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ABSTRACT7

The nonparametric minimum hypergeometric (mHG) test is a popular alternative to Kolmogorov-Smirnov
(KS)-type tests for determining gene set enrichment. However, these approaches have not been
compared to each other in a quantitative manner. Here, I first perform a simulation study to show
that the mHG test is significantly more powerful than the one-sided KS test for detecting gene set
enrichment. I then illustrate a shortcoming of the mHG test, which has motivated a semiparametric
generalization of the test, termed the XL-mHG test. I describe an improved quadratic-time algorithm
for the efficient calculation of exact XL-mHG p-values, as well as a linear-time algorithm for calculating
a tighter upper bound for the p-value. Finally, I demonstrate that the XL-mHG test outperforms the
one-sided KS test when applied to a reference gene expression study, and discuss general principles
for analyzing gene set enrichment using the XL-mHG test. An efficient open-source Python/Cython
implementation of the XL-mHG test is provided in the xlmhg package, available from PyPI and GitHub
(https://github.com/flo-compbio/xlmhg) under an OSI-approved license.
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INTRODUCTION21

Gene set enrichment (Mootha et al. 2003) can be thought of as a general framework for utilizing prior22

knowledge in the analysis of transcriptomic data. It is based on the observation that functionally related23

genes tend to be co-expressed, and that it is therefore possible to borrow strength by jointly analyzing24

the expression patterns of functionally related genes. GSEA (Subramanian et al. 2005), the most popular25

incarnation of this framework, has been cited more than 10,000 times, according to Google Scholar (as of26

2/2017).27

The enormous popularity of GSEA notwithstanding, an impressive number of alternative gene set28

enrichment methods have been described in the literature. Most approaches, including GSEA, comprise a29

stereotypical sequence of steps (Ackermann and Strimmer 2009):30

• Step 1: Each gene is assigned a score. The way this score is calculated is application-specific:31

In supervised settings, this is typically a test statistic that quantifies differential expression on a32

gene-by-gene basis, as in Subramanian et al. (2005) and Mootha et al. (2003).33

• Step 2: Based on the gene-level scores, a “global” test statistic is used to quantify the enrichment34

of individual gene sets. This can involve a transformation of the gene-level scores, such as a35

rank-transformation.36

• Step 3: The statistical significance of each of the global test statistics obtained is established. This37

often involves one or more permutation tests, sometimes in combination with an FDR criterion.38

Unlike the choices involved in Steps 1 and 3, which are largely based on theoretical considerations,39

the choice of an enrichment test statistic should first and foremost capture the biologist’s intuition for40

what constitutes “enrichment”. While the precise notion of enrichment can again vary among applications,41

the general idea referred to by Mootha et al. (2003) and Subramanian et al. (2005) is that a subset of42

genes in a gene set is overrepresented “at the top of the [ranked] list”. No assumption is made about the43

behavior of the remaining genes in the gene set. This intuition can be justified by three observations:44

First, curated gene sets often reflect incomplete knowledge of the true set of genes involved a specific45
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cellular process. Therefore, such gene sets can contain false positives. Second, even if the involvement of46

a gene in a specific cellular process is well-established, the same gene can also be involved in a number47

of other processes (gene sets are not mutually exclusive), which can impact its expression pattern in48

unexpected ways. Third, the expression of a gene is usually governed by a complex system of regulatory49

mechanisms. As a result, genes regularly exhibit unforeseen transcriptional responses. In other words,50

from a biologist’s point of view, it is expected that only a subset of genes in an enriched gene set exhibit51

correlated expression patterns, while other gene members behave in some unpredictable fashion. To make52

this idea more explicit, this article will occasionally refer to this concept as “subset enrichment”, although53

the author deems it generally synonymous with “enrichment”.54

Surprisingly, most of the test statistics proposed for quantifying enrichment, such as the simple55

mean (Irizarry et al. 2009), the GSEA “ES” score (Subramanian et al. 2005) and even the nonparametric56

wilcoxon rank-sum test statistic (Barry, Nobel, and Wright 2005) do not strictly reflect the aforementioned57

notion of subset enrichment. Specifically, for all the examples listed, the value of the statistic always58

depends on the precise scores or ranks of all genes in the gene set, never on just a subset of them. The59

value of the “maxmean” statistic proposed by Efron and Tibshirani (2007) depends only on genes with60

positive scores, or only on those with negative scores, depending on which mean is greater in absolute61

value. However, it cannot focus on only a subset of the genes whose scores have the same sign.62

To the author’s knowledge, among all the test statistics proposed for quantifying enrichment, the63

only two that directly embrace the notion of subset enrichment are the one-sided KS statistic (a slightly64

modified version of which was proposed by Mootha et al. (2003)), as well as the minimum hypergeometric65

(mHG) statistic (Eden, Lipson, et al. 2007; Eden, Navon, et al. 2009). These two statistics also have66

the added advantage that they allow for a direct calculation of an associated p-value, which greatly67

facilitates their interpretation, and obviates the need for performing gene-level permutations in order to68

“restandardize” the enrichment scores (Efron and Tibshirani 2007). While the properties of the KS test69

are well-understood, the mHG test has not received much attention by authors surveying the statistical70

merits of different approaches to quantifying gene set enrichment. For example, neither Ackermann and71

Strimmer (2009) nor Maciejewski (2014) included the mHG test in their respective studies. In fact, the72

study by Ackermann and Strimmer was published back-to-back with the paper by Eden, Navon, et al.73

(2009). This paper proposed the application of the mHG test for quantifying gene set enrichment, and74

described a web application named GOrilla designed for this purpose. Since then, GOrilla has become a75

popular tool for enrichment analysis, as judged by its over 1,000 citations (Google Scholar, as of 2/2017),76

and the statical properties of the mHG test therefore warrant a closer examination.77

Like the KS test, the mHG test is both rank-based and completely nonparametric (Eden, Lipson, et al.78

2007). Unlike the KS test, however, it is based on the observation that, given a cutoff that defines “the top79

of the list”, enrichment can easily be quantified using a hypergeometric test (equivalent to Fisher’s exact80

test). However, in most applications, there is no way of knowing an optimal cutoff a priori. Therefore,81

instead of working with a fixed cutoff, the mHG test goes over all possible cutoffs and calculates a82

hypergeometric p-value for each of them. The test statistic is then defined as the smallest of these p-values.83

By not relying on a fixed cutoff to define “the top”, the mHG test can detect both an usual accumulation84

of 1’s among the first few elements, as well as a moderate enrichment within, say, the entire first half of85

the list.86

The XL-mHG test (Wagner 2015a) generalizes the mHG test by introducing two parameters, X and87

L. These parameters specify the minimum number of 1’s required for enrichment, and the lowest cutoff88

to be examined, respectively. (It should be noted that the L parameter was already suggested by Eden,89

Lipson, et al. (2007), under the name nmax.) Together, these parameters provide a certain level of control90

over the kind of enrichment that is being tested for, as well as a flexible trade-off between the sensitivity91

and robustness of the test. For X = 1 and L = N , the XL-mHG test reduces to the mHG test.92

This manuscript describes multiple results concerning the mHG and XL-mHG tests: First, a simulation93

study is performed to compare the mHG test and the KS test in terms of their statistical power to detect94

different types of enrichment. Second, the differences between the KS and mHG tests are highlighted95

on real expression data, motivating the use of the XL-mHG test. Third, a new algorithm for calculating96

XL-mHG p-values is described, and its advantages over the algorithm described by Eden, Lipson, et al.97

(2007) are demonstrated. Finally, a general procedure for gene set enrichment analysis using the XL-mHG98

test is proposed, and results on real expression data are shown.99
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Notation and definitions100

We represent a ranked list with boolean entries as a column vector v of length N , with all elements being
either 0 or 1:

v = (v1, v2, . . . , vN )T , vi ∈ {0, 1}

We therefore also refer to list entries as “elements”. We refer to the set of all elements for which vi = 0101

as “the 0’s”, and to the set of all other elements as “the 1’s”. We also say that v1 represents the “topmost”102

element, and vN the “bottommost” element of the list. We further let K and W denote the total number103

of 1’s and 0’s in the list, respectively (K +W = N ). Throughout this article, we assume that N and K104

