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ABSTRACT 
Salinity has some adverse effects on the morphology and physiology in many crops. To alleviate 
the damages of salinity, the applications of calcium nitrate on quinoa-treated NaCl (Chenopodium 
quinoa Willd.) were investigated under the supported-hydroponic environment. The plants were 
exposed to 200mM NaCl with 20mM and 150mM Ca (NO3)2 (EC 18.61~37.85 ds·m-1 and 
osmotic potential -0.89~-1.71MPa), and sampled for measurements of osmotic potential, stomatal 
characteristics, and root characteristics. The presence of 200 mM NaCl alone decreased the 
relative parameters in different degrees. In all treatments, the indexes on stomatal characteristic 
were decreased with increasing electrical conductivity (EC) levels except for stomatal density. 
Stomatal conductance decreased more markedly when osmotic potential reached -0.89Mpa. 
Increasing in stomatal density observed in higher Ca(NO3)2 level (150mM) might be caused by 
the inhibition of cell division in the epidermis, which was also due to reduction of osmotic 
potential of the solutions.A similar trend was observed for osmotic potentials in the same tissue, 
which were deceased with increasing EC of the solutions. Although no significant differences in 
the all treatments were observed for the average diameter of roots, the beneficial effect of 
Ca(NO3)2 application at the concentration of 20 mM was significant in projected area, surface 
area, and volume. The phenomenon showed that moderate reduction in osmotic potential was 
favorable to cell extension due to maintaining cell turgor pressure. Much lower osmotic potential 
possibly inhibited cell division of root apical meristem. From the above results, it might be 
concluded that the effects of Ca(NO3)2 applications depended on the concentration, while the 
significant differences between the stomata and root morphology represented the tissue-specific 
as well.  
Subject Agricultural Science, Plant Science 
Key words Quinoa, Salinity, Calcium nitrate, Stomatal characteristic, Osmotic potential, Root 
characteristic 
INTRODUCTION 
Salinity is one of the most vital environmental stresses affecting seed germination (Lovato, Filho 
& Martins, 1999), seedling growth, development, and crop productivity. More than 800 million 
ha of land is salt-affected, which is over 6% of the world’s land area (Rengasamy, 2006). 
Approximately 20% of the world’s arable land and 40% of the irrigated land are subjected to 
salinity erosion at different degrees (Sahi et al., 2006). It is estimated that 50% of all arable lands 
may become saline by the year 2050 (Seki et al., 2007). As a consequence, enhancing salinity 
tolerance by some means would be an important strategy to improve the crop productivity (Khan 
et al., 2010). 

In general, the effects of salt on plants are attributed to the decrease in water uptake, and 
toxicity of specific ions (Alam, 1994), leading to membrane disorganization, increase in reactive 
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oxygen species (ROS) levels and metabolic toxicity (Hasegawa et al., 2000). For many 
conditions, water status and ion effect are inextricably linked. The initial and primary effects of 
salt, especially at moderate concentrations, are due to osmotic stress (Munns & Termaat, 1986). 
Even in well-watered soils by decreasing the osmotic potential of soil solutes, it is difficult for 
roots to extract water from their surrounding media (Sankar et al., 2007). In such case, the plants 
should adapt to the environmental variation through the stomatal aperture for maintaining the 
water balance. Resistance for CO
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2 diffusion and decreases in transpiration rates reduce carbon 
assimilation, which inhibits the photosynthesis and crop productivity. Consequently, the stomatal 
characteristics should be regarded as one of important physiological parameters. In addition, ion 
toxicity or nutrition imbalance is increased owing to passive absorption and accumulation of 
some specific ions. Sodium and chlorine are generally the dominant ions in saline environments 
(Tester & Davenport, 2003), and directly affect nutrient uptake, such as Na+ reducing Ca2+ uptake 
or Cl− reducing NO3

- uptake (Grattan & Grieve, 1999). Most plants are very sensitive to Na+ 
which can disturb intracellular ion homeostasis (Rengel, 1992), membrane dysfunction (Ghoulam, 
Foursy & Fares, 2002), and disorder of metabolic processes (Manaa et al., 2011). Accordingly, 
two cost-effective strategies of increasing crop yield are breeding tolerant genotypes, and 
application of chemical substances. 

