H(Y |X). 462

As mentioned previously, a case of particular relevance occurs when the attributes 463

are assumed to be independent (Fig 5). To indicate this condition we will use a special 464

notation, in which the operation sign is exterior to the entropy symbol: 465

H(

◦∏
n
X) ≡

◦∏
n
H(X) ⇐⇒

∑
n

H(X|Xn−1, Xn−2, ...X1) ≡
∑
n

H(X) (31)

Lemma 0.2. Let X be an attribute and let x1, x2...xm be events, i.e. instantiations of 466

the attribute X, then 467

H(

◦∑
m
x) ≡ H(

−→
F X) ≡ H(X)

in which
−→
F X is the PMV obtained by cumulation. Let X1, X2...Xk be separate 468

cumulations of events of the same attribute then 469

H(

◦∑
k
X) =

∑
j≤k

wjH(Xj) +
∑
j≤k

wjD(Xj ||X̃) ≡
◦∑
H(X) +

◦∑
D(X||X̃) (32)

In which X̃ ≡
◦∑
X, wj are the weights underlying the ⊕ operation and D is 470

Kullback-Leibler’s distance. 471

Proof. The first claim follows directly from the definition of entropy and of the ⊕ 472

operation, which from a cumulation of individual events gives rise to a random variable 473

with PMV
−→
F X . The second claim follows similarly: 474

H(

◦∑
X) = −

∑
x

∑
j≤k

wjPj(x)log(
∑
j≤k

wjPj(x)) = −
∑
j≤k

wj
∑
x

Pj(x)log(
∑
j≤k

wjPj(x)) =

= −
∑
j≤k

wj
∑
x

Pj(x)log(wjPj(x)

∑
j≤k wjPj(x)

wjPj(x)
) = −

∑
j≤k

wj
∑
x

Pj(x)[log(wj)+log(Pj(x))−

−log(
wjPj(x)∑
j≤k wjPj(x)

)] = −
∑
j≤k

wj
∑
x

Pj(x)log(Pj(x))+
∑
j≤k

wj
∑
x

Pj(x)log(
Pj(x)∑

j≤k wjPj(x)
) ≡

≡
∑
j≤k

wjH(Xj) +
∑
j≤k

wjD(Xj ||X̃) (33)

475

Lemma 0.3. Let X be a random variable with alphabet χ : {x1, x2...xm} and PMV 476

−→
F X and let xi be a new event which is cumulated to X with a weight wi. 477

If xi 6∈ χ, then H(X ⊕ xi) = C ×H(X) +H(C) (34)

in which C = 1− wi and C : {C, 1− C} is the PMV of binary probability C. 478

If xi = xj , xj ∈ χ, then H(X ⊕ xi) = CH(X) +H(C)− δ(i, j)X (35)
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in which δ(i, j)X ≡ −CP (i = j)log CP (i=j)
CP (i=j)+(1−C) − (1− C)log (1−C)

CP (i=j)+(1−C) is the 479

information distance in X between the two events i, j given the probability distribution 480

P (x) of X. 481

Let X1, X2, ..., Xk, Xk+1 be random variables, then 482

H(

◦∑
k+1

X) =

C × (H(

◦∑
k
X) +D(

◦∑
k
X||

◦∑
k+1

X)) + (1− C)(H(Xk+1) +D(Xk+1||
◦∑
k+1

X))

(36)

Proof. We prove the latter statement and derive the former two as special cases.

H(

◦∑
k+1

X) = −
∑
x

∑
i≤k+1

wiPi(x)log
∑
i≤k+1

wiPi(x) =

= −
∑
x

∑
i≤k+1

wiPi(x)log
∑
i≤k+1

wiPi(x)

∑
i≤k ziPi(x)∑
i≤k ziPi(x)

(37)

in which zi are the weights of the previous cumulation, i.e. that of the first k elements.

Since wi ≡ w∗i∑
i≤k+1 w

∗
i

and zi ≡ w∗i∑
i≤k w

∗
i

, then wi = C × zi, therefore the above becomes:

−
∑
x

∑
i≤k+1

wiPi(x)log
∑
i≤k

ziPi(x)−
∑
y

∑
i≤k+1

wiPi(x)

∑
i≤k+1 wiPi(x)∑
i≤k ziPi(x)

=

= −
∑
x

∑
i≤k

CziPi(x)log
∑
x

∑
i≤k

ziPi(x)−
∑
x

wk+1Pk+1(x)log
∑
i≤k

ziPi(x)+

+
∑
x

∑
i≤k

CziPi(x)log

∑
i≤k ziPi(x)∑

i≤k+1 wiPi(x)
−
∑
x

wk+1Pk+1(x)log

∑
i≤k+1 wiPi(x)∑
i≤k ziPi(x)

(38)

which simplifies to the above, with wk+1 = 1− C. When the cumulation regards 483

individual events x, then the probability of xi is one, which removes the second entropy 484

term and simplifies to the equation above to C(H(z)− logC)− (1− C)log(1− C) or 485

equivalently CH(Xm) +H(C), plus eventual distance terms when 486

xm+1 = xj ∈ |χm|. 487

Lemma 0.3 shows that all terms that add or subtract entropy are directly dependent 488

on C and therefore on the weighting underlying the operation. If weights are just an 489

inverse function of the number of elements added, then the entropy of a cumulated 490

random variable will always converge to a stable value. 491

Lemma 0.4 (Cumulation of completely overlapping variables). Let X1, X2, ..., Xk be 492

random variables. 493

H(

◦∑
j≤k

Xj) =
∑
j≤k

wjH(Xj) ⇐⇒ Xm = Xn∀m ≤ k, n ≤ k (39)

Proof. Follows from (19), since w1

∑
x P1(x)log( P1(x)∑

j wjPj(x) ) = 0 and 494

w2

∑
x P2(x)log( P2(x)∑

j wjPj(x) ) = 0 implies that P1(x) =
∑
j wjPj(x) and 495

P2(x) =
∑
j wjPj(x) and therefore P1(x) = P2(x)∀x ∈ χ̃. 496
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Figure 5. Visual representation of the ⊕ operation between random variables whose
alphabets are completely non-overlapping (see Figure 4B for comparison and text for
further details).

Lemma 0.5 (Cumulation of completely non-overlapping variables). Let X1, X2, ..., Xk 497

be random variables, let w be the vector of weights underlying the operation
◦∑
j≤kXj, 498

such that
∑
w∈w w = 1. 499

H(

◦∑
j≤k

Xj) =

◦∑
H(X) +H(w) ⇐⇒ χi ∪ χj = ∅∀i ≤ k, j ≤ k, i 6= j (40)

Proof. When X1, X2 do not overlap, then 500

H(

◦∑
j≤k

Xj) = −
∑
j≤k

wj
∑
x

Pj(x)log(wjPj

∑
j≤k wjPj(x)

wjPj(x)
) =

= −
∑
j≤k

wj
∑
x

Pj(x)log(wjPj(x)) = −
∑
j≤k

wj
∑
x

Pj(x)log(Pj(x))−
∑
j≤k

wj log(wj)

(41)

501

The lemma yields an important and intuitive result. When completely independent 502

objects or events are joined in one, each of them retains its original amount of 503

information, but this gets reduced by a constant because each object now contains 504

information about the other (if the instantiation of one of them occurs, then no 505

instantiation of the other can occur). Therefore, the information in the new object is a 506

weighted average of the information of its components, plus the information needed to 507

distinguish them. The latter information is contained in the entropy of the weights. 508

With equal weights and just two distributions, for example, each entropy term is halved 509

and augmented by one bit (Fig 5). 510

Lemma 0.6. Let X1, X2, ..., Xk be random variables, with 511

H(
◦∑
kX) =

◦∑
kH(X) +

◦∑
kD(X||X̃), then 512

0 ≤
◦∑
k
D(Xj ||

◦∑
j≤k

Xj) ≤ H(w) ≤ log(k) (42)

Proof. Follows from all preceding lemmas. 513

514

The analogy between conclusion of lemma 0.5 and the definition of Total 515

Information Content given previously should be clear, and can be made explicit: 516

19/54

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1968v1 | CC-BY 4.0 Open Access | rec: 19 Apr 2016, publ: 19 Apr 2016



Lemma 0.7. Let x be an event or object with universal probability PU (x). Then, with 517

n = 1, 518

T (x) = H(x) +D(x||PU (x))
519

T (

◦∑
x) = H(X) +D(X||U)

520

T (

◦∑
X) =

◦∑
H(X) +

◦∑
D(X||X̃) +

◦∑
D(X||U)

Proof.

T (

◦∑
x) = −

∑
x

∑
j≤k

wjPj(x)log
∑
j≤k

wjPUj(x) = −
∑
x

∑
j≤k

wjPj(x)log
∑
j≤k

wj
Pj(x)PUj(x)

Pj(x)
=

= −
∑
x

∑
j≤k

wjPj(x)log
∑
j≤k

wjPj(x) +
∑
x

∑
j≤k

wjPj(x)log
Pj(x)

PUj(x)
≡

≡ H(
◦∑
j≤k

Xj) +

◦∑
D(X||U) (43)

The other cases follow similarly. 521

Results 522

We will first show that the K function expresses three properties that knowledge is 523

intuitively expected to have. 524

0.8 Properties of K 525

Property 1: Occam’s razor The principle popularly known as ”Occam’s razor” 526

states that when two equally plausible explanations are available for the same 527

phenomenon, the simpler explanation should be preferred. Although it makes intuitive 528

sense, this principle has proven difficult to justify on philosophical and logical grounds. 529

Several aesthetic, probabilistic and pragmatic arguments have been proposed, but 530

Occam’s razor remains a notion that, rather than being demonstrated, is postulated as 531

a desideratum of knowledge. Intriguingly, the present theory does not need to postulate 532

this principle nor invoke additional arguments to justify it. Occam’s razor is an intrinsic 533

property of the K function. 534

Translated into our notation, Occam’s razor posits the existence of a single 535

explandum y and two candidate explanantia a and b: 536

K(y; a) =
H(y)−H(y|a)

H(y) +H(a)
vs. K(y; b) =

H(y)−H(y|b)
H(y) +H(b)

(44)

Both explanations are assumed to be equally effective, i.e. 537

H(y)−H(y|a) = H(y)−H(y|b), but one of the explanation is ”simpler” than the other. 538

As discussed in section 0.3, simplicity can be expressed in terms of Kolmogorov 539

complexity (e.g. the length of the minimum description of the explanation), Shannon 540

entropy (i.e. the frequency-derived probability or the subjective weight or plausibility 541

attributed to each explanation) or a combination of both (i.e. the Total information). 542

Using Shannon’s entropy notation: 543

H(a) < H(b) (45)
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which leads to 544

K(y; a) > K(y; b) (46)

The simpler explanation yields a higher K, which justifies Occam’s choice. 545

The remarkable aspect of this result is that the K function was not constructed with 546

the explicit purpose of accommodating Occam’s razor, but was derived from the mutual 547

information function following a postulated equivalence of knowledge with 548

pattern-detection. The finding that Occam’s razor is intrinsic to K is a striking support 549

for the notion that knowledge is information compression and that simplicity and 550

elegance are not an arbitrary aesthetic values that people (including scientists) choose 551

to impose on knowledge, as scholars have argued [33]. To the extent that it underlies 552

the encoding of patterns, simplicity is knowledge. 553

Property 2: Optimal accuracy Another property of K that, like Occam’s razor, is 554

commonly and intuitively associated with knowledge is its dependence on optimal 555

accuracy. When accuracy is suboptimal, information is lost; when accuracy is excessive, 556

information becomes redundant, wasting resources and reducing knowledge. Again, with 557

no need to postulate resource costs, we find this property to be intrinsic to our 558

definition of knowledge as expressed in the K function. 559

Definition: accuracy Let X be a quantized attribute, and let a ∈ N be the 560

number αx of partitions of the attribute, or in other words the size of the alphabet of X. 561

We define as the accuracy of measurement of X the size of the partition αx = 1
ax

. The 562

corresponding random variable, which associates probabilities to each partition of X, 563

will represent a quantization of X indicated as Xαx or, when the value is clear from the 564

context,Xα . An increase of measurement accuracy can be represented as a progressive 565

sub-partitioning of the attribute being measured (Fig 1). 566

Lemma 0.8. Let Xα be a quantized variable of accuracy a, let n ∈ N with n ≥ 2, and 567

let α′ = α/n represent a higher accuracy. Then: 568

0 < H(Xα′)−H(Xα) ≤ log(n) (47)

Proof. The proof follows from the effects that the partitioning has on the entropy. If 569

H(Xα) = −
∑a

1 p(x)log(p(x)), with x corresponding to the value of attribute in each of 570

the a partitions, then H(Xα′) = −
∑a×n

1 p(x′)log(p(x′)) = −
∑a

1

∑n
1 p(x

′)log(p(x′)). 571

Known properties of entropy tells us that the entropy of the n-partition of α is smaller 572

or equal to the logarithm of the number n of partitions with equality if and only if the 573

n-partitions of α have all the same probability, i.e. P (x′) = 1
n∀x

′. 574

Definition: measurement error Let Xα be a quantized random variable with 575

accuracy α, and let α′ = α/n represent a higher accuracy. The measurement error of 576

Xα is a quantity e ∈ Q such that: 577

H(Xα′)−H(Xα) = log(n),∀α′ ≤ e (48)