(and therefore W ) are fixed, unless stated otherwise. We next define V(N,K) to be the set of all lists of105

length N that contain exactly K 1’s (there are
(
N
K

)
distinct lists in V(N,K)).106

Let f(k; N,K, n) represent the probability mass function of the hypergeometric distribution:

f(k; N,K, n) =

(
K
k

)(
N−K
n−k

)(
N
n

) (Hypergeometric PMF)

Then, let pHG(k; N,K, n) represent the hypergeometric p-value:

pHG(k; N,K, n) =

min(n,K)∑
j=k

f(j; N,K, n) (Hypergeometric p-value)

For any v ∈ V(N,K) and n ∈ {1, 2, ..., N}, let kn(v) represent the number of 1’s among the first n
elements of v:

kn(v) =

n∑
i=1

vi

Then, let pHG
n (v) represent the hypergeometric p-value for v using n as the “cutoff”:

pHG
n (v) = pHG(kn(v); N,K, n)

The mHG test statistic smHG(v) is then defined as follows (Eden, Lipson, et al. 2007):

smHG(v) := min pHG
n (v) (mHG test statistic)

Let V 0 be a random variable representing a list drawn uniformly at random from V(N,K). Let SmHG,0 be
the mHG test statistic of V 0. Then the mHG p-value pmHG(v) is defined as follows (Eden, Lipson, et al.
2007):

pmHG(v) := Pr(SmHG,0 ≤ smHG(v)) (mHG p-value)

Given parameters X and L, both ∈ {1, 2, ..., N}, the XL-mHG test statistic sXL-mHG
X,L (v) is defined as

follows (Wagner 2015b):

sXL-mHG
X,L (v) :=


min

kn(v)≥X
n≤L

pHG
n (v) if kL(v) ≥ X ,

1 otherwise
(XL-mHG test statistic)

The XL-mHG p-value pXL-mHG
X,L (v) is defined analogous to pmHG(v) (Wagner 2015b). Let SXL-mHG,0

X,L be the
XL-mHG test statistic of V 0. Then:

pXL-mHG
X,L (v) := Pr(SXL-mHG,0

X,L ≤ sXL-mHG
X,L (v)) (XL-mHG p-value)
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RESULTS107

The mHG test is much more powerful than the Kolmogorov-Smirnov (KS) test in detect-108

ing certain types of enrichment109

To compare the mHG test and the KS test in terms of their power to detect various types of gene set110

enrichment, I designed a series of simple experiments in which I simulated lists of length N=10,000,111

roughly corresponding to the number of genes expressed in a given cell type or tissue at or above a112

threshold of 1 RPKM (Ramsköld et al. 2009). In each experiment, I simulated varying levels of enrichment,113

corresponding to an overrepresentation of 1’s among the first n elements of the list. For each simulated114

list, I applied both tests and asked whether it was significant at a stringent significance level of α = 10−6,115

which corresponds to a significance level of 0.05 after Bonferroni correction for testing 25,000 gene sets116

for enrichment among both the most up-regulated and down-regulated genes (for a total of 50,000 tests).117

The experiments differed by the choice of n parameter, as well as the total number of 1’s in the list (K).118

As shown in Figure 1, the mHG outperformed the KS test in all four experiments, with the differences119

being greatest in the first case, where n and K were very small. In that experiment, the mHG test achieved120

100% power for 300-fold enrichment (corresponding to three out of five 1’s being present among the first121

20 elements of the list), whereas the KS test only achieved the same power for 500-fold enrichment (i.e.,122

when all five 1’s were present among the first 20 elements). In contrast, for large n, the difference was123

much smaller in terms of the absolute fold enrichment: The mHG test achieved 100% power for 2.4-fold124

enrichment, and the KS test for 3-fold enrichment.125

Figure 1. Power comparison between the minimum hypergeometric (mHG) test and the one-sided
Kolmogorov-Smirnov (KS) test for detecting enrichment. Lists containing varying levels of fold
enrichment within the “top of the list” (specified by the n parameter) were simulated. For each list, it was
assessed whether the tests were significant at the level α = 10−6. Plots show the estimated power
(fraction of significant tests), calculated based on 1,000 simulations for each fold enrichment value. a-d
show the results of three experiments for different choices of K and n, as indicated above each panel.
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The mHG and KS tests exhibit strong differences when applied to real expression data126

To test how the differences between the mHG and KS test statistics affect the quantification of gene set127

enrichment in practice, I applied both tests to individual gene sets to the study by Subramanian et al.128

(2005) of 50 cell lines from the NCI-60 collection with and without mutations of the tumor protein p53,129

encoded by the TP53 gene (this study is henceforth referred to as p53). p53 is important in regulating a130

cell’s response to a variety of stresses, including DNA damage, and acts as a tumor suppressor in many131

cancers.132

For the “p53Pathway” gene set, which Subramanian et al. reported as enriched among genes more133

highly expressed in wild-type cell lines, KS test p-value was 0.051, whereas the mHG test p-value was134

4.0 ∗ 10−8. Another pathway, “DNA DAMAGE SIGNALING” was not reported as enriched by the135

authors, had a KS test p-value of 0.29. However, its mHG test p-value was 3.1 ∗ 10−7. These examples136

show that there can be dramatic differences between the KS test and the mHG test in terms of which gene137

sets are considered enriched. To better understand the basis of these differences, I visualized each of the138

four tests using a GSEA-style enrichment plot. For the “p53Pathway” gene set, the KS test statistic was139

based on the occurrence of 5/16 genes from the gene set among the first 191 genes in the ranked list (see140

Figure 2a). In contrast, the mHG test statistic was based on the occurrence of 3/16 genes from the gene141

set at the very top of the list (see Figure 2b). In other words, the first three genes in the ranked list were142

all contained in the gene set. Given a ranked list of over 10,000 genes, this is very unlikely to occur by143

chance for a set of 16 genes, which explains the highly significant mHG p-value. The situation for the144

“DNA DAMAGE SIGNALING” gene set was generally similar, but with the important difference that the145

gene set comprised 90 instead of 16 genes (see Figure 2c,d), and that a much smaller fraction of them146

appeared located at the top. For example, only 8/90 genes were among the first 200 genes, representing147

less than 10%. The KS test was not clearly not significant in this situation (p = 0.29), whereas the mHG148

test was highly significant (p = 3.1 ∗ 10−7), based on the occurrence of 7/90 genes among the first 31149

genes.150

Figure 2. Enrichment of two example gene sets in the p53 study by Subramanian et al. (2005),
quantified using the KS test and the XL-mHG test. The behavior of the two different tests is shown
using GSEA-style plots of the running enrichment scores that underlie the calculation of the respective
test statistics. In each case, the cutoff that gives rise to the value of the test statistic is indicated by a
dashed red line. The test p-values are shown in the top right corner of each plot, along with additional
information about the number of gene set genes observed at the cutoff. a, b Enrichment of the
“p53 pathway” gene set, quantified using the KS test (a) and the mHG test (b). c, d Enrichment of the
“DNA DAMAGE SIGNALING” gene set, quantified using the KS test (c) and the mHG test (d).

The foregoing analysis demonstrated both the power of the mHG test, as well as a potential pitfall151

associated with it. In agreement with the simulation results, the mHG was much more sensitive than152

the KS test in detecting the enrichment of the “p53Pathway” gene set. However, this extreme sensitivity153

meant that the mHG test detected enrichment even there was only a very small fraction of genes located154
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the very top of the list. This behavior is difficult to justify from a biological point of view: When seven155

out of 90 genes in the “DNA DAMAGE SIGNALING” gene set are among the first 30 genes, should we156

really conclude that the cells with wild-type p53 engage in a DNA damage signaling response (or that the157

p53 mutant cells repress this response)? If so, why are the vast majority of the genes in this gene set not158

up-regulated in the same fashion? At a certain point, i.e., when the size of the subset gets too small, the159

notion of “subset enrichment” clearly reaches its limits.160

An improved algorithm for calculating the XL-mHG p-value161

The overly sensitive behavior of the mHG test illustrated above is a direct result of the fact that it considers162

all possible cutoffs in the calculation of its test statistic. Therefore, I have argued that the test can be163

made more robust and specific by the introduction of two parameters, X and L, which restrict the set of164

cutoffs considered (Wagner 2015b). The X parameter dictates that all cutoffs at the beginning of the list165