Quinoa (Chenopodium quinoa Willd.), an ancient crop of the Amaranthaceae family, has been 
cultivated in the Andean region for thousands of years (Jacobsen, Mujica & Jensen, 2003). It is a 
tetraploid species, a close relative of beets and amaranth (Maughan et al., 2006). As reported in 
previous literatures, quinoa is a highly nutritious seed crop which is rich in amino acid (lysine), 
unsaturated fatty acids (linolenic acid, linoleic acid), mineral composition as cofactors in 
antioxidant enzymes (calcium, magnesium, iron, copper, and zinc), tocopherols (vitamin E), 
saponins and phenolic compound with antioxidant power (Rengasamy, 2006; Vega-G´alvez et al., 
2010). As a kind of grain crop, quinoa has an excellent stability under freezing and retrogradation 
due to carbohydrate accumulation. Another critical characteristic is that quinoa may give seed 
yield of 1.721 t ha-1 of remarkable quality in typical agro-climatic conditions of South Eastern 
Europe (Stikic et al., 2012). For these reasons, FAO has suggested it as one of the crops that 
should be used for food security in the next century (Izquierdo et al., 2003; FAO, 1998). Quinoa 
is also regarded as a crop with a high level of resistance to several of the predominant adverse 
factors, such as drought, salinity, frost, hail and poor soil fertility (Jacobsen, Mujica & Jensen, 
2003). In the field, most of plants known as glycophytes are not capable of dealing with salt 
concentrations of EC > 4 dS·m-1. For example, rice will die during vegetable stage when the 
salinity rises to 10 dS·m-1 (Munns, James & Läuchli, 2006). As a moderately salt-tolerant crop, 
most of quinoa species may grow, develop and fruit under the mild saline conditions (10–20 
dS·m
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-1). It is worthwhile to note that quinoa can also survive even at 400 mM NaCl (40 dS·m-1), 
which amounts to the seawater (Razzaghi et al., 2011). The special characteristics and higher 
nutrient values have received much attention from worldwide, and led to lots of research on the 
development of new food products in recent years.  