Definition: empirical system A system Y X is said to be empirical if its 578

quantization has measurement error. Equivalently, a non-empirical, (i.e. 579

logico-deductive) system is a system YX for which measurement error e = 0. 580

The effect that a change in accuracy has on K depends on the underlying properties 581

of the system, and in particular on the speed with which the entropy of the 582

explanandum and/or explanans increase relative to their joint distribution. 583
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Theorem 0.9 (Knowledge of empirical systems has an optimal accuracy). For every 584

system Y αy , Xαx that is empirical (has non-zero measurement error), there are optimal 585

values of accuracy α∗y and α∗x such that: 586

K(Y α∗y , Xα∗x) > K(Y αy , Xαx)∀αy 6= α∗y, αx 6= α∗x (49)

Proof. Limiting for simplicity the case to the accuracy of Y and indicating, as before, 587

with α′ = α/n, we have: 588

K(Y α
′
;X) > K(Y α;X) ⇐⇒ H(Y α

′
X)

H(Y α′) +H(X)
<

H(Y αX)

H(Y α) +H(X)
(50)

From lemma 0.8 we know that H(Y α
′
)−H(Y α) ≤ log(n), i.e. 589

H(Y α
′
) ≤ H(Y α) + log(n), and re-arranging we get the condition: 590

H(Y α
′
|X)−H(Y α|X) < (1−K(Y α;X))log(n) (51)

which can only be true if H(Y α
′ |X)−H(Y α|X) << log(n) for any alphabet size of Y . 591

In other words, K will only grow at every new sub-partitioning of Y if the resulting 592

sub-partitions are never equally probable when conditioned on the explanans. Therefore, 593

inequality 51 is only satisfied for systems that are measurable to infinite accuracy. The 594

opposite condition, K(Y α
′
;X) > K(Y α;X) is not necessarily true. In particular, it is 595

always true when K(Y α;X) has reached its maximum, i.e. when H(Y αX) = H(X), 596

but not necessarily otherwise. 597

Theorem 0.9 guarantees that, for any system composed of two quantized random 598

variables Y αy , Xαx , if accuracy is increased arbitrarily then K(Y αy , Xαx) will reach a 599

maximum and subsequently decline, unless limα→0H(Y αy |Xαx) = 0. The latter 600

condition is only and always satisfied when Y = X, i.e. when the system is composed of 601

an identity. As will be discussed in section 0.11, identities are the defining property of 602

logico-deductive knowledge (e.g. mathematics), which is a special case that can 603

nonetheless be analysed and quantified with the K function. 604

Property 3: Ignorance about the future This is also an intrinsic property of the 605

K function, derivable mathematically with no need to postulate physical or 606

physiological constraints. As will be shown, this also implies that empirical knowledge is 607

limited by a “chaos horizon”. 608

Theorem 0.10 (K is a non-increasing function of time). Let Yt, Xt0 be an 609

explanandum and an explanans, let H(Yt|Xt0) be the pattern linking explanans and 610

explanandum, and let K(Yt;Xt0) be the corresponding knowledge of the system at time t. 611

Let let Yt′ be the state of the explanandum at a different time t′ = t+ ∆t. 612

if 0 < K(YtXt0) < 1 then K(Yt′ ;Xt0) < K(Yt;Xt0) (52)

Proof. Proof follows from the assumption that the explanans Xt0 remains unchanged, 613

i.e. that at time t′ the knower has no additional information compared to what it had at 614

time t0. Because of this, the values of H(Yt′) and H(Yt′ |Xt0) can only be extrapolations 615

from (i.e. functions of) the the explanandum measured at time t i.e. H(Yt′) = f(Yt) 616

and H(Yt′ |Xt0) = f(Yt|Xt0). Under these conditions, the data processing inequality 617

applies [36], which dictates that I(Xt0 ;Yt) ≥ I(Xt0 ;Yt′). Note that ∆t can be positive 618

as well as negative, in other words the inequality is true for t′ > t as well as t′ < t, 619

leading to generalize the theorem to distances forward as well as backwards in time. 620

The data processing inequality would allow for I(Xt0 ;Yt) = I(Xt0 ;Yt′), but this case 621

is excluded under the conditions of imperfect knowledge imposed by the theorem. We 622
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see this by examining the derivative of K with respect to t (allowed because K is 623

continuous and differentiable with respect to a continuous variable such as t). To 624

simplify the notation, we will assume t0 = t = 0 so that ∆t ≡ t. The conditions for K 625

to be non-decreasing are: 626

dK(YtX)

dt
≥ 0⇔ dH(Yt)

dt
(1−K(YtX)) ≥ dH(Yt|X)

dt
(53)

This condition is never satisfied unless one assumed that the entropy of Yt grows 627

faster than that of its conditional counterpart. However, this is impossible because 628

H(Y |X) = H(Y ) +H(X|Y )−H(X) and H(X) is fixed by assumption, yielding 629

H ′(Y |X) = H ′(Y ) +H ′(X|Y ). Since 0 ≤ 1−K(Y X) ≤ 1, the condition of equality is 630

possible only when either K(Yt0Xt0) = 0, and there is no knowledge in the system to 631

begin with, or when K(Yt0Xt0) = 1, i.e. when knowledge is complete - a condition that 632

is never satisfied in ordinary knowledge. 633

Note that the theorem does not preclude the possibility that if the explandum is 634

measured at a different δt from t0, the corresponding value of K might be higher. 635

However, it precludes the possibility that the knower’s predictions about the state of the 636

explanandum could ever yield more knowledge than that obtained by the system at 637

time t, unless new information is available. 638

Inevitability of chaos If knowledge is bound to decline over time, then every 639

empirical system must have a temporal horizon beyond which knowledge of the system 640

is zero. In other words, all systems possess a ”chaos horizon”. 641

Lemma 0.11. For any system YtXt0 with K(YtXt0) < 1, given an arbitrary threshold 642

ε ∈ [0, 1], there is a time t† such that K(Yt† ;Xt0) ≈ 0. 643

Proof. This conclusion follows from theorem 0.10. If for all empirical systems K 644

decreases over time, then for all empirical systems there must be a time t† at which 645

H(Yt†)−H(Yt† |Xt0) ≤ ε. 646

The lemma suggests that all empirical systems have what may be described as a 647

chaos horizon, i.e. a point beyond which knowledge is impossible. A system is said to be 648

chaotic when it is highly sensitive to initial conditions. Since accuracy of measurement 649

of initial states is limited, future states of the system become rapidly unpredictable even 650

when the system is seemingly simple and fully deterministic. Paradigmatic chaotic 651

systems, such as the 3-body problem or the Lorenz equations that simulate the weather, 652

share the characteristics of being strikingly simple and yet are extremely sensitive to 653

initial conditions, which made their instability particularly notable [42,43]. 654

In standard chaos theory, the rapidity with which a system diverges from the 655

predicted trajectory can be measured by an exponential function in the form: 656

dN
d0
≈ eλN (54)

in which dN/d0 is the relative offset after N steps, and λ is the so called Liapunov 657

exponent, a parameter that quantifies sensitivity of the system to initial conditions. 658

Positive Liapunov exponents correspond to a chaotic system, negative values correspond 659

to stable systems, i.e. systems that are resilient to perturbation. 660

The exact connection between the empirical concept of chaos in chaos theory and 661

the knowledge horizon predicted by lemma 0.11 remains to be fully explored. However, 662

we can use the concept of Liapunov exponent to model the loss of knowledge over time 663

as an exponential function. Even if we ignore chaos theory, exponential functions are a 664

common model of choice for random time-decay phenomena, because they possess useful 665
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Figure 6. Rates of loss of knowledge over time, quantified by the K function with
values of the parameter lambda.

properties such as being memoryless. Therefore, given a system YtX0 and an initial 666

state of knowledge K0 = K(Yt;Xt0), we can model the rate of knowledge loss as: 667

K(Y∆t;X) ∼ K0e
−λ∆t (55)

in which ∆t = t′ − t is the interval between the original time and λ is the rate of 668

information loss. Our λ is analogous to a Liapunov exponent, but it is unclear how 669

resilience connects to the concept of knowledge decline examined in this essay, 670

Therefore, for our current purposes we will ignore the condition λ < 0, and assume that 671

all knowledge systems have an associated value λ ≥ 0, with equality corresponding to no 672

loss of knowledge over time, which is the condition of logico-deductive systems (Fig 6). 673

Lemma 0.11 tells us that every empirical system with a defined value of K(Y ;X) 674

will have a characteristic speed with which it approaches its chaos horizon. Since 675

estimating when knowledge is completely lost will be, under most circumstances, easier 676

than estimating conventional measures of decay (e.g. half life), we will use the point of 677

chaos t† to define a system-specific rate of knowledge loss: 678

Λ ≡ 1

t†
log

K0

ε
(56)

This quantity is highly system-specific and depends not just on properties of the 679

phenomena examined, but also on the accuracy with which these are measured. 680

0.9 Knowledge 681

We may distinguish three fundamental processes by which knowledge is acquired and/or 682

used: 1) experience, in which information relating to individual events or objects is 683

structured by encoded patterns; 2) experience cumulation, in which patterns are 684

reinforced or weakened; 3) pattern creation, in which encoded patterns are tentatively 685

recombined. The three processes are strictly intertwined, of course, and knowledge 686

emerges dynamically from the interplay of the three. 687

Experience Experience requires the direct application of knowledge, and would not 688

be possible without it. An event or object enters cognition only when it carries some 689

level of uncertainty or, equivalently, non-zero information in its structure and/or 690

frequency, i.e. H(y) > 0. The extent to which such uncertainty is reduced by encoded 691

patterns quantifies the amount of understanding or recognizing. Using our notation: 692
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K(y;x) ≡ H(y)−H(y|x)

H(y) +H(x)
(57)

in which y, x are individual objects or events. The event is explained by the 693

encoding of a relation H(y|x) which is derived from the cumulation of experience (phase 694

described below). 695

Note that for the K function to have non-zero finite value, the term H(x) can never 696

be zero. This implies that, based on our definition of knowledge, no object or experience 697

can be explained without additional information. In knowledge there is no “free lunch”. 698

If this is true, however, and H(x) > 0, then it is also true that K(y;x) < 1 for any y. In 699

other words, explanations can never be ”complete”, because some a priori information 700

always needs to be input. There can be no ”theory of everything” in a literal sense, 701

because such theory will never be able to explain itself. 702

Knowledge ≡ Experience Cumulation and Aggregation Knowledge builds 703

upon experiences, by a process of cumulation in which all the terms involved are 704

updated: 705

K(

◦∑
n

(y;x)) ≡
H(

◦∑
ny)−H(

◦∑
ny|x)

H(
◦∑
ny) +H(

◦∑
nx)

≡ K(Y ;X) (cumulation)

Note that these individual events are “atomic” from the point of view of the specific 706

cumulation process but may themselves consists of objects of any level of complexity. 707

With the term “aggregation” will indicate a higher-order cumulation of encoded 708

patterns: 709

K(

◦∑
k

(

◦∑
n

(y;x))) ≡ K(

◦∑
k

(Y ;X)) ≡
H(

◦∑
kY )−H(

◦∑
kY |X)

H(
◦∑
kY ) +H(

◦∑
kX)

(aggregation)

Postulating an aggregation phase is also useful to accommodate temporal and spatial 710

discontinuities with which organisms might encode patterns. Individual organisms 711

usually learn through a cumulation of experiences that might occur at different times in 712

different places. There is also a sense in which populations of organisms encode patterns 713

that are a weighted average (an aggregation) of the patterns encoded within each 714

member of the population. 715

Knowledge gained per experience As n experiences cumulate, knowledge changes 716

at the n+ 1 step as ∆K ≡ K(
◦∑
n+1(y;x))−K(

◦∑
n(y;x)) which re-arranged, gives: 717

∆K ≡
(C −Q)(H(

◦∑
ny)−H(

◦∑
ny|x)) + δy|x − δy

H(
◦∑
n+1y) +H(

◦∑
n+1x)

(58)

with C = 1− wn+1, Q =
H(
◦∑

n+1y)+H(
◦∑

n+1x)

H(
◦∑
ny)+H(

◦∑
nx)

and δy|x, δy are shorthand for the 718

information that is saved when the new events match old ones (see lemma 0.3). When 719

∆K > 0, the pattern is reinforced and thus knowledge grows; when ∆K < 0 the pattern 720

is weakened and knowledge decreases. 721

If the new experience does not relate to unknown instances of either explanans or 722

explanandum, then Q < 1, dy = 0 and dy|x > 0. As the number of experiences 723
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cumulated increases, then both C and Q should, all else being equal, converge to 1. 724

Therefore, as intuition would suggest: 1) knowledge always increases when, all else 725

being equal, a new experience is made about a fixed (a known) system; 2) vice versa, 726

when the novel experience brings new uncertainty about explanandum or explanans, 727

then knowledge about the phenomenon is likely to decrease; however, 3) knowledge 728

becomes less likely to change in any direction as the number of cumulated experiences 729

grows, though the rate of this change depends entirely on how new experiences are 730

weighted compared to old ones. 731

Creativity ≡ Knowledge Expansion The ability to encode new patterns is 732

necessarily generated by modification of pre-existing encoded patterns - nothing can be 733

generated from nothing. In practice, this modification must therefore consist in the 734

expansion of the pattern to new attributes of the explanandum, the explanans or both. 735

Independent of the pattern-encoding substratum, the source of novelty will likely 736

include a source of randomness on which the organism subsequently capitalizes. Just as 737

random mutations generate novelty in genomes, it is likely that the random formation 738

new synaptic potential connection is a source of creativity in brains. Whatever their 739

generating mechanism, newly created patterns are by definition “tentative”, because 740

they have no pre-defined objective and simply create a potential that will be reinforced 741

or weakened by cumulation and aggregation of experiences. 742

K(

◦∏
(Y ;X)) ≡ H(

◦∏
Y )−H(

◦∏
Y |X)