for which fewer than X genes from the gene set have been encountered are not to be considered. This166

addresses cases like the one discussed above, since X can for example be chosen to equal at least 25%167

of the number of genes. In contrast, the L parameter dictates that cutoffs at the end of the list, beyond168

rank L, are not to be considered. I have termed the resulting test the “XL-mHG” test, and proposed a169

modification to the dynamic programming algorithm proposed by Eden, Lipson, et al. (2007) that allows170

an efficient calculation of exact p-values for the XL-mHG test (Wagner 2015b). I will henceforth refer to171

this modified algorithm as PVAL1.172

Briefly, for given N , K, X , L, and sXL-mHG
X,L (v), PVAL1 determines the fraction of lists in V(N,K) with

an XL-mHG test statistic at least as good as (i.e., equal to or smaller than) sXL-mHG
X,L (v). By definition, this is

the XL-mHG p-value pXL-mHG
X,L (v). The first key insight behind the approach developed by Eden, Lipson,

et al. (2007) is that even though the number of lists in V(N,K) grows extremely quickly with N (e.g.,
|V(100,20)| ≈ 5.4× 1020), there exist only (K + 1) ∗ (W + 1) unique “hypergeometric configurations”
µ(n,k) ∈M(N,K) (with W = N −K), each associated with a hypergeometric p-value p(n,k). Any list
v ∈ V(N,K) has a unique representation as a sequence of hypergeometric configurations (µ1, µ2, ..., µN ),
corresponding to all possible cutoffs (1, ..., N). Eden, Lipson, et al. (2007) refer to this sequence of
configurations as a path (throughM(N,K); see Figure 3). LetRX,L(v) be the set of all configurations with
p(n,k) ≤ sXL-mHG

X,L (v). Then, each list whose path “enters”RX,L(v) has a mHG test statistic of sXL-mHG
X,L (v) or

smaller. In this scheme, pXL-mHG
X,L (v) therefore equals the fraction of lists whose paths enterRX,L(v). For the

mHG test, Eden, Lipson, et al. (2007) showed that this problem exhibits optimal substructure, making it
amenable to dynamic programming. First, the authors observed that each path that contains a configuration
µ(n,k) either also contains the configuration µ(n−1,k) or µ(n−1,k−1). In the grid representation ofM(N,K)

shown in Figure 3, this means that a configuration (dot) is reached “from the left” or “from below”,
respectively. Furthermore, they proposed to calculate the fraction of paths π(v) that do not enterRX,L(v)
(so that pmHG(v) = 1−π(v)). The algorithm relies on the following recurrence relation for calculating the
fraction of all paths (i.e., all v ∈ V(N,K)) that do not enterRX,L(v) before arriving at a given configuration
µ(n,k):

π(n,k)(v) =

{
0, if µ(n,k) ∈ RX,L(v),

π(n−1,k)(v)
W−w+1
N−n+1 + π(n−1,k−1)(v)

K−k+1
N−n+1 otherwise

(Recurrence relation for PVAL1)

Obviously, if µ(n,k) ∈ RX,L(v), all paths arriving at µ(n,k) have now enteredRX,L(v), and π(n,k)(v) = 0.173

The coefficients in the other case represent the fraction of lists with configuration µ(n−1,k) that have174

a 0 in position n, and the proportion of lists with configuartion µ(n−1,k−1) that have a 1 in position175

n, respectively. If w = 0, or if k = 0, the first or second term of the recurrence relation is omitted,176

respectively, for the case µ(n,k) /∈ RX,L(v). Together with the initial value π(0,0) = 1.0 — at the177

beginning, none of the paths have enteredRX,L(v) —, and an efficient algorithm for determining whether178

µ(n,k) ∈ RX,L(v) for all µ(n,k), this allows the calculation of π(v) = π(N,K) in O(N2); see Wagner179

(2015b) for a more detailed discussion.180

PVAL1, while mathematically accurate and computationally efficient, still has some drawbacks in181

practice. First, it always requires the calculation of all π(n,k)(v), even though in many cases, only a182

small fraction of configurations are inRX,L(v). For example, when L = N/10, approx. 90% of all µ(n,k)183

are excluded fromRX,L(v) by definition. Moreover, since smHG(v) serves as a lower bound for pmHG(v),184
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Figure 3. Representation of lists v ∈ V(N,K) as paths throughM(N,K) (Eden, Lipson, et al. 2007).
Each gray dot represents a hypergeometric configuration µ(n,k) (with n = w + k), and collectively, the
dots in the (K + 1)× (W + 1) grid represent the set of all configurations inM(N,K). In this example,
N = 20 and K = 5. The path of the list vex = (1, 0, 1, 1, 0, 1, 0, ..., 0, 1, 0)T is shown in navy blue. The
mHG test statistic smHG(vex) of this list is attained at the cutoff n = 6 (see arrow), for which vex has the
configuration µ(6,4). Shown in red is the space of all configurations inR(vex). These configurations are
associated with an mHG test statistic equal to or smaller than smHG(vex). The mHG p-value for smHG(vex)
is equal to the fraction of lists in V(20,5) whose paths enterR(vex).

calculating the mHG p-value is mostly of interest when smHG(v) is below a specific significance threshold185

α (e.g., α = 10−6). In these cases the number of configurations inRX,L(v) can be expected to be very186

small as well. A second drawback arises from the fact that for technical reasons, computers typically do187

not represent decimal numbers as a string of (significant) digits. Instead, they use a floating point system188

which can only represent certain numbers from the real line. This can lead to inaccuracies when very189

small numbers are involved in addition or substraction. For example, in most computer programs, the190

expression 1.0− 10−20 will surprisingly evaluate to (exactly) 1.0, because 1.0 is the closest representable191

number to 1.0− 10−20 (see footnote1). For PVAL1, this means that when the true p-value is very small —192

say, smaller than 10−15 — , numerical inaccuracies start to occur in filling in the dynamic programming193

table (which relies on addition) and in the calculation of pmHG(v) = 1− π(v), resulting in an inaccurate194

p-value. More concretely, due to the lack of representable numbers between 1.0 and 1.0 − 10−16, the195

smallest non-zero p-value that can be obtained from PVAL1 is ≈ 10−16 (see Figure 4a). When using an196

80-bit “extended precision” data type, the smallest possible p-value is ≈ 10−19 (see Figure 4b).197

Figure 4. Numerical accuracy of PVAL1. Lists of varying length N (N ∈ {40, 41, ..., 120}), each
consisting of exactly 20 1’s followed by only 0’s, were generated, and the mHG p-value for each list was
calculated using PVAL1. Missing values correspond to cases where PVAL1 returned a value of 0 or
lower due to limited floating point accuracy. a Python implementation using the 64-bit “double-precision”
data type. b Cython implementation using the 80-bit “extended precision” data type.

1In the commonly used IEEE-754 binary64 (“double-precision”) system, the first representable number below 1.0 is approxi-
mately 0.9999999999999999 or 1.0 - 10-16.
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Motivated by these limitations, I sought to design an algorithm for calculating the XL-mHG p-value198

pXL-mHG
X,L (v) that would not require filling in the entire dynamic programming table, and avoid numerical199

inaccuracies in cases where the true p-value is very small. I realized that both of these limitations result200

from the fact that PVAL1 requires the computation of π(v). If we could directly count the fraction of201

paths enteringR(v) (instead of calculating the opposite, and then substracting that number from 1), this202

would allow us to stop the algorithm once we are confident that we have discovered all configurations in203

R(v), and it would avoid substracting a very small number from 1.0 for highly significant tests (instead,204

we would add several small numbers that are close to 0, where the density of representable numbers205

is much higher). I first made the following observation: In the visual representation ofM(N,K) as a206

(K + 1)× (W + 1) grid (see Figure 3), paths can only enter R(v) “from below”. To see this, we first207

introduce the following lemma:208

Lemma 1 (Monotonicity property of the hypergeometric p-value). For all n < N and k ≤ min({n,K}),209

pHG(k; N,K, n) < pHG(k; N,K, n+ 1).210

Proof. pHG(k; N,K, n+ 1) is the probability of having k or more successes among n+ 1 draws. We can211

represent “k or more successes among n+ 1 draws” as the union of two mutually exclusive events A and212