Salt tolerance is concerned not only plant species but also the exogenous application of 
chemical substances (Jaleel et al., 2007). Exogenous application of nutrient elements is one of 
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efficient strategies minimizing the effects of salinity on plant productivity, such as N (Wu et al., 
2008), K (Chartzoulakis et al., 2006), Si (Liang, 1999), Ca and Mg (Asaeda et al., 2014). It is 
well known that calcium is a very important macroelement for plant metabolism, and the 
hypothesis of Ca
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2+ being a second messenger has been advanced for environmental stress. 
Several practices have showed that calcium is involved in many processes, including cell division 
and elongation (Kader & Lindberg, 2010), competition to Na+ uptake (Epstein, 1962), lipid 
peroxidation of cell membranes (Kaya et al., 2002; Marinos, 1962), antioxidant enzyme activities, 
and the plant hormone metabolism (Manaa et al., 2014). Under abiotic stresses, application of 
moderate amount of exogenous Ca2+ can increase stomatal conductance, improve plant 
photosynthesis through calmodulin (CaM) and Ca2+-dependent protein kinases (Zhang et al., 
2014). However, there are some disagreements about Ca2+ evaluation. Sohan, Jasoni & Zajicek 
(1999) indicated that calcium supplements of 10 mM were not able to ameliorate the adverse 
effects of NaCl on the plant-water relations of sunflower. Navarro, Martinez & Carvajal (2000) 
reported that the growth-reductions and physiological effects induced by Na+ (60 mM) were 
partially prevented by additional Ca2+ in the hydroponics solution. Note that these plant 
characteristics may not be affected until a critical threshold level of Ca2+ has been reached. It 
means that crop biomass may not decrease until a given threshold concentration of Ca2+ is 
reached, below which there is no significant influence in the total output. The beneficial effect of 
Ca2+ did not persist once Ca2+ supply exceeded the critical level because further Ca2+ supply 
increased soil salinity (Vaghela et al., 2010). Even as a kind of benefit macronutrient, higher 
concentration of Ca2+ lead to water stress and inhibition of enzyme activity. Reviewing the past 
literatures, most attention has focused on alleviating adverse effects of Ca2+ on salinity, less 
attention has been given to the critical toxic level of Ca2+. The influence of Ca2+ is largely 
relevant to the relative concentration of Na+ to Ca2+ as well as the absolute concentration of 
calcium. 
  Transpiration, water uptake, and CO2 entrance are partially controlled by the plant via its 
regulation of stomatal opening. So the effects of initial water deficit on photosynthesis may be 
observed directly by diffusion limitations through the stomata under salt stress condition. As for 
the root systems, it not only plays an important role in water and nutrient uptake, but also 
interacts directly with the biotic and abiotic components of the rhizosphere. Under stress 
condition, adjustment to the root systems might alleviate the effect of the stress on the 
intracellular environment. Thus, it is critical for the growth and survival of the plants to adjust 
morphology and physiology of stomata and root system under salt stress. The focus of this study 
was to provide additional information on the optimal concentration of calcium nitrate. The 
relative physiological indexes of quinoa were investigated in terms of osmotic potential of 
different parts, stomatal characteristic and root characteristic, and the possible role played by 
calcium nitrate in regulating salinity-induced variations in these parameters. 
MATERIALS AND METHODS 
Plant culture 
The experiment was carried out from 30th May to 10th July 2013 in the greenhouse located in the 
Faculty of Science, University of Copenhagen. Plant material, a Danish bred cultivar (Titicaca) 
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more adapted to Mediterranean condition, was provided by Prof. Jacobsen SE of the University 
of Copenhagen.  
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Seeds were sown in vermiculite-filled plastic trays in the greenhouse. The environmental 
conditions were as follows: average day/night temperatures of 22 ± 2 ℃ / 18 ± 2 ℃, 16 h light / 
8h dark with a photosynthetic photon flux density (PPFD) of 600 mol·m-2s-1, and a relative 
humidity of 60 ± 5%. Once seedlings emerged, they were watered with half-strength Hoagland’s 
nutrient solution (pH 6.8) every two days. After 2 weeks of culture, healthy and uniform 
seedlings were transferred into 500 ml plastic pot (four seedlings per pot) containing full-strength 
Hoagland’s nutrient solution continuously aerated.   
Salt treatments 
When the seedlings were at the sixth leaf stage, the different treatments were initiated. The 
different four treatments were applied as follow: (A) Hoagland’s nutrient solution (control), 
without the addition of NaCl or Ca (NO3)2. (B) Hoagland’s nutrient solution with 200mM NaCl; 
(C) Hoagland’s nutrient solution with 200mM NaCl + 20mM Ca (NO3)2; (D) Hoagland’s nutrient 
solution with 200mM NaCl + 150mM Ca (NO3)2. Each treatment included four replicates. NaCl 
concentration was gradually elevated by 50 mM daily in order to avoid salt shock. The 
concentration of Ca (NO3)2 were designed on the basis of previous published experiments 
(Vaghela et al., 2010). The solution was changed every other day until the end of the experiment, 
and the pH of the solution was adjusted to 6.5 by adding 0.1M KOH. The plants were watered 
twice every day in the early morning and the late afternoon according to the weight loss. At the 
same time, the electronic conductivity (EC) and the osmotic potential (Ψπ) of the respective 
treatment solutions (Table 1) were determined by Conductivity Meter and Dew point 
microvoltmeter (HR–33T, Wescor Inc., Logan, UT, USA), respectively. 