H(
◦∏
Y ) +H(

◦∏
X)

(expansion)

This process represents and “expansion” because it allows a knower to experience 743

objects or events of increasing complexity (i.e.lower universal probability), opening up 744

new uncertainty spaces to compress. This does not just include creating associations 745

between new variables, but also increasing accuracy, making predictions, etc. 746

Combinations of the ⊗ and � operations can be shown to underlie any process by which 747

new potential knowledge is created. We avoid providing details in this section, although 748

a scheme is provided in section 0.11. 749

0.10 Knowledge growth 750

When experiences are registered as individual events, all distinct and disconnected from 751

one another, knowledge is zero and cannot grow: 752

◦∑
K(y;x) ≡ H(νy)−H(νy|x)

H(νy) +H(νx)
=
H(ν)−H(ν)

2H(ν)
= 0 (disconnected experiences)

When knowledge of individual systems is encoded, (i.e. K(
◦∑
y;x) > 0) but these are 753

cumulated as completely disaggregated, i.e. completely non-overlapping systems total K 754

equals: 755

◦∑
K(Y ;X) ≡

◦∑
H(Y )−

◦∑
H(Y |X)

2H(w) +
◦∑
H(Y ) +

◦∑
H(X)

(disconnected knowledge)

The H(w) term reflects the fact that if each system is encoded as non-overlapping, 756

the total uncertainty equals the average uncertainty of each system plus the information 757

necessary to distinguish each system. This term disappears at the numerator but not at 758

the denominator, making disaggregated knowledge a decreasing function of the number 759
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of systems involved. We can show how cumulating and aggregating knowledge is an 760

adaptive response to the growing information costs of unstructured information. 761

Knowledge growth by cumulation Cumulating knowledge is a viable strategy if

K(
◦∑
Y ;X) >

◦∑
K(Y ;X). We can re-arrange the condition and obtain, using the tilde

to represent cumulation (i.e. Z̃ ≡
◦∑
Z):

◦∑
D(Y |X|| ˜Y |X)−

◦∑
D(Y ||Ỹ ) <

◦∑
K(Y ;X)(2H(w)−

◦∑
D(Y ||Ỹ )−

◦∑
D(X||X̃)) (59)

We know from lemmas 0.4, 0.5 that the right hand side is ≥ 0, so the condition is 762

satisfied whenever
◦∑
D(Y |X|| ˜Y |X) ≤

◦∑
D(Y ||Ỹ ). The advantage of cumulating is null 763

when
◦∑
K(Y ;X) = 0 and increases in proportion to the average K and the number 764

(entropy) of systems being aggregated. 765

Knowledge growth by complexification Similarly, expansion of knowledge is a 766

beneficial when, K(
◦∏
Y ;X) >

◦∑
K(Y ;X) which, knowing that 767

◦∏
K(Y ;X) ≈

◦∑
H(Y )−

◦∑
H(Y |X)

◦∑
H(Y )+

◦∑
H(X)

, can be simplified to: 768

2H(w) >

◦∏
K(Y ;X)−K(

◦∏
Y ;X)

K(
◦∏
Y ;X)

(60)

Note that the right-hand side of the inequality is constrained whereas the left-hand 769

side increases with the number of disaggregated systems. Therefore, as the number of 770

systems in a disaggregated fashion cumulates, it becomes ever more convenient to merge 771

them into a more complex (multidimensional) system, producing knowledge of higher 772

complexity. A more restrictive condition would contemplate systems that do not contain 773

any information of each other. In such case, H(w) = 0 and equation 60 is satisfied if 774

and only if
◦∏
K(Y ;X) < K(

◦∏
Y ;X). 775

776

Therefore, the two essential properties at the basis of biological and cognitive 777

evolution, i.e. the ability to combine sets of events and extract patterns and the 778

tendency to extract patterns of ever higher complexity emerge naturally as strategies to 779

maximize K (reduce redundancy). The higher the number of challenges faced by an 780

organism and benefit accrued from each encoded pattern, the greater the advantage of 781

integrating such patterns into a smaller number of systems of higher complexity. Once 782

knowledge about a system of high complexity is encoded, simplification of the new 783

system is likely to become beneficial, too. 784

Simplification Let Y X be a system, and let T (Y ) and T (X) be their respective 785

total information contents. As shown in section 0.3, we can always partition the total 786

information in a Shannon entropy component and a ”residual complexity” component. 787

The criterion of such partitioning is entirely arbitrary. A system is said to be simplified 788

when the entropy components of explanandum or explanans are chosen such that: 789

H(Y )−H(Y |X) +D(Y ||YU )−D(Y |X)||Y |XU )

H(Y ) +D(Y ||YU ) +H(X) +D(X||XU )
<
H(Y )−H(Y |X)

H(Y ) +H(X)
(61)
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the simplification will be maximized when the partitioning is such that 790

D(Y ||YU ) = D(Y |X), i.e. when the explanans contains no relevant information about 791

the residual complexity terms. Each term can thus be reduced to its essential properties, 792

a process we call abstraction: 793

T (Y )→ T (Y � Y c) ≡ H(X) and T (X)→ T (X �Xc) ≡ H(X) (62)

The recursive interplay of cumulation and transformation and simplification creates 794

structures of ever-increasing order and growing level of abstraction and complexity. 795

0.11 Science 796

Scientific knowledge, as argued in the introduction, is not fundamentally different from 797

ordinary knowledge: it consists in the encoding of patterns that reduce uncertainty 798

about phenomena. Science, however, is a particularly powerful pattern-encoding 799

activity, which allowed human beings to move beyond their ordinary perceptual and 800

cognitive capacities. This power comes to science by the adoption of rules and practices 801

which we generically call the “scientific method”. It would be incorrect to identify 802

science with any specific set of rules, as some attempted to do in the past ( 2), because 803

the scientific method is certainly in constant evolution. However, the explication of a 804

methodology clearly represents a defining feature of any activity that aspires to be 805

considered scientific - including a pseudoscience. 806

The term ”methodology” is used in this essay in the broadest possible sense, to 807

indicate all theories, models, procedures, instrumentation that contributed to a result. 808

From a practical point of view, the methodology of a study is embodied (albeit 809

imperfectly, as argued below) in the Introduction and Materials and Methods sections of 810

the study’s publication. From a theoretical point of view, a study’s methodology should 811

be conceived as the algorithm that, given the explanans as input, yields a certain 812

amount of information (reduced uncertainty) about the explanandum. 813

If methodology is part of scientific explanation, then its natural position in the K 814

function is to be part of the explanans. More specifically, methodology is a component 815

of the explanans which, at least in principle (i.e. in absence of bias, see section 0.15), is 816

independent of both explanans and explanandum. Mathematically, this concept 817

translates in the partitioning of the explanans in two components: x→ xm, and in 818

positing that H(xm) = H(x) +H(m), H(y|m) = H(y), H(y|mx) ≤ H(y|x). 819

Methodology as conditioning The mathematization of scientific methodology 820

proposed above suggests a rather new interpretation the concept of scientific 821

methodology: it is a conditioning of the pattern, in other words a conditioning of the 822

knowledge claimed by a study about a particular system Y X. We can visualize this 823

concept by imagining the set of all possibles methodologies applicable to a system Y X. 824

Let Y X be a system of interest and let m∗ be the methodology adopted by a given 825

study. Let l∗ be the minimum description length of m∗, expressed as a binary string. 826

The content, and therefore the length, of m will depend on the nature of the system and 827

choices made by scientists. However, postulate 1 guarantees that this description is 828

finite, and therefore that for every system Y X there is an l∗ of finite length. The 829

universal probability of such string is PU (l∗) = 2−l
∗
, and therefore the methodology’s 830

Kolmogorov complexity, is C(m∗) ≈ log(2l
∗
) = l∗. Now, let ℵY X : {Y Xm1, Y Xm2...} 831

be the set of all possible studies about the system Y X that use methodology description 832

lengths l∗. This set will have 2l
∗

elements, each occuring with a probability 2−l
∗
. To 833

pin-point a specific element of this set, we would need exactly l∗ ≈ C(m∗) bits. 834

Therefore, the complexity of a study’s methodology is also the minimum information 835

required to identify that particular methodology amongst all its possible alternatives of 836
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Figure 7. Pictorial representation of the set of all possible methodologies, ℵ, with
fading borders to emphasize the very large size L of this set. If the study with
methodology mij is one element of this set, the Kolmogorov complexity of the
methodology’s description, C(mij) is equivalent to the information required to identify
it, i.e. Shannon’s information H(L).

equivalent description length. It is therefore also the minimum information that 837

identifies a particular study of Y X amongst all the possible studies that could have 838

been conducted with the given methodology description length. The more ”complex” a 839

methodology, the longer its minimum description length, the larger the size of its 840

associated ℵY X set (Fig 7). 841

Specifying, as we will henceforth do, a study by its methodology m, is equivalent to 842

representing study outcomes Y Xmi as instantiations of a random variable with uniform 843

probability 2−C(m) and conditioning that random variable it to the case 844

Y Xmi = Y Xm. 845

Whilst all the above holds in theory, in practice the methodology of a study is rarely 846

accessible in complete form. A research publication, for example, will usually omit large 847

amounts of information that are either assumed to be known by the targeted readers or 848

are (incorrectly) deemed to be irrelevant. Most other information will not be omitted 849

entirely but will only be referred to by acronym, name or by reference to other 850

literature. In practice, therefore, if m∗ is the complete methodology and has complexity 851

C(m∗), its real-life equivalent will be a simpler object m, conditioned version of m∗, 852

with description length l < l∗ and complexity C(m) < C(m∗). This has important 853

consequences for the concept of reproducibility (see section 0.13). 854

Experience ≡ Study What in ordinary knowledge was defined as experience in 855

science is generally referred to as a “study”, which can be empirical or theoretical. 856

Depending on the type of study, the explanandum y may be a single case (event), a 857

sample of events (i.e. an object whose probability is the joint probability of the events), 858

a controlled experiment, or it might consist in a theoretical construct. For example, the 859

uncertainty of the explanandum might correspond to the plausibility of a theory or 860

hypothesis, in which case the explanans could be an event that is relevant to the 861

theory’s likelihood. 862
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K(y;mx) =
H(y)−H(y|mx)

H(y) +H(x) +H(m)
(individual study)

In absence of bias (see section 0.15) H(y) and H(x) are independent of the 863

methodology, and K will be maximized by making the latter as simple as possible. If yx 864

represent a sample of data, then a fundamental way to minimize the m term consists in 865

keeping it constant and independent of yx. Hence a tenet of the scientific method, 866

namely that data should be collected exactly in the same way - deemed so important as 867

to be considered by some the essence of science itself (e.g. [6])- emerges as a natural 868

strategy to maximize K. 869

Knowledge of theoretical (i.e. logico-deductive) systems differs from empirical 870

knowledge only in one respect. Since by definition logico-deductive systems have no 871

measurement error, then knowledge about them is built on a series of ”rigid” patters 872

H(Y |X) = 0, in other words of identities. A typical hypothesis underlying a theoretical 873

study, for example a mathematical conjecture, proposes that two theoretical entities 874

that were previously believed to be disconnected are actually identical, because one can 875

be derived from the other. If y and x are such entities, the expectation following the 876

hypothesis is H(y|x) = 0 and the study consists in assessing whether a chain of 877

identities H(x′|x) = 0, H(x′′|x′) = 0... connects explanandum to explanans. In this case, 878

the m component of the explanans will represent the complexity of the (description of 879

the) proof. Therefore, like all other forms of knowledge, logico-deductive knowledge is 880

affected by the information costs (complexity) of the explanans. This explains why 881

mathematical and theoretical researchers value very highly a results’ simplicity and 882

elegance, which the aesthetic translation of simplicity. 883

Knowledge ≡ Literature The scientific equivalent of the cumulation and 884

aggregation of experience is a literature. This is the knowledge transmitted through 885

scientific publications, summarized in reviews, books and university courses, and 886

generally the knowledge manifested in the expertise of scientists. 887

K(

◦∑
y;mx) ≡ H(Y )−H(Y |MX)

H(Y ) +H(X) +H(M)
(study cumulation)

K(

◦∑
Y ;MX) ≡ H(

◦∑
Y )−H(

◦∑
Y |MX)

H(
◦∑
Y ) +H(

◦∑
X) +H(

◦∑
M)

(literature aggregation)

The methodology terms H
◦∑
m and H

◦∑
M are by assumption controllable to some 888

extent. In particular, their values will be minimized in proportion to how invariant 889

methodologies are across studies. The system terms Y and X are instead external 890

phenomena, which by assumption have independent properties. 891

Definition: stable system. Under ideal conditions, phenomena studied by a field 892

maintain exactly the same characteristics from one study to the next. We can impose 893

this condition on any system by requiring H(
◦∑
y) ≈ H(y), H(

◦∑
Y ) ≈ H(Y ) and 894

H(
◦∑
x) ≈ H(x), H(

◦∑
X) ≈ H(X). A system with such property will be referred to as 895

that of a “stable system”. 896
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Figure 8. Simulation of cumulation of studies within a defined field. A) Values of K in
simulated studies: the first study reports a strong result K(y; ym) >> 0, but
subsequent studies report null or close-to-null results. B) Corresponding value of the

cumulative knowledge K(
◦∑
y;xm). C) Corresponding information value of each study,

as measured by ∆K. Note the initial peak in ∆K, which illustrates how negative
results can be just as informative as positive result. The information value of either will
however decline over time, particularly if results are consistent with each other.