B, so that pHG(k; N,K, n+ 1) = Pr(A∪B) = Pr(A)+Pr(B). Event A: “k or more successes among n213

draws”. Event B: “a successful draw, conditional on exactly k−1 successes among n draws”. We then have214

Pr(A) = pHG(k; N,K, n), and Pr(B) > 0. Therefore, pHG(k; N,K, n+ 1) > pHG(k; N,K, n).215

SinceRX,L(v) is defined as the set of all configurations whose hypergeometric p-value is equal to or216

smaller than fixed value (namely, sXL-mHG
X,L (v)), we know from Lemma 1 that when a configuration µ(n,k) is217

inRX,L(v), then so is µ(n−1,k), its “left neighbor” in the grid representation. Therefore, the only way for218

a path to enter RX,L(v) is “from below”. In this case, µ(n,k) ∈ RX,L(v), but µ(n−1,k−1) /∈ RX,L(v). We219

can refer to configurations for which this is true as “entry points” intoRX,L(v) (see Figure 5). The basis220

of our new algorithm is then to calculate what fraction of paths enter RX,L(v) from below at all entry221

points, and then report the sum of all these fractions as the (XL-)mHG pvalue. However, since paths can222

exit and re-enterRX,L(v), we need to ensure that we only count each path once, when it entersRX,L(v)223

for the first time. In other words, we must only consider paths that have never entered RX,L(v) before.224

Coincidentally, this is the exact same quantity that PVAL1 uses in order to calculate π(v) (see above).225

Figure 5. Idea behind PVAL2, illustrated using the example from Figure 3. At each “entry point” into
R(v) (arrow tips), we calculate the fraction of paths entering from the configuration below (circles).
However, in order to avoid counting paths more than once (some may exit and then re-enterR(v)), we
must base our calculation on only those paths that have not previously enteredR(v). This is the exact
same quantity used by PVAL1 to calculate π(v). The (XL-)mHG p-value corresponds to total fraction of
entering paths.

I refer to this new algorithm as PVAL2. Due to its reliance on the same recurrence relation as PVAL1,226

it requires only surprisingly small modifications to PVAL1. These are illustrated on a simplified version of227

PVAL2, which relies on a separate routine to determineR(v) (see pseudocode below). The full algorithm228

is provided in Appendix A.229

To test whether PVAL2 exhibits better numerical stability than PVAL1, I repeated the experiment230

shown in Figure 4 for PVAL2. As can be seen in Figure 6, the new algorithm is able to calculate p-values231

much smaller than 10−16, and numerical errors are no longer apparent.232
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Figure 6. Numerical accuracy of PVAL2. Shown are results of an experiment as described in Figure 4,
but conducted using PVAL2. a Python implementation using the 64-bit “double-precision” data type. b
Cython implementation using the 80-bit “extended precision” data type.

To determine how the modifications introduced in PVAL2 affect the runtime of the algorithm, I233

performed several benchmarks. As discussed above, I expected PVAL2 to run significantly faster for lists234

containing significant enrichment, and for L < N . The benchmark results confirm this expectation, and235

show that in lists without enrichment and L = N , PVAL2 runs only marginally faster than PVAL1 (see236

Figure 7).237

Figure 7. Comparison of runtimes of PVAL1 and PVAL2. For each benchmark and each set of
parameters, 100 lists were generated independently, and both algorithms were used to calculate the
(XL)-mHG p-value for those lists. Shown are the means and standard deviations (error bars) over the 100
runs. All benchmarks were conducted using randomly generated lists where the positions of the 1’s were
sampled uniformly from all positions (except for c). a Benchmark using fixed K=100, for variable N
(X=1; L=N). b Benchmark using fixed N=2,000, for variable K (X=1;L=N). c Benchmark for lists with
enrichment, using fixed K=100 and variable N (X=1; L=N). The positions of the 1’s were sampled
uniformly from only the top 1,000 positions. d Benchmark using fixed K=100 and L=1,000, for variable
N (X=1).
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Algorithm 1: PVAL2-SIMPLE, an improved algorithm to calculate pXL-mHG
X,L (v) inO(N2). This simplified

version of PVAL2 uses a separate routine to determineR(v), and does not handle comparisons of floating
point variables properly. See Algorithm 5 in Appendix A for PVAL2.

Input: stat=sXL-mHG
X,L (v), N, K, X, L

Output: pval=pXL-mHG
X,L (v)

1 R← Algorithm 2 (stat, N, K, X, L) from Wagner (2015b)
2 pval← 0.0
3 table← empty (K + 1)× (W + 1) array of floats
4 table[0, 0]← 1.0
5 W← N-K
6 for n = 1 to L do
7 k← min(n,K)
8 w = n-k
9 // check whether we have seen all ofR(v)

10 if k = K and R[k, w] = 0 then
11 break
12 end if
13 while k ≥ 0 and w ≤W do
14 if R[k, w] = 1 then
15 table[k, w]← 0.0
16 // check if this is an entry point intoR(v) (entering is only possible “from below”)
17 if k > 0 and R[k-1, w] = 0 then
18 pval← pval + (table[k-1, w] * (K-k+1)/(N-n+1))
19 end if
20 else if w > 0 and k > 0 then
21 table[k, w]← table[k, w-1] * (W-w+1)/(N-n+1) +

table[k-1, w] * (K-k+1)/(N-n+1)
22 else if w > 0 then
23 table[k, w]← table[k, w-1] * (W-w+1)/(N-n+1)
24 else if k > 0 then
25 table[k,w]← table[k-1, w] * (K-k+1)/(N-n+1)
26 end if
27 w← w + 1
28 k← k - 1
29 end while
30 end for
31 return pval

Bounds for the XL-mHG p-value238

Eden, Lipson, et al. (2007) described one lower and two upper bounds for the mHG p-value, all of which239

I review in Appendix B. The mHG test statistic smHG(v) itself serves as a lower bound for pmHG(v) (see240

Theorem 1). I found that the lower bound applies unchanged to the XL-mHG p-value (see Theorem 4 in241

Appendix C).242

In the construction of their proof for the upper bound, Eden, Lipson, et al. (2007) introduced the notion243

of special cutoffs nk, for k ∈ {1, ...,K}, that correspond to the lowest cutoffs so that pHG(k; N,K, nk) ≤244

smHG(v). This allowed the authors to represent the mHG p-value as a union of K events, which correspond245

to observing a hypergeometric p-value equal to or smaller than smHG(v) at the respective nk. By applying246

a union bound, Eden, Lipson, et al. (2007) found that an upper bound for pHG
n (v) is given by K ∗ smHG(v)247

(see Theorem 3). Depending on the choice of the parameters X and L, not all k need to be considered in248

the corresponding expression for XL-mHG p-value, since it is required that k ≥ X and k ≤ min{K,L}.249

Therefore, some of the events in are by definition excluded from the union, which results in a tighter250

bound of ((min{K,L} −X + 1)sXL-mHG
X,L (v) (see Theorem 5 in Appendix C).251

A closer examination of the proof for Theorem 5 suggests that depending on X , L, and sXL-mHG
X,L (v), the

actual number of events in the union of Equation (6) can be smaller than (min{K,L} −X + 1). This
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statement can be made more precise using the following two definitions:

kmin
X,L (v) := min{k : k ≥ X, pHG(k; N,K, k) ≤ sXL-mHG

X,L (v)}

kmax
X,L (v) :=

{
min{k : nk ≥ L}, if nK ≥ L
K otherwise

The number of unique events in Equation (6) is exactly (kmax
X,L (v)−kmin

X,L (v)+1), resulting in the following
bound:

pXL-mHG
X,L (v) ≤ (kmax

X,L (v)− kmin
X,L (v) + 1)sXL-mHG

X,L (v) (O(N) upper bound for the XL-mHG p-value)

Let bXL-mHG
X,L (v) := (kmax

X,L (v)− kmin
X,L (v) + 1)sXL-mHG

X,L (v). It turns out that kmin
X,L (v) and kmax

X,L (v), and therefore252

bXL-mHG
X,L (v), can be obtained in O(N). To do so, I designed the algorithm PVAL-BOUND (see Algorithm 6253

in Appendix A). Therefore, in cases where we need to determine whether pXL-mHG
X,L (v) is equal to or smaller254

than a pre-specified significance threshold α, we can first calculate the original upper bound in O(1). If255

this bound is larger than pXL-mHG
X,L (v), we can invoke PVAL-BOUND to calculate a potentially tighter upper256

bound in O(N). Only if this value is still larger than pXL-mHG
X,L (v) do we need to calculate the exact value of257

pXL-mHG
X,L (v) inO(N2) (using PVAL2). This procedure is summed up in PVAL-THRESH (see Algorithm 2).258

Algorithm 2: PVAL-THRESH— Efficiently determine whether pXL-mHG
X,L (v) ≤ α.

Input: thresh=α, stat=sXL-mHG
X,L (v), N, K, X, L

Output: TRUE if pXL-mHG
X,L (v) ≤ thresh, FALSE otherwise

1 if stat > α then
2 // using lower bound
3 return FALSE
4 else if (MIN(K,L) - X + 1) * sXL-mHG

X,L (v) < thresh then
5 // using upper bound
6 return TRUE
7 end if
8 // calculate tighter bound in O(N)
9 bound← PVAL-BOUND(stat, N, K, X, L)

10 if bound ≤ thresh then
11 return TRUE
12 end if
13 // calculate exact p-value in O(N2)
14 pval← PVAL2(stat, N, K, X, L)
15 if pval ≤ thresh then
16 return TRUE
17 end if
18 return FALSE

The XL-mHG test provides a more powerful alternative to the KS test for quantifying259

gene set enrichment260

To assess the ability of the XL-mHG test to detect enrichment in real expression studies, I decided261

to compare the performance of the XL-mHG to that of the mHG test for all gene sets analyzed by262

Subramanian et al. (2005) in their p53 study. I was particular interested to see if the XL-mHG test would263

be able to produce more significant results than the KS test for the gene sets reported as enriched by264

the authors. I specified the XL-mHG L parameter to the number of genes with positive scores, thereby265

making sure that cutoffs corresponding to genes that did not have higher expression in the wild-type266

compared to the mutant cell lines were not tested for enrichment. I set the XL-mHG X parameter, in a267

gene set-dependent fashion, to 25% of the number of genes in the gene set, or to 5, whichever was larger.268

In supervised gene set enrichment analysis, it is considered best practice to perform a sample label269

permutation test (Chen et al. 2007), in order to avoid reporting artificially low p-values that can result when270

genes are assumed to be independent. I therefore decided to combine both the KS and XL-mHG tests with271

a sample permutation test. I will henceforth refer to the p-values associated with the KS and XL-mHG272
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test statistics as “nomimal p-values”, and to the p-values obtained from the subsequent permutation test as273

“permutation p-values”. I will refer to the combined test procedures as the “KS/permutation test” and the274

“XL-mHG/permutation test”, respectively. The results of applying both tests to the p53 study are shown275

in Figure 8a.276

Figure 8. Application of the XL-mHG test for gene set enrichment to the p53 study by
Subramanian et al. (2005). a Comparison of permutation-based p-values obtained using the KS test
(x-axis) and the XL-mHG test (y-axis). Only gene sets that had nominal p-values of 0.05 or lower for at
least one of the two tests are shown. Gene sets annotated in red correspond to the three gene sets reported
as enriched (FDR ¡= 0.05) in wild-type vs. mutated cell lines by Subramanian et al. b, c GSEA-style
enrichment plots showing the application of the XL-mHG test to the “p53Pathway” and
“DNA DAMAGE SIGNALING” gene sets, respectively (cf. Figure 2). Nominal p-values are shown in
the top right corner of each plot. See text for details of how the X and L parameters were chosen.

For all three gene sets reported as enriched by Subramanian et al. (2005) (“p53Pathway”, “p53hypoxiaPathway”,277

and “hsp27Pathway”2, I observed that the permutation p-values obtained using the XL-mHG test statistic278

were at least one order of magnitude lower (better) than when using the KS test statistic. Furthermore, for279

all gene sets that obtained a p-value of 0.01 or smaller using eihter test, the XL-mHG/permutation test280

yielded a smaller p-value. These results suggested that the XL-mHG was significantly more sensitive in281

detecting gene set enrichment.282

To illustrate the specificity of the XL-mHG test, I visualized the XL-mHG test results for the283

“p53Pathway” and the “DNA DAMAGE SIGNALING” gene sets discussed earlier. The “p53Pathway”284

gene set was reported as enriched by Subramanian et al., and the XL-mHG test assigned it a nomi-285

mal p-value of 7.5 ∗ 10−5 (see Figure 8b). This was not as good as the mHG test p-value of 4.0 ∗286

10−8, but still much more significant than the KS test p-value of 0.051 (cf. Figure 2a,b). The287

“DNA DAMAGE SIGNALING” gene set was not reported as enriched by Subramanian et al. The288

XL-mHG test assigned that gene set a p-value of 0.72. This in sharp contrast to its mHG test p-value of289

3.1 ∗ 10−7. These examples highlighted the fact that the XL-mHG test generally maintains the sensitivity290

of the mHG test, but can be made more specific to avoid detecting cases in which only a small fraction of291

genes in the gene set is located at the top of the list.292

DISCUSSION293

The results presented here extend the work of Eden, Lipson, et al. (2007) and Eden, Navon, et al. (2009),294

who introduced the nonparametric mHG test statistic, developed the dynamic programming approach295

for calculating its p-value, described both upper and lower bounds for the p-value, and developed a web296

2The exact results from their study can be found at http://software.broadinstitute.org/gsea/resources/
gsea_pnas_results/p53_C2.Gsea/gsea_report_for_WT_1130958999391.html
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interface3 for analyzing gene set enrichment using the mHG test. Using simulated data, I have also shown297

that the mHG test is more powerful than the KS test for detecting enrichment, especially when a small298

number of genes are located at the very top of the list. However, using an example from the p53 study by299

Subramanian et al. (2005), I have demonstrated that this extreme sensitivity can sometimes lead to positive300

test results, even when only a small fraction of genes in a gene set exhibit an expression response. To301

overcome this limitation, I have proposed to quantify gene set enrichment using the XL-mHG test (Wagner302

2015b), which represents a semiparametric generalization of the mHG test that provides users with some303

control over which cutoffs are considered in the calculation of the test statistic. I have proposed an304

alternative algorithm for calculating mHG and XL-mHG p-values, which results in better numerical305

stability, and leads to significant speed-ups when enrichment is present, or when L < N . Furthermore,306

I have described lower and upper bounds for the XL-mHG p-value, and proposed an additional O(N)-307

bound that is tighter than the O(1)-bound. Finally, I have shown that when conducting a full analysis308

of all gene sets considered in the study by Subramanian et al., the XL-mHG test resulted in much better309

p-values than the KS test for the gene sets reported as enriched in that study. Importantly, my analysis was310

based on a sample permutation test, and therefore accounted for the dependency structure among genes.311

Beyond the KS test, this work does not include a comparison of the XL-mHG test to other tests and test312

statistics that have been proposed for quantifying gene set enrichment. In particular, the XL-mHG was not313

compared to the popular “ES” test statistic employed by GSEA4. However, there are a number of concerns314

associated with the use of GSEA’s ES test statistic: First, it is not purely rank-based. Instead, it takes315

into account the (absolute) score associated with each gene. This means that the choice of differential316

expression metric can have a strong impact on whether a gene set is considered enriched or not. As there317

are many different metrics available for quantifying differential expression, this means that a largely318

subjective choice can strongly affect the conclusions of the analysis, and that users may be tempted to319

try different metrics and choose the most favorable result. Differential expression metrics that have been320

used in the literature include the t statistic, a moderated t statistic, signal-to-noise ratio, etc. According to321

the GSEA Manual, GSEA allows users to choose among five different metrics for categorical phenotypes.322

Although this effect was not demonstrated here, the impact of the specific differential expression metric323

used can be reduced by relying on a purely rank-based method for quantifying gene set enrichment.324

Second, the ES test statistic does not exhibit the “subset enrichment” characteristic, meaning that it cannot325

effectively ignore the exact rank or score of some genes in the gene set. Instead, the more negative the326

score of a gene in the gene set is, the more it will reduce the value of the test statistic and therefore327

significance of the enrichment. Third, the ES test statistic does not allow the direct calculation of p-values,328

which makes it more difficult to relate the test statistics obtained for different gene sets to one another.329