Knowledge gain per study The calculation is the same as that for ordinary
knowledge. Applied, to simplfy calculations, to a stable system, it yields:

∆K(y;xm) ≡
H(y)−H(

◦∑
k+1y|xm)

H(y) +H(x) +H(
◦∑
k+1m)

−
H(y)−H(

◦∑
ky|xm)

H(y) +H(x) +H(
◦∑
km)

=

(1−Q)H(Y ) + (Q− C)H(
◦∑
ky|xm) + dy|xm

H(Y ) +H(X) +H(
◦∑
k+1m)

(63)

with C and d defined as before and Q =
H(Y )+H(X)+H(

◦∑
k+1m)

H(Y )+H(X)+H(
◦∑

km)
. Hence, how 897

knowledge changes will be a function of the changes in cumulative complexity of 898

methods, given by Q, as well as the cumulative effect size observed, given by 899

H(
◦∑
ky|xm). In particular, when methodology does not vary across studies, then Q < 1 900

and knowledge increases or decreases depending on whether the new effect aligns with 901

previous ones, as measured by the sign of dy|x. The magnitude of change, however, is 902

inversely proportional (1-C), i.e. the relative weight of the new study. As studies 903

cumulate, therefore, the information yielded by each additional study decreases. 904

Eventually, the cumulation/aggregation of new studies will cease to alter K, i.e. 905

|∆K(Y ;XM)| ≈ e, with e representing some arbitrary threshold. This condition marks 906

the end of the cumulation/aggregation processes, at which point the hypothesis is 907

deemed to be either verified or falsified (Fig 8). 908

Verification vs. Falsification Let Y be an explanandum and let Xn be a joint 909

distribution of conclusively verified explanantia such that K(Y ;Xn) > 0 and let Xn+1 910

be an additional candidate explanans that a literature has also conclusively investigated 911

around the hypothesis H(Y |Xn ⊗Xn+1) < H(Y |Xn). If the literature supports the 912

hypothesis, then: 913

K(Y ;MXn ⊗Xn+1) ≥ v (verification)

with v >> 0 being an arbitrary threshold that marks the substantive significance of the 914

pattern. The knowledge gained in this case is given by 915
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∆K ≡ K(Y ;MXn ⊗Xn+1)−K(Y ;MXn) which, for a stable system gives 916

∆K ∝ H(Y |MXn)−H(Y |MXn ⊗Xn+1). 917

If the literature does not support the hypothesis: 918

K(Y ;MXn ⊗Xn+1) < v (falsification)

which is equivalent to the claim that H(Y |MXn ⊗Xn+1) ≈ H(Y |MXn). In this 919

case, the only knowledge obtained comes from the elimination of the hypothesis itself. If 920

we let Ω; {X1, X2...Xm} be a set of m candidate explanantia and let Xn+1 be an 921

element of Ω (let m > n+ 1), then the information gained by conclusively falsifying 922

hypothesis Xn+1, is H(Ω)−H(Ω�Xn+1). 923

The result above points to an asymmetry between verification and falsification that 924

verbal arguments might overlook. The uncertainty about explanantia is reduced also 925

when the hypothesis is verified. To correctly analyse the case, therefore, we need to 926

consider the total amount of knowledge that is potentially gained by testing the 927

hypothesis. Omitting for simplicity the M term: 928

K(Y ; Ω)⊕K(Ω;Y ) =
w1H(Y ) + w2H(Ω)− w1H(Y |Ω)− w2H(Ω|Y )

H(Y ) +H(Ω)
=

=
w1H(Y ) + w2H(Ω)− w1H(Y |Xn)− w2H(Ω�Xn)

H(Y ) +H(Ω)
(64)

Following the conclusive test of a hypothesis Xn+1, this knowledge will change as: 929

∆K ≡ K(Y ;Xn ⊗Xn+1)⊕K(Ω;Xn �Xn+1)−K(Y ;Xn)⊕K(Ω;Xn ⊗Xn+1) =

=
w1(H(Y |Xn)−H(Y |Xn ⊗Xn+1)) + w2(H(Ω�Xn)−H(Ω� (Xn ⊗Xn+1)))

H(Y ) +H(Ω)
(65)

Verifications and falsifications may be valued arbitrarily differently by altering the 930

values of the weights w1, w2. However, unless one of these values is set to zero, a 931

verification will always yield higher ∆K than a falsification (Fig 9). Under maximally 932

informative conditions, all hypotheses are equally likely a priori, and the value of a 933

falsification will be: 934

∆Kfalsif ∝ log(
|Ω�Xn|
|Ω�Xn| − 1

) (66)

which is maximal when |Ω�Xn| = 2, and declines rapidly when this quantity 935

increases. Therefore, the value of a conclusive test of a single hypothesis is inversely 936

proportional to the number of hypotheses that remain untested (Fig 9). 937

Equation 65 will be maximized, in particular, when 938

H(Y |Xn) = H(Y ), H(Ω�Xn) = H(Ω) and the conditional terms are zero, which 939

means that the test ruled out all but one of the hypotheses, and that the explanandum 940

is fully determined by the remaining hypothesis. In other words, there is a one-to-one 941

correspondence between the instantiations of the explanandum and each of the 942

hypotheses, i.e. H(Y ) = H(Ω) and H(Y |Ω) = H(Ω|Y ) = 0. This scenario corresponds 943

to Popperian falsificationism as it is generally intended: a set of mutually exclusive 944

outcomes y each of which is univocally associated with an hypothesis x. As we have just 945

shown, these are indeed conditions that maximize the knowledge gain. However, these 946

are also conditions in which verification is redundant, because both explanans and 947

explanandum carry the same information. Therefore, Popperian falsificationism 948
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Figure 9. Knowledge gained by the conclusive falsification of one single hypothesis, as
a function of the total number n of candidate hypotheses (candidate explanantia). Solid
line represents the values of K(Ω;Y ), i.e. the knowledge about the set of candidate
hypotheses. Dotted line represents the values of K(Y ; Ω)⊕K(Ω;Y ), i.e. the combined
knowledge of explanantia and explanandum, when H(Y ) = H(Ω) and the falsification
about an explanans brings a corresponding reduction of uncertainty about the
explanandum. Knowledge is maximized when H(Y ) = H(Ω) = 2 and declines rapidly
thereafter.

represents a limiting condition in which falsification and verification convey exactly the 949

same information. In many, possibly most, fields of research, this condition might not 950

be realizable, in which case verifications are more valuable than falsifications. 951

Creativity ≡ Hypothesis Generation New hypotheses and new theories (which 952

are just hypotheses about identities) are tentatively advanced by the same processes 953

underlying creativity in general, i.e. by expansion and/or reduction of explanans and 954

explanandum. Behind the infinite creativity of scientists, there seem to lie a few basic 955

forms of expansion and reduction, which can be ranked by their increasing creativity 956

and potential knowledge yield. We will use the symbol � and ≺ in place of > and < to 957

represent the tentative nature of these hypotheses: 958

1. increase/decrease accuracy of explanans and/or explanandum: e.g. 959

H(Y α
′
y |X) ≺ H(Y αy ) with Y α

′
y = Y αy ⊗ Z, with H(Z) = log(nz) and 960

α′y = αy/nz; and similarly for the explanandum. The same could apply to X. As 961

shown in section 0.8, there is an optimal value of accuracy that is highly specific 962

to each system. Once a pattern is discovered, it may be a natural research 963

objective to identify the level of accuracy that maximizes it. 964

2. increase/decrease time: H(Yt′ |Xt0) ≺ H(Yt|Xt0) with Yt′ = Yt ⊗ Yt′ � Yt. Studies 965

would, in this case, explore how far forward or backwards in time a certain 966

explanans X retains information about the explanandum. 967

3. expand the explanans: H(Y |X ⊗X ′) ≺ H(Y |X) with X ′ a new candidate 968

explanans. Explanations are combined, thereby increasing the overall complexity 969

of the explanans but gaining proportionally more information about the 970

explanandum. 971

4. reduce the explanandum: H(Y ′|X) ≺ H(Y |X) with Y ′ = Y � Y c. This process 972

might take the form, for example, of theoretical abstraction, (see section 0.9) or 973
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empirical conditioning, in which the system is re-scaled to include only 974

unexplained portions of the explanandum. 975

5. reduce the explanans: H(Y |X ′) ≺ H(Y |X) with X ′ = X �Xc; and similarly for 976

methodology. Theoretical explanantia and methodologies are abstracted and/or 977

compressed, whereas empirical components are simplified, for example, by 978

randomization, in which information between X ′ and Y is actively destroyed, or 979

stabilization, in which a value is imposed, i.e. X ′ = X ′|do(X ′ = constant). In 980

either case, the condition achieved is H(Y |X ′) = H(Y ). 981

6. expand the explanandum: K(Y ⊗Z;X) � K(Y ;X), in which new phenomena are 982

subsumed under the same explanantions, which is a fundamental presupposition 983

for knowledge growth. 984

The last two forms of scientific innovations lead to the greatest form of progress, in 985

which an increasing range of phenomena are explained by a relatively decreasing set of 986

explanatory principles. This is the phenomenon of consilience, rightfully indicated as 987

the ultimate objective of scientific knowledge (and arguably also of ordinary knowledge, 988

as well as of life itself). Since reduction is just the inverse of expansion, and since 989

explanans, explanandum and methodology may be altered by separate and different 990

processes of expansion, we can represent consilience as an independent expansion of the 991

the three components: 992

K(

◦∏
(Y ;MX)) ≡

H(
◦∏
nY )−H(

◦∏
nY |

◦∏
kM

◦∏
mX)

H(
◦∏
nY ) +H(

◦∏
mX) +H(

◦∏
kM)

(consilience)

with n,m, k indicating the different dimensions of each component. 993

0.12 Scientific progress 994

If K(Y ;mX)i is the amount of knowledge about a system at stage i, progress is 995

achieved at stage i+ 1 in proportion to |∆K(Y ;mX)| > 0, with 996

∆K(Y ;mX) ≡ K(Y ;mX)i+1 −K(Y ;mX)i. Scientific progress, however, takes 997

different forms in the cumulation and expansion phases. 998

Progress in verification/falsification is achieved when a specific hypothesis is 999

conclusively accepted or rejected. For a given system Y X, this stage is achieved when 1000

new evidence ceases to be informative, i.e. when the cumulation/aggregation yields 1001

∆K ≈ 0. Given a cumulation of k studies, if K(
◦∑
k+1y;mx) = K(

◦∑
k+1y;mx)± e with 1002

e ≥ 0 an error term, then 1003

(1−Q)H(

◦∑
k
y) + (Q− C)H(

◦∑
k
y|xm) + dy|xm ≤ e (67)

with C and d defined as before and Q =
H(
◦∑

k+1y)+H(
◦∑

k+1x)+H(
◦∑

k+1m)

H(
◦∑

ky)+H(
◦∑

kx)+H(
◦∑

km)
. Similar 1004

conditions would apply to the case of aggregation. Either case can be illustrated by 1005

taking the derivative of K with respect to the number k of cumulated/aggregated 1006

studies. Although technically only valid to the limit of an infinite number of studies, 1007

this is a practical way to analyze the speed of information gain per study. When new 1008

evidence ceases to be informative: 1009
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dK(
◦∑
ky;xm)

dk
= 0 ⇐⇒

H ′(

◦∑
k
y)(1−K(

◦∑
k
y;xm))−K(

◦∑
k
y;xm)(H ′(

◦∑
k
x) +H ′(

◦∑
k
m)) =

= H ′(

◦∑
k
y|xm) (68)

in which H ′ indicates the first derivative of the entropy function with respect to the 1010

number of cumulated/aggregated studies, k. Of particular interest is the case in which 1011

the system is stable (explanans and explanandum do not change with cumulation) but 1012

the methodology varies across studies. The condition of stability simplifies equation 68 1013

to: 1014

H ′(

◦∑
k
Y |Xm) = −K(

◦∑
k
Y ;Xm)H ′(

◦∑
k
m) ≤ −K(

◦∑
k
Y ;Xm)log(k) (69)

The negative sign on the right side of the inequality proves that when every new 1015

study uses new methods and therefore adds complexity to the explanans, then no more 1016

knowledge is added even when the cumulation of studies is apparently reporting effects 1017

of increasing magnitude. Viceversa, we can reverse the inequality and see that 1018

dK(
◦∑

kY ;Xm)

dk > 0 leads to: 1019

H ′(

◦∑
k
m) ≥ −

H ′(
◦∑
kY |Xm)

K(
◦∑
kY ;Xm)

(70)

which suggests that methodologies could increase in heterogeneity (complexity) in 1020

order to maintain an apparent knowledge increase in cumulation. Inequality 70 suggests 1021

that methodological heterogeneity is more likely to increase in a cumulating literature in 1022

which effects are small and decreasing. 1023

Speed of progress in verification/falsification within a field is quantified by the 1024

rapidity which which the field reaches the stage ∆K ≈ 0. This speed can be empirically 1025

measured in years, man-years, total expenditure, the number of scientific studies 1026

required to reach stability, or perhaps ideally a combination of all these. The speed of 1027

cumulation is likely to vary enormously by field, depending both on characteristics of 1028

the phenomena studied (e.g. on the consistency of patterns across studies) as well as 1029

implicit or explicit choices made by researchers. These choices include, for example, the 1030

threshold below which ∆Kis considered negligible or the relative weight given to new 1031

studies compared to old (e.g. Fig 10). 1032

Progress in Consilience represents the ultimate expression of scientific progress. 1033

Section 0.11 offered a schematic representation of how explanans and explanandum can 1034

be manipulated through expansions and reductions to generate new tentative 1035

hypotheses. When such hypotheses are confirmed (because stability is achieved in the 1036

verification/falsification phase) an innovation is established and progress is proportional 1037

to ∆K ≡ K(
◦∏
k+1Y ;XM)−K(

◦∏
kY ;XM). We can analyse this process most 1038

effectively by taking a generic derivative of K, this time with respect to the number of 1039

systems (dimensions) that knowledge expands to. It is easy to show that the condition 1040

for progress is: 1041
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Figure 10. Simulation illustrating how a field’s speed of verification/falsification might
be affected by properties of its subject matter and by methodological choices. All four
panels report values of |∆K| following the cumulation of 50 studies under the following
conditions: A) Stable system and identical methodologies and results across studies, all
studies weighted equally (i.e. w = 1/k); B) Stable system, identical methodology but
results subject to uniform noise, all studies weighted equally; C) Unstable system,
varying methodologies and noise in results, all studies weighted equally; D) Unstable
system, varying methodologies, noise in results and weights favouring later studies
(w = 1/

√
k).
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dK(
◦∏
nY ;XM)

dn
> 0 ⇐⇒ K(

◦∏
n
Y ;XM) < K(

◦∏
n
Y ′;X ′M ′) (71)

in which K(
◦∏
nY
′;X ′M ′) ≡ H′(

◦∏
nY )−H′(

◦∏
nY |MX)

H′(
◦∏

nY )+H′(
◦∏

nX)+H′(
◦∏

nM)
is the K function with the 1042

entropies replaced by their first derivatives with respect to n. Assuming that explanans, 1043

explanandum and methodology are independent of one another, the effects that each has 1044

on progress are easy to tease apart. All else being equal, scientific progress is achieved 1045

in proportion to how much the explanans X and the methodology M are minimized 1046

(simplified) and how much the explanandum Y is expanded, subject to the condition 1047

that the expansion of Y must be larger than that of its conditional counter part Y |X. 1048

0.13 Reproducibility 1049

The conclusive verification of a hypothesis presupposes the independent replication of 1050

studies that support it. Following current terminology, a study whose results are 1051

confirmed is said to be reproducible. Failure to reproduce an original finding is very 1052

often interpreted as evidence that the original claim was false, and that the original 1053

methodology was biased or flawed. However, our approach to defining scientific 1054

methodology suggests that failed replications are virtually inevitable in all fields of 1055

science, and may have nothing to do with the validity of the claim being tested. Failed 1056

replications are the inevitable consequence of limited information about a study’s 1057

methodology. 1058

Let K(y;xm) > 0 be the claim made by a study that reported methodology m. Let 1059

K(y′;x′m′) be the result of a replication attempt. To simplify the analysis, we will 1060

assume that the system Y X is stable (and therefore H(y) ≡ H(Y ) and H(x) ≡ H(X)). 1061

Hence, a claim about successful reproducibility is translated as 1062

K(Y ;Xm) ≈ K(Y ;Xm′), a condition which is solely dependent on whether 1063

H(m) = H(m′) and H(Y |Xm) = H(Y |Xm′). If m = m′, the two methodologies are 1064

indeed identical, then the condition is certainly true. However, such identity could be 1065

assumed to occur only if all the information required to produce the pattern is available 1066

and fully matched. This condition can be pictured as having the code to retrieve the 1067

specific study out of the set of all possible studies ℵY X with methodology of complexity 1068

C(m) = l (see Fig 7). 1069

We have argued in section 0.11 that in practice the description of a study’s 1070

methodology is never complete. It omits details that the authors of a study assume that 1071

their colleagues know, and it also omits details that, unbeknownst to the authors of the 1072

study, are crucial to produce the result. Therefore let m∗ be the ideal description of the 1073

study m’s methodology, i.e. the information that is necessary to condition system Y X 1074

exactly as study m did, and let l∗ > l be the ideal description length. The incompletely 1075

reported methodology m is missing L = l∗ − l bits, which is equivalent to saying that 1076

methodology m represents not one study, but a subset of ℵYX that counts 2L possible 1077

other methodologies. All these methodologies contain the description m, but vary at 1078

random with respect to the remaining L bits. 1079

Therefore, even if technically identical to m, a replication methodology m′ is 1080

effectively a random draw from the set of all 2L possible variations of m. The expected 1081

value of K(Y ;Xm′), therefore, is not K(Y ;Xm) but K(
◦∑

2LY ;Xm), and the 1082

condition of reproducibility is given by 1083

K(Y ;Xm) ≈ K(Y ;Xm′) ⇐⇒ H(Y |Xm) ≈
◦∑

2L
H(Y |Xm) +D(Y |Xm||Y |XmU )

(72)

37/54

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1968v1 | CC-BY 4.0 Open Access | rec: 19 Apr 2016, publ: 19 Apr 2016



With 0 ≤ D(Y |Xm||Y |XmU ) ≤ L. Hence, even under the ideal conditions of a 1084

stable system, any study whose result was not perfectly overlapping with the original 1085

claim would fail to meet the condition of successful replication, unless it reported a 1086

stronger pattern than the original study. In a condition of perfect randomness and no 1087

bias, this will only occur 50% of the time. 1088

Naturally, the specific reproducibility success rate will be determined by the criteria 1089

of success, i.e. by the similarity threshold above which results are considered to be 1090

reproduced. This analysis suggests that such criteria need to be tailored to the 1091

characteristics of the system being analysed, in ways that future work should explore in 1092

detail. 1093

Albeit preliminary and limited in many ways, this analysis suggests that no study 1094

should be expected to be perfectly reproducible, because no study is likely to report 1095

complete information about its methodology. Some of the missing information might 1096

correspond to what is defined as ”bias” (analysed in section 0.15), but most information 1097

is likely to be omitted knowingly. When information about a methodology is omitted 1098

because it is assumed to be known, then the expertise of the replicators will 1099

substantially affect the likelihood to reproduce a finding. When however information is 1100

omitted unknowingly, because it is (incorrectly) assumed to be irrelevant, then the 1101

reproducibility study will truly be a random draw of the kind described above. In either 1102

case, the probability to reproduce a study is likely to be directly proportional to the 1103

amount of missing information and to the robustness of study’s results to methodological 1104

variation. Studies with complex methodologies and complex systems, i.e. systems that 1105

are sensitive to multiple variables, are at greater risk from reproducibility failure. 1106

0.14 Soft science 1107

The various criteria proposed to distinguish stereotypically “hard” sciences like physics 1108

from stereotypically “soft” ones like sociology cluster along two relevant dimensions (see 1109

[27]): 1110

• Complexity: from the physical to the social sciences subject matters go from 1111

being simple and general to being complex and particular. This increase in 1112

complexity corresponds, intuitively, to an increase in systems’ number of relevant 1113

variables and the intricacy of their interactions. 1114

• Consensus: from the physical to the social sciences, there is a decline in the ability 1115

of scientists to reach agreement over the interpretation and the relevance of 1116

findings, over the correct methodologies to use, even on the relevant research 1117

questions to ask, and therefore ultimately on the validity of any particular theory. 1118

Both concepts have a straightforward mathematical interpretation, which points to 1119

the same underlying characteristic: having a relatively complex explanans and therefore 1120

a low K. A system with many interacting variables is a system for which H(X) and/or 1121

H(Y |mX) are high. A system (a field, in this case) for which consensus is low is one in 1122

which H(
◦∑
m) ≡ H(M) is high. Therefore, at the core of the differences between a 1123

“soft” and a “hard” field is a difference in K, i.e. a difference in the quantity of 1124

knowledge that can be attained with a given explanandum. 1125

We can define and quantify the concept more formally as follows. Let A and B be 1126

two fields with K values K(YA;XAMA) and K(YB ;XBMB). Field A is softer than B if 1127

when K(YA;XAMA) = K(YB ;XBMB) then H(XAMA) > H(XBMB) and, vice versa, 1128

when H(XAMA) = H(XBMB) then K(YA;XMA) < K(YB ;XMB). We can express 1129

both conditions effectively by partitioning K(Y ;XM) and defining A as softer than B if 1130
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Figure 11. Simulated examples of knowledge curves with different values of
H(Y ),Λ, γ,H(x0). Dotted lines represent values of k(Y ;XM) whilst solid lines
correspond to k(Y ;XM)× h. See text for further details.

k(YA;MAXA)hA < k(YB ;MBXB)hB (73)

in which 1131

k(Y ;XM) ≡ H(Y )−H(Y |MX)

H(Y )
and h ≡ 1

1 + H(M)+H(X)
H(Y )

(74)

are, respectively, the uncorrected K - in essence a measure of effect size - and a 1132

“hardness” factor expressing the information cost of such k, i.e. the complexity of the 1133

explanans relative to the explanandum. 1134

The relationship defined by condition 73 is never an absolute or a static condition. 1135

On the contrary, softness thus defined is a relative concept and a dynamic one, which 1136

can be increased or decreased depending on choices which are largely under control of 1137

scientists. These choices are about the system to be studied as well as all other 1138

parameters than can alter over time the system and its potential to yield knowledge. 1139

Therefore, the K of a specific field is determined by an interplay between intrinsic 1140

properties of the system and methodological choices made in studying such system, 1141

which include choosing the explanantia and explanandum themselves, as well as the 1142

time at which they are measured, the accuracy of measurement, the “size” (entropy) of 1143

the explanans, etc. 1144

If we identify a field with a specific explanandum, we can represent its dynamics as a 1145

curve that connects successive values of H(X) +H(M) with their corresponding 1146

K(Y ;XM) (Fig 11). This curve is highly field-specific and can be shown to represent 1147

an upper limit to all real-life curves (see S1-Text). As figure 11 illustrates, the relative 1148

softness of a field is a highly contingent process, which appropriate manipulations of the 1149

explanans or the explanandum can change even under the most ideal conditions. 1150

Real-life curves are sub-optimal realizations of the curves in figure 11, which means that 1151

they grow less rapidly and reach lower maxima. Therefore, a real (non-ideal) research 1152

field will typically be a “softer” version of its ideal self. 1153

Example: We wish to compare the hardness of two fields that use similar 1154

methodologies, namely multiple regression. Starting with the simplest case, let XA and 1155

XB be two binary dummy variables with the same distribution, such that 1156

H(XA) = H(XB), and let H(YA) = H(YB). Assuming that these effects are 1157

well-established within each field, the harder field is the one whose models explains the 1158

largest amount of variance with the greatest accuracy. If instead we had 1159
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H(YA) = H(YB) and each fields regression models explained exactly the same amount 1160

variance using only one variable, but with XA having lower information (e.g. XA is a 1161

binary category whilst XB is continuous and measured to the third decimal point), then 1162

field A would he harder than B. Under the same conditions, if the models included 1163

multiple independent variables, the softer field would likely be the one with the greatest 1164

number of high-entropy independent variables. However, a more accurate estimation 1165

could attempt to reconstruct the field’s knowledge curve, by adding variables 1166

progressively to the model, in decreasing order of effect size, and then fitting an 1167

exponential (knowledge gain) curve to each pair H(X), k(Y ;X) obtained. 1168

0.15 Bias 1169

Bias as commonly discussed in the meta-research literature entails that particular 1170

methodological choices made in one or more phases of a study (e.g. its conception, 1171

design, data collection, analysis, interpretation, publication) conferred an “unfair 1172

advantage” to a specific outcome. A common distinction made in the literature is 1173

between choices that are conscious and perhaps intentionally misleading and choices 1174

that are unconscious and unintentionally flawed. From an information theoretic point of 1175

view, however, it is more relevant to draw a distinction between methodological choices 1176

made after the results are known (post-hoc) and choices made before (ante-hoc). 1177

Post-hoc methodological choices make use of the same information that they are 1178

supposed to produce, to yield a secondary result. Whether such information is 1179

processed consciously or unconsciously is irrelevant, because the mechanism is the same. 1180

Although a bias can go in any direction, it is usually realistic to assume that the choices 1181

go in the direction of producing a positive and significant result, i.e. a higher value of 1182

K. We will make this assumption henceforth. A broad range of behaviours discussed in 1183

the literature fall into this category, including data falsification, data-related 1184

“questionable research practices”, p-hacking, HARKing etc. We can schematically 1185

represent the information flow in post-hoc methodologies as a causal chain, going from 1186

ante-hoc methodology mt0 , to data, to a post-hoc expansion of the methodology: 1187

mt0 → xt1yt1 → mt0 ⊗ bt2 (75)

in which t2 > t1 ≥ t0. To qualify as a genuine post-hoc bias, bt2 should be 1188

demonstrably caused by the event of researchers coming to known the data y, x. Using 1189

the equivalence noted for causal K, we can define an experimentally measurable 1190

parameter µ that quantifies how much the alleged bias is truly post-hoc: 1191

µ ≡ K(bt2 ;Yt1Xt0 |do(Yt1Xt0)) = k(bt2 ;Yt1Xt0) ≡ H(bt2)−H(bt2 |Yt1Xt0)

H(bt2)
(76)

The notation was shifted from events to random variables to emphasize that we are 1192

treating the post-hoc methodology as a standard methodology, i.e. one systematically 1193

adopted in a field. We want to estimate how much knowledge would be produced by a 1194

field whose methodology consists in m⊗ b. We are taking, that is, a completely agnostic 1195

stance with respect to the validity of the methods. Our only objective is to estimate the 1196

amount of knowledge that such methods actually produce. 1197

Knowing that H(Y |mXb) = H(Y mX) +H(b|Y mX)−H(mX)−H(b|mX), and
assuming that choices for method b are made only after explanans and explanandum are
known, i.e. H(b|mX) = H(b), we have that H(b|mX)−H(b|Y mX) = µH(bt2), and
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therefore:

K(Yt1 ;mt0Xt1 ⊗ bt2) =

=
H(Yt1)−H(Yt1 |mt0Xt1) + µH(bt2)

H(Yt1) +H(Xt1) +H(mt0) +H(bt2)
= K(Yt1 ;mt0Xt1)× C1

C2
+
µH(bt2)

C2
(77)

where C1 = H(Yt1) +H(Xt1) +H(mt0), and 1198

C2 = H(Yt1) +H(Xt1) +H(mt0) +H(bt2). By re-arranging the first and last term of 1199

the equation we can retrospectively calculate the actual K of the study, i.e. the K 1200

obtained once the cost of post-hoc methodological choices is taken into account: 1201

K(Yt1 ;mt0Xt1) =
H(Yt1)−H(Yt1 |mt0Xt1bt2)− µH(bt2)

H(Yt1) +H(Xt1) +H(mt0)
(K with post-hoc bias)

where C = C2

C1
. Note that if it were experimentally determined that µ = 0, the 1202

choices made at time t2 are independent of the data, the condition would revert to those 1203

of a standard study. In all cases, the knowledge obtained is defined to be: 1204

K(Yt1 ;mt0Xt1) ∝ H(Yt1)−H(Yt1 |mt0Xt1bt2)− µH(bt2) (78)

and therefore, unlike the unbiased K encountered so far, can assume negative values. 1205

Equation 78 quantifies the actual costs of post-hoc methodological choices, which are 1206

costs in terms of information. In addition to increasing the total information cost of 1207

methodology, post-hoc methodological choices distrupt the flow of information, 1208

introducing secondary uncertainty that adds to that of the explanandum itself and thus 1209

reduces the actual knowledge obtained. 1210

Example: Let Y X be a system and let b be a post-hoc methodology in which data 1211

are removed from the sample depending on whether the values of Y |X fall below a 1212

certain threshold. Methodology b therefore consists of a binary choice, whose entropy 1213

will depend on how frequently data falls below the threshold: H(b) = H(P (y|x > τ)). 1214

Let’s assume that the methodology claims to reduce the uncertainty about the 1215

explanandum by one bit, i.e. H(Y )−H(Y |X) = 1. An experiment is set up to 1216

determine to what extent the methodology is post-hoc, and let’s assume that the 1217

experiment establishes that the methods are fully post-hoc, i.e. µ = 1. Then, the level 1218

of bias is determined by how much data is discarded using the methodology. If 1219

P (y|x > τ) = 0.5 (the biased scientists discards on average half of the data), knowledge 1220

will be zero and the study can be said to be completely biased. If P (y|x > τ) < 0.5 and 1221

less than half data has to be discarded, then H(b) < 1 and some knowledge is produced 1222

despite the post-hoc bias. If P (y|x > τ) > 0.5, or if the possible choices made by the 1223

scientists are multiple, such that H(b) > H(Y )−H(Y |Xb), then the study yields 1224

negative knowledge. 1225

Fabrication Albeit a trivial case, for completeness we will analyse the case of data 1226

fabrication, in which methods and/or data are entirely made up. When this is the case, 1227

all the values in K(Y ;X) are generated, which is to say caused, by the knower itself. 1228

We have: 1229

K(Y |do(Y = y);MX|do(MX = mx)) =

=
H(Y |do(Y = y))−H(Y |do(YMX = ymx))

H(Y |do(Y = y)) +H(X|do(X = x)) +H(M |do(M = m)))
=

0− 0

0 + 0 + 0
= DNE

(79)

Unsurprisingly, data fabrication is just a non-starter for knowledge. 1230
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Ante-hoc methodological choices are just choices in the study design that favour 1231

a particular result. As in the case of post-hoc choices, it makes no difference whether 1232

ante-hoc choices are conscious or unconscious. The result is the same and it entails a 1233

lack of independence between methodology and system. If Y mX is a system and 1234

K(Y ;mX) is the knowledge claimed about the system, ante-hoc bias occurs when a 1235

“hidden” explanans z produces part of the effect (or null effect). This z component is of 1236

course ”hiding” in the methodology m. Therefore, we can describe an ante-hoc biased 1237

methodology as m : {mc, Z}, i.e. K(Y ;mX) ≡ K(Y ;mcXz) with mc ≡ m� z. 1238

Just as we did with post-hoc choices, we can isolate the effect of this ante-hoc choice 1239

by noticing that 1240

H(Y )−H(Y |mcXz) = H(Y )−H(Y |mcX)−H(H(Y |mcX)−H(Y |mcXZ), and 1241

therefore: 1242

K(Y ;mX) = K(Y ;mcX)R1 −K(Y mcX; z)R2 (80)

in which R1 = H(Y )+H(X)+H(mc)+H(z)
H(Y )+H(X)+H(mc) and R2 = H(Y )+H(X)+H(mc)+H(z)

H(Y |mcX)+H(z) . The 1243

ante-hoc biased study will yield actual knowledge about the system Y X (i.e. ignoring 1244

the effect of z) subject to the condition 1245

K(Y ;mX) > 0 ⇐⇒ K(Y mcX; z) < K(Y ;mcX)×R (81)

in which R ≡ R1

R2
≡ H(Y |mcX)+H(z)

H(Y )+H(X)+H(mc) is the ratio between the uncertainty spaces of 1246

the two K functions. Therefore, for a given subcomponent z in m that has a non-zero 1247

effect, the magnitude of the bias - the lost information - is proportional to the relative 1248

magnitude of the uncertainty spaces of the terms involved. Similarly to post-hoc biases, 1249

ante-hoc biases can lead to negative values of K. 1250

1251

Even when not quantifiable directly, the validity of methodologies can be assessed by 1252

reference to relevant literature. In particular, we can estimate the information costs of 1253

including studies with ”deviant” methodologies in a literature. To estimate these costs, 1254

we introduce the two new quantitites: Oddity and Discrepancy. 1255

1256

Oddity relative to aggregate Let mi be a generic object or event, and let 1257

M ≡
◦∑
Nm be an aggregate (cumulation/aggregation) of which mi is an element. We 1258

define as the the “oddity of mi with respect to M” , or more simply the “Oddity” of mi, 1259

the difference between the total information of mi and that of the aggregate M . 1260

O(mi||M) ≡ T (mi)− T (M) =

= log
1

P (mi)
−H(M) +D(mi||PU (mi))−D(M ||U) (82)

The Oddity thus defined is analogous to a Kullback-Leibler distance, and expresses 1261

the dissimilarity of a specific event or object from a set to which it pertains. This 1262

quantity is proportional to the number of bits required to pin-point (describe) that 1263

particular element of the set. As we have done throughout the essay, we will use the 1264

entropy function to represent all types of information. 1265

1266

We can use the oddity to evaluate the contribution made by a study. Let
◦∑
nymx 1267

be a cumulation of n studies about system Y X, which for simplicity we assume to be a 1268

stable system. Let’s assume that one study in the aggregate, which we will call study 1269

“B”, uses methodology b and reports a suspiciously strong result compared to all other 1270

studies. Ignoring as usual the complexity terms, the Oddity of b relative to the 1271
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cumulated methodologies
◦∑
m ≡M is O(mi||M) = H(b)−H(M). Study B reports a 1272

genuinely stronger pattern than the other studies in the literature if: 1273

K(Y X; b) > K(Y X;M)⇔
H(Y |X)−H(Y |Xb)

H(Y ) +H(Y |X) +H(b)
>

H(Y |X)−H(Y |XM)

H(Y ) +H(Y |X) +H(M)
(83)

Knowing that H(b) = H(M) +O(b||M), and after re-arrangement, we get: 1274

H(Y |XM)−H(Y |Xb) > O(b||M)K(Y ;XM) (84)

This inequality states that, for b to yield a higher than average K, the information 1275

(uncertainty of Y ) saved by using methodology M = b must be as large or larger than 1276

the oddity of its methods corrected for the overall K produced by the aggregate. 1277

This result quantifies intuitive principles guiding the assessment of bias and flaws 1278

within a literature (e.g. [44]). First, since methods are by assumption producing positive 1279

results K(Y ;XM) > 0, and the conditions for b to yield higher than average K become 1280

restrictive when methods M tield higher K. Moreover, the oddity O(b||M) is inversely 1281

proportional to H(M), and therefore inversely proportional to the size of the literature 1282

and its methodological heterogeneity (and/or average methodological complexity), and 1283

directly proportional to the relative rarity (and/or relative complexity) of the 1284

methodology. A study using unusual or unusually complex methodologies in an 1285

otherwise homogeneous literature is unlikely to actually add to the overall knowledge. 1286

Vice versa, in a small literature and/or a literature characterized by high methodological 1287

heterogeneity there is no ground to mark out a study as biased or flawed. 1288

1289

However, even if the literature about a specific system Y X is too small or too 1290

heterogeneous to mark out a methodology as exceedingly ”odd”, a similar, and arguably 1291

definitive, judgement can be made about the compatibility of the methodology with the 1292

rest of the literature. 1293

Discrepancy of objects or events Let m, b be two objects or events. m, b are 1294

said to be discrepant if their universal probability is lower when conditioned upon each 1295

other than when considered independently of each other, i.e. PU (b|m) < PU (b) and 1296

PU (m|b) < PU (m). Equivalently, this implies that T (m⊗ b) > T (m) + T (b) and 1297

therefore that, for the two entities to become part of one system through a process of 1298

expansion, additional information needs to be added, i.e. 1299

T (m⊗ b) = T (m) + T (b) +D(m; b). This latter term, which quantifies the additional 1300

information, is the discrepancy 1301

D(m; b) ≡ T (m⊗ b)− T (m)− T (b) ≡
≡ H(m⊗ b)−H(m)−H(b) +D(m⊗ b||PU (m⊗ b)−D(m||PU (m)−D(b||PU (b)

(85)

Ignoring as usual the complexity terms to slim calculations, we note that 1302

D(m; b) = H(mb)−H(m)−H(b) = −I(m; b) and therefore Discrepancy, like the 1303

Oddity, is analogous to a Kullback-Leibler distance, i.e. a measure of information 1304

distance: D(m; b) ≡ D((b)⊗ (m)||(b⊗m)) ≡ D(b||b|m) = D(m||m|b). Objects or events 1305

are compatible in proportion to how negative is the value of D(mb) and are 1306

incompatible in proportion to how positive it is. 1307

Let Y X be a stable system, let m be a methodology applied to the system, and let b 1308

be a new methodology. Expanding m to incorporate b will increase knowledge subject to 1309
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K(Y ;Xm⊗b) > K(Y ;Xm) ⇐⇒ H(Y |Xm)−H(Y |Xmb) > (H(b)+D(m; b))K(Y ;Xm)
(86)

The inequality is always satisfied when D(m; b) = min(D(m; b)) = −H(b) as well as 1310

when K(Y ;Xm) = 0, conditions in which, respectively, b is fully compatible (in fact, 1311

identical) with m and m yields zero knowledge to begin with. If the methods are 1312

discrepant, however, additional information is needed to combine them, entailing a cost 1313

D(m; b). When D(m; b) > H(Y |Xm)−H(Y |Xmb)
K(Y ;Xm) −H(b) the methodology b brings 1314

negative knowledge to the system. 1315

Acceptance or rejection of a methodology is determined by how much knowledge 1316

would be gained or lost in total if the literature were to be expanded to include the new 1317

system and method. Let Z,W be an aggregate of systems representing the totality of 1318

phenomena currently explained by the aggregated methodologies M , and let b be a 1319

method by which knowledge K(Y ;Xb) of system Y X is claimed. The method will be 1320

deemed unacceptable if it satisfies the conditions for knowledge growth by conslience, 1321

i.e. K(Z;WM ⊗ Y ;Xb) > K(Z;WM)⊗K(Y ;Xb), which, after re-arrangements yields 1322

I(Z|WM ;Y |Xb)− I(Z;Y ) > D(M ; b)(K(Z;WM)⊗K(Y ;Xb)) where I() is the 1323

mutual information. Since scientific knowledge requires a methodology, we can posit 1324

that I(Z;Y ) = 0 and express the general condition for knowledge growth in the 1325

presence of methodological discrepancies as: 1326

H(Z|WM) +H(Y |Xb)−H(Z|MW ⊗ Y |bX) > D(M ; b)K(Z;WM)⊗K(Y ;Xb) (87)

The value of D(M ; b) is inversely proportional to H(M) and directly H(b|m). 1327

Therefore, the condition 87 is less likely to be satisfied when, all else being equal, the 1328

methodology involved is more information-costly, which is to say is is more complex. 1329

0.16 Pseudoscience 1330

Etymologically, the term “pseudoscience” indicates an activity that pretends to be 1331

scientific but is not. Section 0.11 defined science as a knowledge-producing activity that 1332

has an explicit methodology. Therefore, a pseudoscience should be any activity that 1333

explicitly declares to possess a methodology m that yields K(Y ;Xm) >> 0, whilst in 1334

actually producing no knowledge, i.e. K(Y ;Xm) ≤ 0. 1335

The phenomenon that allows discrepancy of K is bias. Therefore, our thesis is that 1336

pseudo-sciences are just activities that manifest extreme forms of bias. A functional 1337

connection between bias and pseudoscience, is apparent in all typical examples of 1338

pseudoscience. Astrology, Freudian psychoanalysis, homeopathy, Intelligent Design and 1339

others (see [4]) appear to be very different activities, but share at least two 1340

characteristics: 1-they appear to produce relevant amounts of knowledge, but only of 1341

explanatory kind - they provide, in other words, high ”understanding”, but only of 1342

individual events; 2-their methodologies are at odds with those of established sciences. 1343