(The same is true for the maxmean statistic proposed by Efron and Tibshirani (2007).) The ES test statistic330

was mainly motivated by the lack of power of the KS test (see paragraph “Benefits of Weighting by Gene331

Correlation.” in the Supporting Text of Subramanian et al. (2005)). The XL-mHG test addresses this332

concern, while also addressing the lack of control over the type of enrichment tested for that is inherent to333

the mHG test. I therefore believe that the XL-mHG test should be considered an attractive alternative to334

the GSEA test in most supervised settings.335

The analysis presented here exemplified a general strategy for choosing the X and L parameters of336

the XL-mHG test, as well as for combining the XL-mHG test with a sample label permutation test. L337

can be chosen globally so that only cutoffs that are associated with positive differential expression scores338

are considered in the calculation of the test statistic. X can be chosen in a gene set-specific manner,339

to ensure that enrichment is based on a minimum fraction of gene in the gene set (e.g., 25%), but no340

fewer than a certain absolute number of genes (e.g., 5). In, GO-PCA (Wagner 2015a), I have referred to341

these parameters as Xfrac and Xabs, respectively, so that for a gene set g containing Kg genes, Xg =342

max({dXfrac ∗Kge, Xabs}). Finally, the sample label permutation test is straightforward to implement343

based on the individual gene set p-values, and conducting 10,000 permutations is computationally feasible344

given the algorithmic efficiency of the test and the performance of modern CPUs. For the permutations,345

the same L parameter and gene set-specific X parameters should be used as for the unpermuted data.346

The motivation for this work was to encourage the more widespread adoption of the XL-mHG347

test for quantifying gene set enrichment. To this end, I have provided a rigorous and transparent348

treatment of the statistical and algorithmic aspects of the XL-mHG test, and developed an efficient,349

3See http://cbl-gorilla.cs.technion.ac.il/
4Note that GSEA does provide an option to use a standard rank-based KS test statistic instead of the score-based default statistic.
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tested, free and open-source implementation in the form of the xlmhg Python/Cython package (see350

https://github.com/flo-compbio/xlmhg). There are multiple features that can potentially351

make the XL-mHG test an attractive choice in a wide range of applications: The semiparametric nature of352

the test, i.e., the nonparametric approach of the mHG test in combination with the X and L parameters,353

provide an efficient way to tailor the test to the kind of enrichment that is of interest in a particular354

application. In certain scenarios, the XL-mHG test is much more sensitive than the KS test, but the X355

parameter provides a means for trading off some of the sensitivity for increased robustness. Through356

its reliance on the hypergeometric distribution, the XL-mHG test also has the property that the exact357

distribution of 1’s below n∗, the cutoff giving rise to the value of the test statistic, is not important. In358

other words, the test is robust to outliers, which is especially desirable when some of the 1’s are expected359

to represent “false positives”. Finally, efficient algorithms and implementations allow an individual test to360

be performed in only a few milliseconds, even for large values of N .361

METHODS362

Implementation of PVAL1 and PVAL2363

The PVAL1 and PVAL2 algorithms were implemented twice, once in Python and once in Cython. The364

Cython programming language is a superset of Python that compiles to C code. When type declarations365

are added, the generated C code can avoid (slow) calls to the Python C-API, resulting in speeds comparable366

to that of native C programs. At the same time, results (in this case, XL-mHG p-values) can easily be367

passed back into Python code. The Cython implementation uses the long double variable type for all368

floating point operations. Most compilers implement this type using 80-bit “extended precision“, with the369

notable exception of the Microsoft Visual C++ compiler5. Therefore, the Cython implementation is much370

faster and more accurate compared to the Python implementation. However, the Python implementation371

does not require compilation. By default, all implementations use a relative tolerance of 10−12 (see372

Algorithm 3), which was found to give accurate results.373

Testing PVAL2 and PVAL-BOUND for correctness374

Since the algorithms proposed here are not entirely trivial, it can be difficult to establish their cor-375

rectness. I therefore implemented test procedures for the Cython implementations of PVAL2 and376

PVAL-BOUND that rely on alternative algorithms for calculating the XL-mHG p-value and the O(N)-377

bound, respectively. I then compared the results of those alternative algorithms to those obtained378

with PVAL2 and PVAL-BOUND. I found that the results were identical for all cases tested, which379

led me to conclude that both algorithms are in fact correct. The tests were implemented and exe-380

cuted as unit tests within the framework provided by the pytest Python package (version 2.8.5), and381

are included in the xlmhg Python/Cython package, under tests/test_correct_pval.py and382

tests/test_correct_bound.py (see https://github.com/flo-compbio/xlmhg).383

More specifically, to test the correctness of PVAL2, I chose N = 50 and K = 10, and generated a384

reference table of hypergeometric p-values p(n,k), for all possible hypergeometric configurations (i.e.,385

for all possible n and k), using the scipy.stats.hypergeom.sf function from the scipy Python386

package (version 0.17.0). Then, for each possible combination of X and L (X,L ∈ {1, ..., N}), I387

used the reference table to obtain all possible values of the XL-mHG test statistic sXL-mHG
X,L (v) (by setting388

p(n,k) = 1 for all k < X and n > L). For each value of the test statistic, I then calculated the XL-mHG389

p-value pXL-mHG
X,L (v) using both PVAL1 and PVAL2, and tested whether the output of both algorithms was390

identical, within a margin of error due to the numerical errors discussed in the results section. Specifically,391

I used the IS EQUAL algorithm with a relative tolerance of 10−8 to determine if the two results were392

identical. In total, 56, 400 such comparisons were conducted, and the p-values were found to be identical393

in all cases.394

To test the correctness of PVAL-BOUND, I implemented another testing procedure, again choosing395

N = 50 and K = 10. To obtain an alternative algorithm for calculating bXL-mHG
X,L (v), I designed a simpler396

version of PVAL-BOUND that assumes that all p(n,k) are already known. In addition to testing whether397

both algorithms returned identical values for bXL-mHG
X,L (v), I also tested whether those values were in fact398

equal to or larger than pXL-mHG
X,L (v), and whether in all cases bXL-mHG

X,L (v) was equal to or smaller than the399

O(1)-bound (i.e., (min{K,L} −X + 1)sXL-mHG
X,L (v)). Again, a total of 56, 400 tests were conducted, and400

5see https://en.wikipedia.org/wiki/Long_double
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all tests passed. Furthermore, in 34, 858 out of the 56, 400 cases, bXL-mHG
X,L (v) was found to be strictly401

smaller than (min{K,L} −X + 1)sXL-mHG
X,L (v), indicating that the O(N)-bound is indeed tighter than the402

O(1)-bound.403

Assessing the numerical stability of PVAL1 and PVAL2404

All lists tested in Figures 4 and 6 consisted of 20 1’s, followed by a varying number of 0’s. Obviously, we405

have n∗ = 20 for all those lists. In other words, the best cutoff for all those lists is 20, so that the “top of406

the list” contains all 1’s and no 0’s, and the mHG test statistic is the hypergeometric p-value at that cutoff.407

Due to the special structure of those lists, calculation of the true mHG p-value pmHG(v) is trivial as well.408

Since for given N and K, no other list exhibits an equally good minimum hypergeomtric p-value, pmHG(v)409

corresponds to 1/|V(N,K)| = smHG(v).410

Benchmarks of PVAL1 and PVAL2411

The benchmarks of PVAL1 and PVAL2 were carried out using the repeat function from Python’s412

timeit module. For each randomly generated list, sXL-mHG
X,L (v) was pre-calculated, and then the runtime413

of the functions get_xlmhg_pval1 and get_xlmhg_pval2 from the Cython module (xlmhg.414

mhg_cython) were measured. The measurements were taken for 10 identical calls of the function415

(number=10), and the minimum runtime over three tests (repeat=3) was recorded. To obtain the final416

runtime, this minimum was divided by the number of calls (10).417

Power comparison between the mHG test and the KS test418

For each experiment (i.e., each choice of K and n), and each fold change value f , I generated random419

lists as follows: First, I calculated the number of 1’s within the “top of the list” (i.e., above the n’th420

cutoff) as k = f ∗ (n/N) (the fold enrichment values were chosen in a way that would result in421

integer numbers). I then used the numpy.random.choice function from the numpy Python package422