Both these conditions, it will be shown below, match the conditions we identified for 1344

bias, to levels that are extreme enough to make K equal or lower than zero. 1345

Extreme post-hoc bias or methodological complexity Given a specific object 1346

or event, a pseudoscience will offer a seeming valid understanding, such that 1347

K(y;xm) >> 0. However, knowledge presupposes the subsistence of a pattern such that 1348

K(
◦∑
y;xm) > 0. If the methodology of a pseudoscience is kept constant across 1349

cumulated studies, then K(
◦∑
y;xm) = 0, because by assumption the pattern does not 1350
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actually subsist. If, on the other hand, a repertoire of multiple methodologies (or 1351

equivalently of multiple explanations) is accessible to the pseudoscientist, such that 1352

H(
◦∑
m) = H(M), then H(

◦∑
y|xm) =

◦∑
H(Y |Xm) +H(M). Leading to the condition: 1353

K(Y ;XM) ≤ 0 ⇐⇒ H(M) ≥ H(Y )−
◦∑
H(Y |Xm) (88)

This is a generalization of Popperian falsificationism. The paradigmatic unfalsifiable 1354

pseudoscience sensu Popper corresponds to one in which explanations are seemingly 1355

perfect, i.e. H(Y |XM) ≈ 0 and one explanation is available for every possible outcome 1356

H(M) = H(Y ) (the condition already encountered in section 0.11). However, note that 1357

equation 88 allows for a broader variety of scenarios. First, it can accommodate 1358

post-hoc methodological bias as a source of unfalsifiability. Second, it allows 1359

explanations to be imperfect (with
◦∑
H(Y |Xm) > 0) and it allows overlap between the 1360

understanding of different explanations (since 1361

H(
◦∑
y|xm) =

◦∑
H(Y |Xm) +

◦∑
D(Y |Xm||

◦∑
Y |Xm). Third, it allows for scenarios in 1362

which the uncertainty costs of the (pseudo-)methodology are higher than the 1363

uncertainty of the explanandum, i.e. H(M) > H(Y )−
◦∑
H(Y |Xm). Fourth, it 1364

embodies the equivalence between H(
◦∑
m), H(M), H(

◦∑
M), which unifies scenarios in 1365

which a pseudoscience has multiple alternative methodologies or only one but 1366

sufficiently complex as to cover any possible event in the explanandum. 1367

Extreme ante-hoc bias The definition proposed here might identify as 1368

pseudoscience fields that traditional falsificationist (or verificationist) approaches might 1369

exclude. In particular, our definition includes cases of extreme ante-hoc bias, in which 1370

the pattern that is believed to underlie the knowledge claim is in fact a pseudo-pattern, 1371

produced by the methods. It is easy to quantify this condition from equation 89. A 1372

pseudoscience yields K(Y ;mX) ≤ 0, and therefore has: 1373

K(Y mcX; z) ≥ K(Y ;mcX)×R (89)

with all terms defined as before. This condition would correspond to a research field 1374

that looks entirely legitimate and that makes predictions that are successfully tested but 1375

yields negative knowledge nonetheless. 1376

Extreme methodological discrepancy Consilience is the ultimate form of 1377

scientific progress, and discrepancy ( 87) is the ultimate criterion by which 1378

methodologies can be judged. When discrepancy is extreme, a methodology b is fully 1379

incompatible with accepted methodology m, implying P (b⊗m) = 0 and therefore 1380

D(b;m) =∞ and K(Y ;Xm⊗ b) = 0 for any system Y X. 1381

Let ZW be a second system for which non-zero knowledge is obtained using 1382

methodology m, i.e. K(Z;Wm) > 0. To simplify the analysis, we will assume that Y 1383

and Z are completely independent phenomena, as are their respective explananda X 1384

and W such that H(Y ⊗ Z) = H(Y ) +H(Z), H(X ⊗W ) = H(X) +H(W ). We will 1385

also assume that there are no cross-effects, H(Y |W ) = H(Y ), H(Z|X) = H(Z) 1386

independent of the methods used. Due to the incompatibility of m and b, the knower 1387

should choose method b over m if: 1388

K(Y ;Xb⊗ Z;Wb) > K(Y ;Xm⊗ Z;Wm) (90)

Which, under the assumptions made above, after a few re-arrangements, yields: 1389
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H(Y )× k(Y ;Xb) +H(Z)× k(Z;Wb)

H(Y )× k(Y ;Xm) +H(Z)× k(Z;Wm)
>

H(b) + C

H(m) + C
(91)

with C = H(Y ) +H(Z) +H(X) +H(W ). The knower should reject methodology m 1390

in favour of b if the latter yielded a relatively high knowledge k over a broader range of 1391

phenomena H(Y ) at a relatively small cost in added complexity H(b). Phenomena that 1392

are typically defined as pseudosciences do not meet any of these conditions: their 1393

methods are overtly complex and only (appear to) explain a narrow range of 1394

phenomena. 1395

1396

The three forms of bias are not mutually exclusive, of course, and in a pseudoscience 1397

are likely to co-exist and reinforce each other. In particular, the presence of post- and 1398

ante-hoc biases can make the left-hand side of inequality 91 be equal or lower than zero, 1399

which makes the condition impossible to satisfy. An activity that was genuinely aimed 1400

at increasing knowledge would reject the flawed methodology or at least attempt to 1401

increase the value of K(Y ;Xb) and reduce that of D(b;M). One that is pseudoscientific, 1402

however, does not. By doing so, a pseudoscience hampers its own progress, since: 1403

lim
n→∞

K(

◦∑
n
Y ;Xb) ≤ 0 and lim

n→∞
K(

◦∏
n
Y ;Xb) ≤ 0 (92)

0.17 Hierarchy of the Sciences (and Pseudosciences) 1404

The great polymath and philosopher Auguste Comte (1798-1857) first proposed that the 1405

diversity of the sciences could best be understood as a progression. From astronomy to 1406

sociology, disciplines seemed to form an ordered hierarchy, along which subject matters 1407

became more complex, less general and less amenable to mathematization. This order 1408

also seemed to reflect sciences’ historical recency, decreasing speed of progress, 1409

increasing susceptibility to biases and increasing relevance to human affairs. Sociology 1410

was considered by Comte to be the most important and yet the least developed of all 1411

sciences. 1412

Comte’s vision was certainly simplistic and incorrect in many details, but not 1413

fundamentally wrong. A quantitatively complete and generalized account of the 1414

diversity of the sciences is obtained by merging all functions and quantities developed in 1415

this essay in a single quantity which we indicate with the capital Greek letter Ξ: 1416

Ξ =
ykh

Λ
(93)

in which y = T (y) = n× (H(Y ) +D(Y ||YU )) is the total information of the 1417

explanandum (section 0.3)), k = T (Y )−T (Y |MX)
T (Y ) is the bias-corrected k 1418

(sections 0.4, 0.15), h = 1

1+
T (MX)
T (Y )

is the “hardness” factor (section 0.14)), and 1419

Λ = 1
t†
logK(Y ;MX)

ε is the knowledge loss rate (section 0.8). Since y ∈ (0,+∞), 1420

k ∈ (−1, 1), h ∈ (0, 1) and Λ ∈ [0,+∞), the quantity Ξ ranges between (−∞,+∞). 1421

Ξ quantifies pseudosciences and sciences along a gradient of softness measured on a 1422

universal scale (Figure 12). We could also write Ξ = T (y)×K(Yt;MX), but this would 1423

obscure the fact that Ξ depends on four relatively independent quantities, which for all 1424

means and purposes can be analysed separately. Ξ can be imagined as a volume in four 1425

dimensions, which corresponds the amount of total knowledge yelded by a field about 1426

an explanandum. 1427

In reality, the dimensions of Ξ are five, because y = n× E[C(y)], in which the n 1428

term quantifies the frequency of encounter of the explanandum. This term introduces a 1429

subjective element of value-judgement in the analysis of knowledge. Different 1430
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Figure 12. Visual representation of Ξ and how it gives mathematical solution to the
demarcation problem.

individuals are likely to encounter phenomenon y with different frequencies in their lives, 1431

and will therefore value K(Y ;mX) differently. For example, since most people have to 1432

handle other human beings more frequently than atoms, most people might ascribe a 1433

larger n to psychology than to quantum physics - although physicists will give the latter 1434

a relatively higher value. Alternatively, the n term might be taken to represent the 1435

relative abundance of y in the universe. In this case, since there are more atoms than 1436

there are people, knowledge about the former would be valued much more. Philosophers 1437

and meta-researchers, when studying knowledge itself, might assume n = 1. 1438

Discussion 1439

0.18 Summary of findings 1440

From two simple postulates - information is finite and knowledge is information 1441

compression - we have derived a consistent mathematical theory that unifies and 1442

quantifies fundamental epistemological concepts including simplicity, accuracy, chaos, 1443

science, soft science, bias and pseudoscience. 1444

We started by defining a K function (section 0.3), which quantifies knowledge as a 1445

standardized, accuracy-dependent and time-dependent version of Shannon’s mutual 1446

information function. The K function quantifies how much uncertainty about an 1447

explanandum is reduced by an explanans. Explanans and explanandum may consists in 1448

sources of information of any kind: variables, single events or objects. The information 1449

that in a random variable is measured by Shannon’s entropy, in an object is quantified 1450

by Kolmogorov complexity. The equivalence between information, uncertainty and 1451

complexity was made explicit by introducing the notion of ”Total Information” 1452

(section 0.3). 1453

The K function lends itself to a Bayesian as well as a frequentist interpretation 1454

(section 0.4), but differs from typical statistical quantities in at least two ways. First, 1455

being based on Shannon’s entropy, it computes quantities that are logarithmic and 1456

accuracy-dependent (Fig 3). Second, it incorporates the information costs entailed in 1457

the explanans, which typical statistical measures of effect size ignore. The information 1458

costs of the explanans can only be excluded in particular circumstances, i.e. when the 1459

explanans is assumed to be perfectly knowable, a condition quantified by a variant of 1460

the K function defined as ”uncorrected K” and symbolized with a lower-case ”k”. 1461

Explanation and causation are expressions of knowledge that find a direct 1462

quantification in the K function (section 0.5). Theoretical models are also shown to be 1463

explanantia like any other: theories are just devices which structure a phenomenon and 1464

thus reduce uncertainty about it. Like all other explanantia, theories must contain 1465

non-zero, finite amounts of information. 1466

Section 0.6 introduced two fundamental operations through which information is 1467

processed and knowledge evolves. The ⊗ operation expands information by adding 1468

dimensions, thus multiplying the attributes that are objects of knowledge. The ⊕ 1469

operation cumulates information over individual dimensions, updating and summarizing 1470

knowledge about an attribute. A number of useful mathematical properties and 1471

theorems are derived in section 0.7. 1472
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The validity of K as a measure of knowledge was supported in section 0.8, by 1473

showing that K embodies three properties that knowledge is expected to possess. The 1474

first property is Occam’s razor, which turns out to be implicit in our mathematization of 1475

knowledge. The second property is K’s dependence upon accuracy, which is defined by 1476

the quantization of explanans and explanandum. We defined measurement error as the 1477

defining property of empirical knowledge, and it was shown that K possesses a single 1478

optimal level of accuracy. The third property is K’s decline over time, measured as a 1479

distance between explanans and explanandum. This decline only occurs for empirical 1480

systems, and implies that knowledge of all empirical systems encounters a ”chaos 1481

horizon”, beyond which K ≈ 0. Logico-deductive systems are different from empirical 1482

systems solely in not having measurement error and therefore no chaos horizon. 1483

Ordinary knowledge was described in section 0.9 by distinguishing three essential 1484

processes. The first one is experience, in which knowledge (encoded patters) is applied 1485

to a single event or object, yielding ”understanding” which is quantified by K. The 1486

second is knowledge proper, which results from the cumulation of experiences about a 1487

system, allowing the reinforcing or weakening of patterns. Cumulation can be recursive, 1488

and knowledge can therefore be aggregated in ever more complex structures. The third 1489

component is creativity, in which encoded patterns are tentatively expanded to new 1490

domains, generating the potential for new knowledge. We quantified the knowledge 1491

acquired per experience and the conditions that favour the cumulation and expansion of 1492

knowledge. These conditions might correspond to evolutionary pressures that lead to 1493

increasing cognitive complexity as well as abstract and symbolic thinking. 1494

Science (section 0.11) operates exactly as ordinary knowledge, but is made more 1495

potent by a distinctive characteristic: it makes explicit a ”methodology”, i.e. an 1496

algorithm that underlies a knowledge claim (a pattern). Thus, a distinctive 1497

”methodology” component m flanks the explanans x in the K function for science. 1498

Scientific methodology effectively operates like a statistical conditioning factor: it 1499

narrows down the universe of possible studies to that corresponding to a specific 1500

knowledge claim. The amount of information needed to describe a methodology reflects 1501

the specificity of the conditioning, i.e. extent to which the universe is narrowed down 1502

(Fig 7). 1503

In all other respects, scientific knowledge is in one-to-one correspondence with 1504

ordinary knowledge. Scientific studies corresponds to experiences; a literature is a 1505

cumulation of experiences yielding knowledge; hypotheses are expression of creativity 1506

and innovation. Scientific progress occurs at two levels. Within scientific fields progress 1507

occurs when hypotheses are conclusively verified or falsified. Across fields, scientific 1508

progress is determined by the pace of expansions and abstractions, which moves towards 1509

increasing consilience, i.e. maximum information compression with minimum 1510

methodology. 1511

Contrary to common verbal falsificationist arguments, we found that verification 1512

yields more information than falsification. Karl Popper’s account of falsification 1513

represents a special case of symmetry between explanans and explanandum, unlikely to 1514

be realized in most real sciences 0.11. Similarly, we found that research reproducibility 1515

is a highly idealized concept (section 0.13). Virtually no empirical study can be 100% 1516

reproducible, because no methodology is likely to be completely described. The success 1517

rate of reproducibility studies will depend on multiple factors, including a 1518

methodology’s complexity and amount of missing information. 1519

Sciences that are typically considered to be ”soft” were straightforwardly identified 1520

as those which encode relatively weak patterns ( 0.14). The weakness is due to high 1521

complexity (uncertainty) of explanans and/or methodology, relative to explanandum. 1522

Low consensus, believed to be characteristic of soft sciences, is manifest in the 1523

cumulation of multiple non-overlapping methodologies, or equivalently a single highly 1524
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complex methodology. Therefore, scientific softness is directly quantified by the K 1525

function, which can be partitioned into an ”uncorrected k” component, which measures 1526

effect sizes, and a ”hardness” factor h, which measures the information costs caused by 1527

the complexity of explanations and methodologies. Intrinsic properties of subject matter 1528

are the prime determinants of scientific softness, but choices under control of scientists 1529

can modulate h and k and thus maximize knowledge in all fields. 1530

The concept of bias found a new interpretation in light of this theory (section 0.15). 1531

Irrespective of whether it is conscious or unconscious, intentional or unintentional, 1532

benevolent or malevolent, what empirical scientists call ”biases” are methodological 1533

choices that, either ante-hoc or post-hoc, subtract information from the knowledge 1534

claim, making K lower than it appears. Post-hoc and ante-hoc biases can be quantified 1535

experimentally. The ultimate validity of a methodology is determined in relation to a 1536

literature, and to this end we proposed measures of methodological Oddity and 1537

Discrepancy. 1538

Methodologies that are typically defined as ”pseudoscientific” turn out to be just 1539

extreme manifestations of bias. In particular, these are methodologies that subtract 1540

more information than they produce, yielding non-positive K. Classic demarcation 1541

criteria, in particular Popper’s falsificationism and Lakatosh’s degeneracy, are covered 1542

by this definition, which might cover a broader class of possible pseudosciences, the 1543

status of which can be quantified experimentally. 1544

Finally, we proposed a new, quantitative and more general version of the hierarchy 1545

of the sciences. The status of an activity as hard science, soft science, or pseudoscience 1546

is measured on a universal quantity Ξ, which subsumes all key parameters and concepts 1547

proposed in this essay (Fig 12). 1548

0.19 Predictions and conclusions 1549

This essay proposed a theory, not a model. The function K(Y ;X) was not derived to 1550

emulate knowledge, but to quantify what knowledge actually is. The correspondence 1551

between K and knowledge was supported by finding that properties typically ascribed 1552

to knowledge are intrinsic properties of the function. However, the validity of the claim 1553

that K is knowledge ultimately rests on postulating that knowledge, in any of its forms, 1554

consists in pattern encoding. To the best of the author’s knowledge, there is no evidence 1555

that contradicts the postulate. Any counter-example or counter-argument would 1556

significantly undermine the generality of the theory. The generality of the theory also 1557

depends on the generality of the first postulate. If information cannot be assumed to be 1558

finite, even in the context of measurement, then the theory would need to be modified 1559

to accommodate infinities, which might create insurmountable contradictions. 1560

Although likely to fall on the ”soft” side of the Ξ spectrum, this theory makes 1561

unique and testable predictions. In particular, it makes the overarching prediction that 1562

the uncertainty space of a field (see 0.3) is inversely proportional to the field’s speed of 1563

progress and directly proportional to the field’s exposure to bias. A connection between 1564

complexity of subject matter and progress or bias has been suggested in the past to 1565

explain broad differences between scientific domains. However, in addition to offering 1566

accurate quantitative versions of these pre-existing preditions, the theory makes the new 1567

prediction that these relations should hold within any discipline, at the level of 1568

individual fields. Even within a highly structured discipline such as mathematics the 1569

theory predicts the existence of slow-progressing, ”softer” fields. Conversely, it predicts 1570

the presence of relatively hard and fast-progressing fields in the social sciences. 1571

Novel predictions are also made with respect to reproducibility, the probability of 1572

which appears difficult to explain [45]. The theory predicts that no field can exhibit 1573

100% reproducibility, and that the reproducibility rate should be inversely proportional 1574

to the cumulative uncertainty space. Post-hoc and publication bias might further 1575
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undermine a study’s reproducibility, but reproducibility failures should occur 1576

independent of the study’s publication status. Moreover, all else being equal, the 1577

reproducibility of a study should be proportional to the Kolmogorov complexity of the 1578

description of the study’s methodology and, controlling for this factor, to the level of 1579

expertise of the the replicating scientists and the length of the description of the 1580

methodology available to them. 1581

A further overarching prediction is that a field’s uncertainty space should exert the 1582

same effects irrespective of the relative size of its components (explanans, explanandum 1583

and methodology). For example, a field that tests simple explanations of complex 1584

phenomena should progress at a similar speed to a field that tests complex explanations 1585

of simple phenomena. Methodological complexity, moreover, should have similar effects 1586

when dispersed in multiple alternative methodologies or a single one of equivalent 1587

complexity. The equivalence between information, uncertainty and complexity is 1588

perhaps the most striking prediction of the theory. Unfortunately, it is also the most 1589

difficult to test, because Kolmogorov complexity is not computable in principle and 1590

hard to estimate even in practice. Current compression algorithms approximate 1591

measures of complexity, but their accuracy is inversely proportional to the size of the 1592

object to compress. The relative simplicity of mathematical objects suggests that 1593

mathematics, physics and other math-intensive fields might be the most suitable 1594

domains to test the theory. 1595

If correct, the theory offers consistent and unified explanations for a variety of 1596

phenomena noticed about the sciences. For example, it explains why the social sciences 1597

lack methodological consensus and why they do not make progress like the physical 1598

sciences, a problem that had entire books dedicated to it [46]. It also explains why and 1599

how pseudosciences are formed and maintained, and it connects the emergence of 1600

pseudosciences to well-established scientific theories, including measurement theory and 1601

complexity science. Bias, soft methodology, pseudoscience are proposed to be 1602

measurable concepts, that can be tracked in the literature, quantified experimentally 1603

and intervened upon to foster progress in all areas of knowledge. 1604

The quantitative approach proposed might also inform policies and interventions to 1605

improve research, by offering insights into the specific heuristics of each field. For 1606

example, we found that, whilst negative results are informative when testing a defined 1607

hypothesis, the conclusive falsification of a hypothesis is generally not as valuable as a 1608

verification (see 0.11). This suggests that when theoretical consensus is low the 1609

publication of exploratory negative results could be of very little value. Future, more 1610

complete analyses should examine how the benefits of study registration, negative 1611

results repositories and other strategies to counter bias vary by field and should be 1612

tailored accordingly. Reproducibility was also shown to be field-dependent, in ways that 1613

can be quantified and predicted (section 0.13). 1614

In addition to explaining phenomena about science, this theory might help to 1615

understand general cognitive processes. For example, it explains why public debates on 1616

highly complex issues of great political and social importance - e.g. climate change, or 1617

the effects of GMO - tend to polarize around two extremely simplistic positions (e.g. is 1618

climate change man-made or not? Are GMOs good or bad for health?). Extreme 1619

simplification is a strategy to maximize K when information is limited. Other cognitive 1620

phenomena, including art, humour intelligence and genius could be quantified and 1621

analysed. 1622

In conclusion, the theory offers a scientific approach to epistemology that avoids 1623

näıve reductionism and positivism. It allows knowledge to make progress in all domains 1624

and all subject matters - physical, biological, behavioural and cultural - but also allows 1625

it to be shaped by contingent, psychological and sociological choices. It recognizes and 1626

rationalizes epistemological pluralism, but reconciles it with a unitary view of the 1627
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scientific enterprise. The unity of the sciences reflects the unity of knowledge, a 1628

phenomenon that, albeit erratic, can be measured and explained by two simple 1629

postulates. 1630

Supporting Information 1631

Knowledge progress curve Let a field be defined by an explanandum Y , and let 1632

Ω : {X1, X2...Xn} be a set of candidate explanantia. Our aim is to build a curve that 1633

expresses K(Y ;X) as an optimized function of H(
◦∏
X). 1634

To do so, we can imagine a process in which the field (a collection of studies all 1635

addressing a specific system Y X verifies/falsifies all candidate explanantia X ∈ Ω 1636

individually, and identifies the one, say Xi, that maximizes K, i.e. minimizes the value 1637

H(Y |X). The knower then proceeds to test all pairs Xi, Xj to again identify the Xj 1638

that maximizes K, and so on. Iterations of this process would produce a series of pairs 1639

{(H(X1);H(Y |X1)), (H(X2);H(Y |X2)), ...(H(Xn);H(Y |Xn))} which could be plotted. 1640

If fitted by a curve, these points would yield a curve that is non-increasing, convex on 1641

the average, and that reaches a minimal value H(Y |X∗) corresponding to the optimal 1642

explanation for the set Ω. Having exhausted a set of candidate explanantia, we can 1643

imagine the field expanding the original Ω to a new set of explanantia Ω′ and trying out 1644

all combinations of the optimal explanation with each new candidate explanantia. 1645

Indeed, we could imagine the field re-starting the process, in order to find an optimal 1646

new explanans Xn′ ∈ Ω⊗ Ω′ which by definition would reach a new minimal value of 1647

H(Y |X∗′) < H(Y |X∗). 1648

The process of described above could in principle be applied to any field (any 1649

explanandum Y ), and would yield a curve with similar characteristics: it would be 1650

rapidly a declining curve that approaches asymptotically the value H(Y |X) = 0. If the 1651

field had access to all possible candidate explanantia and built a maximally optimal 1652

curve, such curve would correspond to an expontential function. Any explanandum Y 1653

and a set of candidate explanantia Ω can therefore be characterized by a unique 1654

function in the form H(Y |X) ∼ H(Y ) ∗ e(−γ(−H(X0)+H(X)), with a negative intercept 1655

term −H(X0) that allows the curve the start at any value of the explanans. 1656

Plugging that function back into the K function, we get a characteristic curve for 1657

each combination of Y and Ω in the form: 1658

K(Y ;X) ∼ H(Y )(1− e−γ(H(X)−H(X0)))

(H(Y ) +H(X))eλt
(94)

This curve is idealized as it fits a simple exponential curve that reaches 1659

asymptotically its maximal value. The model could be made more realistic by including 1660

a suboptimal asymptote to which the value H(Y |X) tends and could accommodate 1661

irregularities in the curves by using higher order polynomials, but these details are 1662

removed to simplify notation at no cost for the analysis. Independent of the complexity 1663

of the polynomial, the growth of K will be determined by the parameter γ, which 1664

represents the average effect size and will be referred to as the knowledge gain rate. All 1665

knowledge gain curves tend asymptotically to the maximum value of K that can be 1666

achieved given a specific explanandum Y . If the explanandum, and therefore H(Y ), is 1667

constant, then K is a geometrically decreasing function of H(X). It follows that every 1668

knowledge gain curve will, if H(Y ) is kept constant, initially increase, reach a 1669

maximized value, and subsequently decrease approaching asymptotically 0 (Fig 11). 1670
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37. Li M, Vitányi P. An Introduction to Kolmogorov Complexity and Its
Applications. Texts in Computer Science. Springer New York; 2009.

53/54

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1968v1 | CC-BY 4.0 Open Access | rec: 19 Apr 2016, publ: 19 Apr 2016



38. Losee J. Theories of Causality: From Antiquity to the Present. Transaction
Publishers; 2012.

39. Pearl J. Causality. Cambridge University Press; 2009.

40. Grimes DA, Schulz KF. Bias and causal associations in observational research.
The Lancet. 2016/04/13;359(9302):248–252.

41. Vandenbroucke JP, Broadbent A, Pearce N. Causality and causal inference in
epidemiology: the need for a pluralistic approach. International Journal of
Epidemiology. 2016;.

42. Bertuglia CS, Vaio F. Nonlinearity, Chaos, and Complexity:The Dynamics of
Natural and Social Systems: The Dynamics of Natural and Social Systems. OUP
Oxford; 2005.

43. Kautz R. Chaos: The Science of Predictable Random Motion. OUP Oxford; 2011.

44. Ioannidis JP. Why most published research findings are false. PLoS medicine.
2005;2(8):e124.

45. Collaboration OS. Estimating the reproducibility of psychological science.
Science. 2015;349(6251).

46. Cole S. Why sociology doesn’t make progress like the natural sciences. In:
What’s wrong with sociology? Transaction Publishers; 2001. .

54/54

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1968v1 | CC-BY 4.0 Open Access | rec: 19 Apr 2016, publ: 19 Apr 2016


	Postulate 1: Information is finite
	Postulate 2: Knowledge is information compression
	Mathematization of knowledge
	Statistical interpretation
	Alternative forms of K
	Operations on Information
	Shannon Entropy with  and 
	Properties of K
	Knowledge
	Knowledge growth
	Science
	Scientific progress
	Reproducibility
	Soft science
	Bias
	Pseudoscience
	Hierarchy of the Sciences (and Pseudosciences)
	Summary of findings
	Predictions and conclusions