(version 1.10.4) to sample k ranks from {1, ..., n} without replacement. I then set the elements at423

those ranks to 1. I then used the same function to sample K − k ranks from {n + 1, ..., N} without424

replacement, and set the elements of at those ranks to 1. All elements were set to 0. I repeated this425

procedure 1,000 times, to generate 1,000 random lists. I then applied both the mHG test and the KS426

test to each list, and tested whether the p-values were equal to or smaller than 10−6. For the KS427

test, I provided the list of cutoffs corresponding to the 1’s (0-based indices, with an added continuity428

correction of 0.5) to the scipy.stats.kstest function from the scipy Python package (version429

0.17.0), and also specified the following arguments: cdf=’uniform’, alternative=’greater’,430

mode=’approx’.https://github.com/flo-compbio/xlmhg-paper.431

Data for the p53 study by Subramanian et al. (2005)432

All data used were downloaded from the GSEA “Example Datasets” website, (http://software.433

broadinstitute.org/gsea/datasets.jsp, which I will henceforth refer to as “GSEA web-434

site”.435

The gene expression dataset used was contained in the file P53_collapsed.gct (to be found436

under “DATASET/p53” on the GSEA website). This dataset contains 10,100 genes (“collapsed” affymetrix437

probes), and 50 samples (cell lines). The sample class assignments (wild-type vs. mutant) were contained438

in the file P53.cls (found in the same section of the GSEA website). The “C2” collection of 522 gene439

sets used by Subramanian et al. in their analyses was found in the file c2.symbols, to be found under440

the “DATASET/Gene Sets” on the GSEA website.441

Enrichment analysis for the p53 study by Subramanian et al.442

To rank the genes by their differential expression (with genes most highly up-regulated in wild-type vs. con-443

trol first), I used the “signal-to-noise” score, which is the default score used by GSEA (see the GSEA User444

Manual; http://software.broadinstitute.org/gsea/doc/GSEAUserGuide.pdf). I445

confirmed that I obtained values identical to those calculated in GSEA by comparing my results to those446

provided on the GSEA website (see the link in the “Description” field under “DATASETS/p53”; the447

tab-delimited file containing the ranking and scores for this particular analysis was found at http://448

software.broadinstitute.org/gsea/resources/gsea_pnas_results/p53_C2.Gsea/449

ranked_gene_list_WT_versus_MUT_1130958999391.xls).450
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To test for gene set enrichment, I first performed XL-mHG tests and KS tests as described above.451

I then performed 10,000 sample label permutations. For each permutation, I recalculated the gene452

scores (signal-to-noise ratios) using the permuted sample labels. Then, I ranked the genes based on453

the new scores, and performed the XL-mHG and KS tests using the new gene ranking. To increase the454

computational efficiency of the procedure, only gene sets that had a nominal p-value of 0.05 of lower in455

the unpermuted data using either test were tested in this manner. Since nominal p-values are expected456

to be anticonservative, this was not likely to result in the exclusion of any enriched gene sets. For the457

XL-mHG tests in the permuted data, I used the same X and L values that were used in the unpermuted458

tests. For each gene set, the permutation p-value is equal to the fraction of permutations for which the459

nominal p-value of the permuted test was equal to or lower to the nomimal p-value of the unpermuted test.460

The gene sets reported as enriched in Table 2 of Subramanian et al. (2005) were mapped to names of461

gene sets in the C2 collection (see above) using the detailed analysis results provided by the authors on462

the GSEA website (see the link in the “Description” field under “DATASETS/p53”; the tab-delimited463

file containing the ranking and scores for this particular analysis was found at http://software.464

broadinstitute.org/gsea/resources/gsea_pnas_results/p53_C2.Gsea/gsea_report_465

for_WT_1130958999391.xls). Specifically, “Hypoxia and p53 in the cardiovascular system” was466

mapped to the “p53hypoxiaPathway” gene set, “Stress induction of HSP regulation” was mapped to467

the “hsp27Pathway” gene set, and “p53 signaling pathway” was mapped to “p53Pathway”. These468

mappings were also validated using Google queries and data from the WikiPathways website (http:469

//wikipathways.org).470
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A ALGORITHMS508

A.1 Pseudocode for PVAL2509

We first describe two auxiliary algorithms, IS EQUAL and HGP, and then describe PVAL2.510

Algorithm 3: IS EQUAL— Test whether two floating point numbers should be considered equal.

Input: a, b, tol (relative tolerance)
Output: TRUE or FALSE

1 if a = b or |a-b| ≤ tol * MAX(|a|, |b|) then
2 return TRUE
3 else
4 return FALSE
5 end if

Algorithm 4: HGP— Calculate hypergeometric p-value pHG
n (v) when f(k; N,K, n) is already known.

Input: N, K, n, k, p=f(k; N,K, n)
Output: pval=pHG

n (v)
1 pval← p
2 while k < MIN(K, n) do
3 p← p * ((n-k)*(K-k)) / ((k+1)*(N-K-n+k+1))
4 pval← pval + p
5 k← k + 1
6 end while
7 return pval
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Algorithm 5: PVAL2— Improved algorithm to calculate pXL-mHG
X,L (v) in O(N2).

Input: N, K, X, L (X, L ∈ {1, ..., N}), stat=sXL-mHG
X,L (v), tol (relative tolerance)

Output: pval=pXL-mHG
X,L (v)

1 pval← 0
2 W← N-K
3 table← empty (K + 1)× (W + 1) array of floats
4 table[0, 0]← 1
5 p start← 1
6 pval← = 0
7 for n = 1 to L do
8 if K ≥ n then
9 k = n

10 p start = p start * (K-n+1)/(N-n+1)
11 else
12 k = K
13 p start = p start * n/(n-K)
14 end if
15 p = p start
16 hgp = p
17 w = n-k
18 if k = K and (hgp > stat and not IS EQUAL(hgp, stat, tol)) then
19 // we’re not inR(v), even though k = K
20 // this means we’ve seen all ofR(v), so we’re done
21 break
22 end if
23 while k ≥ X and w ≤W and (hgp < stat or IS EQUAL(hgp, stat, tol)) do
24 // we’re inR(v), so π(n,k)(v) = 0
25 table[k, w]← 0
26 // check if this is an entry point intoR(v) (entering is only possible “from below”)
27 if table[k-1, w] > 0 then
28 // calculate the fraction of paths entering (only those that have never enteredR(v) before),
29 // then add that number to pval
30 pval← pval + (table[l-1, w] * (K-k+1) / (N-n+1))
31 end if
32 p← p * (k*(N-K-n+k)) / ((n-k+1)*(K-k+1))
33 hgp← hgp + p
34 w← w + 1
35 k← k - 1
36 end while
37 // we have leftR(v), now calculate π(n,k)(v) for the remaining configurations for cutoff n
38 while k ≥ 0 w ≤W do
39 if k = 0 then
40 table[k, w]← table[k, w-1] * (W-w+1)/(N-n+1)
41 else if w = 0 then
42 table[k, w]← table[k-1, w] * (K-k+1)/(N-n+1)
43 else
44 table[k, w]← table[k, w-1] * (W-w+1)/(N-n+1) +

table[k-1, w] * (K-k+1)/(N-n+1)
45 end if
46 w← w + 1
47 k← k - 1
48 end while
49 end for
50 return pval
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A.2 Pseudocode for PVAL-BOUND511

Algorithm 6: PVAL-BOUND— Calculate an upper bound for the XL-mHG p-value in O(N).

Input: N, K, X, L (X, L ∈ {1, ..., N}), stat=sXL-mHG
X,L (v), tol (relative tolerance)

Output: bXL-mHG
X,L (v)

1 if stat = 1 then
2 return 1
3 else if X > K or X > L then
4 return 0
5 end if
6 min KL← MIN(K,L)
7 k min← 0
8 p← 1.0
9 n = 1

10 while (n ≤ K or (p ≤ stat or IS EQUAL(p, stat, tol)) and n ≤ L do
11 if n ≤ K then
12 k← n
13 p← p * ((K-n+1) / (N-n+1))
14 if k < X or (p > stat and not IS EQUAL(p, stat, tol)) then
15 k min← n
16 end if
17 else
18 k← K
19 p← p * (n / (n-K))
20 end if
21 n← n + 1
22 end while
23 if k min = min KL then
24 //R is empty (this never happens for valid sXL-mHG

X,L (v))
25 return 0
26 end if
27 k min← k min + 1
28 if n ≤ L or (n = L+1 and p ¿ stat and not IS EQUAL(p, stat, tol)) then
29 // we leftRX,L(v) at or before reaching the L’th cutoff =⇒ kmax

X,L (v) = K
30 return MIN((K-k min+1)*stat, 1)
31 end if
32 // we did not leaveRX,L(v) — “go down the diagonal” until we step out ofRX,L(v)
33 n← n - 1
34 k← MIN(n, K)
35 hgp← p
36 while hgp ≤ stat or IS EQUAL(hgp, stat, tol) do
37 p← p * ((k*(N-K-n+k)) / ((n-k+1)*(K-k+1)))
38 hgp← hgp + p
39 k← k - 1
40 end while
41 // now we leftRX,L(v)
42 k max← k+1
43 return MIN((k max-k min+1)*stat, 1)
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B REVIEW OF BOUNDS FOR THE MHG P-VALUE512

In this section, I will review the bounds for the mHG p-value that were first described by Eden, Lipson,513

et al. (2007).514

Theorem 1 (Lower bound for the mHG p-value). For any v ∈ V(N,K), pmHG(v) ≥ smHG(v).515

Proof. Recall that V represents a list drawn uniformly at random from V(N,K). Let P HG,0
n be the

hypergeometric p-value of V for the cutoff n. From the definition of the mHG test statistic, it follows that:

pmHG(v) = Pr
(
SmHG,0 ≤ smHG(v)

)
= Pr

( N⋃
n=1

(
P HG,0
n ≤ smHG(v)

))
(1)

In other words, we know that SmHG,0 ≤ smHG(v) whenever there exists at least one cutoff n for which
P HG,0
n ≤ smHG(v). We also know that smHG(v) is attained at some n = n∗. We therefore observe the

following inequality:

pmHG(v) = Pr

( N⋃
n=1

(
P HG,0
n ≤ smHG(v)

))
≥ Pr

(
P HG,0
n∗ ≤ smHG(v)

)
(2)

By definition of the hypergeometric p-value, Pr(P HG,0
n∗ ≤ smHG(v)) = smHG(v). The theorem therefore516

follows.517

Theorem 2 (Loose upper bound for the mHG p-value). For any v ∈ V(N,K), pmHG(v) ≤ NsmHG(v).518

Proof. When we apply a union bound to Equation (1), we have:

pmHG(v) ≤
N∑

n=1

Pr(P HG,0
n ≤ smHG(v)) (3)

By definition of the hypergeometric p-value, Pr(P HG,0
n ≤ smHG(v)) = smHG(v). The theorem then follows519

follows from Equation (3).520

For the proof of the next bound, we need the following monotonicity property of the mHG p-value.521

Theorem 3 (Tighter upper bound for the mHG p-value; LIPSON bound). For any v ∈ V(N,K),522

pmHG(v) ≤ KsmHG(v).523

Proof. Given smHG(v), let KmHG(v) be the set of all k for which pHG(k; N,K, k) ≤ smHG(v). We know that
KmHG(v) is not empty, since smHG(v) was attained for some k = kn∗(v). Then, for each k ∈ KmHG(v), let
nk be the largest value of n for which pHG(k; N,K, n) ≤ smHG(v). This definition makes sense because
of the aforementioned monotonicity property (Lemma 1). Let P HG,0

nk
be the hypergeometric p-value of V

for the cutoff nk. Then we can represent pmHG(v) as follows:

pmHG(v) = Pr
(
SmHG,0 ≤ smHG(v)

)
= Pr

( ⋃
k∈KmHG(v)

(
P HG,0
nk
≤ smHG(v)

))
(4)

In other words, we have SmHG,0 ≤ smHG(v) whenever the hypergeometric p-value for at least one of the nk
is equal to or smaller than smHG(v). We can then apply another union bound to Equation (4):

pmHG(v) ≤
∑

k∈KmHG(v)

Pr(P HG,0
nk
≤ smHG(v)) (5)

Again, by definition of the hypergeometric p-value, Pr(P HG,0
n ≤ smHG(v)) = smHG(v). We have524

|KmHG(v)| ≤ K. The theorem therefore follows from Equation (5).525

526
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C BOUNDS FOR THE XL-MHG P-VALUE527

Theorem 4 (Lower bound for the XL-mHG p-value). For any v ∈ V(N,K), pXL-mHG
X,L (v) ≥ sXL-mHG

X,L (v).528

Proof. In the trivial case sXL-mHG
X,L (v) = 1, we have pXL-mHG

X,L (v) = 1. In the remainder, we therefore treat
the case sXL-mHG

X,L (v) < 1. Let sn(v; X,L) represent the value “contributed” by the n’th cutoff in the
calculation of the XL-mHG test statistic:

sn(v; X,L) =

{
pHG
n (v), if kn(v) ≥ Xand n ≤ L,

1.0 otherwise

Furthermore, let the random variable S0
n represent the value of sn(v; X,L) for a list drawn uniformly at

random from V(N,K). We then have:

pXL-mHG
X,L (v) = Pr

(
SXL-mHG,0

X,L ≤ sXL-mHG
X,L (v)

)
= Pr

( N⋃
n=1

(
S0
n ≤ sXL-mHG

X,L (v)
))

Furthermore, we know that since sXL-mHG
X,L (v) < 1, the test statistic was attained at some n∗; i.e.,

sXL-mHG
X,L (v) = sn∗(v; X,L). Therefore, we have:

Pr

( N⋃
n=1

(
S0
n ≤ sXL-mHG

X,L (v)
))
≥ Pr(S0

n∗ ≤ sXL-mHG
X,L (v))

Since sXL-mHG
X,L (v) was attained at n∗, we know that n∗ ≤ L. Furthermore, we know that kn∗(v) ≥ X529

and that pHG(k; N,K, n∗) > sXL-mHG
X,L (v) for any k < kn∗(v) (hypergeometric p-values strictly increase530

with smaller k). Therefore, we have Pr(S0
n∗ ≤ sXL-mHG

X,L (v)) = Pr(P HG,0
n∗ ≤ sXL-mHG

X,L (v)) = sXL-mHG
X,L (v), and531

therefore pXL-mHG
X,L (v) ≥ sXL-mHG

X,L (v).532

533

Theorem 5 (Upper bound for the XL-mHG p-value). For any v ∈ V(N,K),534

pXL-mHG
X,L (v) ≤ (min{K,L} −X + 1)sXL-mHG

X,L (v).535

Proof. In the trivial case sXL-mHG
X,L (v) = 1, we have pXL-mHG

X,L (v) = 1. In the remainder, we therefore treat the
case sXL-mHG

X,L (v) < 1. Let KmHG
X,L (v) be defined as follows:

KmHG
X,L (v) = {k : pHG(k; N,K, k) ≤ sXL-mHG

X,L (v), k ≥ X, k ≤ L}

Since sXL-mHG
X,L (v) < 1, the test statistic was attained at some cutoff n∗, for some k = kn∗(v):

pHG(kn∗(v); N,K, n
∗) = sXL-mHG

X,L (v)

Since kn∗(v) ≤ n∗, we can rely on Lemma 1 to infer that kn∗(v) ∈ KmHG(v), so KmHG
X,L (v) is not empty.

We define nk for all k ∈ KmHG
X,L (v) as in the proof for Theorem 3 (see Appendix B), and then define and

n′k = min{nk, L} for all nk. We can then represent pXL-mHG
X,L (v) as:

pXL-mHG
X,L (v) = Pr

(
SXL-mHG,0

X,L ≤ sXL-mHG
X,L (v)

)
= Pr

( ⋃
k∈KmHG

X,L (v)

(
P HG,0
n′k
≤ sXL-mHG

X,L (v)
))

(6)

We apply a union bound to Equation (6) and observe, as in Theorem 3 (see Appendix B), that536

Pr(P HG,0
n′k
≤ sXL-mHG

X,L (v)) = sXL-mHG
X,L (v). We have |KmHG

X,L (v)| ≤ min{K,L} −X + 1 events in the union,537

which means that pXL-mHG
X,L (v) ≤ (min{K,L} −X + 1)sXL-mHG

X,L (v).538

539
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