Table 1 The physical properties of the treatments. 
The stomatal characteristics of quioa under the stress conditons 
The stomatal conductance (gs, mmol·m-2s-1) was measured on the fourth fully expanded leaf 
between 10:00- 12:00 AM with a leaf porometer (Model SC-1, Decagon, Pullman, WA, USA). 
The result of the same leaf was repeated twice. The same leaf was used for the measurement of 
stomatal morphology. According to the method of nail polish impressions (Shabala & 
Volkenburgh, 2003), four leaves were taken from each of treatment. For each leaf, four 
microscopic observations were analyzed at 400 magnifications. Stomatal morphology was 
observed under a LEITZ DMRD microscope camera system (Leica Microscope and System 
GmbH, D 35530, Wetzlar, Germany) equipped with a digital camera, and the images were 
presented using image-editing software (Leica Microsystems, version 2.5.0, CMS GmbH 
(Switzerland) Limited) on a computer screen. Stomatal length and stomatal density were 
measured with the images using UTHSCSA ImageTool software (UTHSCSA ImageTool for 
Windows version 3.00). 
The osmotic potential (Ψπ) of different tissues in quinoa under the stress conditons 
The different parts of seedlings were frozen in liquid nitrogen for 20 min to disrupt cell 
membranes  , and then transferred to a refrigerator of -80°C for later osmotic potential 
measurement. Before the osmotic potential was measured, the tissues should be equilibrated for 

 4

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1956v1 | CC-BY 4.0 Open Access | rec: 14 Apr 2016, publ: 14 Apr 2016



at least 20 min at 25℃. The sample was ground by the tissue grinder, and the osmotic potential of 
the sap was measured with a Dewpoint Potential Microvoltmeter (HR– 33T, Wescor Inc., Logan, 
UT, USA). The value was calculated on the basis of the standard curve determined previously.     
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The root characteristics of quioa under the stress conditons 
The root systems used for morphology measurements were spread out in a clear, water filled 
plate, and were scanned to high definition (600 dpi) using the WinRHIZO analysis system 
(WinRHIZO ver. 2004a, Regent Instruments Inc., Quebec, Canada). Total root length, projected 
area, surface area, average diameter, root volume, length per volume were automatically analyzed 
from the root images. 
Statistical analysis 
The experiment design was a randomized complete block with four replications. The data were 
analyzed with SPSS version 10 (SPSS, Chicago, IL, USA), using the one-way analysis of 
variance (ANOVA) followed by Least Significant Difference (LSD), p values ≤ 0.05 were 
regarded as significant.  
RESULTS 
The stomatal characteristics of quioa  
Stomatal conductances, stomatal density, and length of stomatal pore were used to evaluate the 
effects of salinity and supplementary Ca(NO3)2 on the stomata characteristics. In most cases, the 
relevant parameters of abaxial surface were higher than those of adaxial surface in different 
degrees (Table 2). The presence of 200 mM NaCl alone decreased all the parameters on the 
stomatal characteristics. As compared to the control, stomatal conductance, stomatal density, and 
stomatal length of the adaxial surface decreased by 59.5%, 0.4% and 16.3 %, respectively. 
Moreover, the above parameters of abaxial surface decreased by 59.3%, 20.2% and 14.9%, 
respectively. In the identical NaCl level (200mM), the plants supplemented with different 
concentrations of Ca(NO3)2 exhibited reduction in stomatal conductance, and stomatal length of 
both sides (p<0.05) with increasing electrical conductivity (EC) levels except for stomatal density. 
Stomatal conductance decreased more markedly when osmotic potential reached -0.89MPa. The 
values of adaxial surface and abaxial surface in group C decreased by 81% and 87.3%, 
respectively. The same parameters in group D decreased by 86.5% and 87.9%, respectively. In 
the similar manner, stomatal length of adaxial surface and abaxial surface in group C decreased 
by 29.4% and 8.2%, respectively. The same parameters in group D decreased by 32.3% and 34.5 
%, respectively. In contrast to the above results, the maximum values of stomatal density in both 
surfaces were recorded from group D. The related indexes in adaxial surface and abaxial surface 
increased by 70% and 0.4 %, respectively. 

Table2 Effects of salt stress and calcium application on stomatal characteristics in quinoa 
grown under greenhouse conditions. 

The osmotic potential (Ψπ) of different tissues in quinoa 
The variations of osmotic potential in leaf, stem, and root of quinoa were shown in Table 3. The 
highest values of osmotic potential in all treatments were found in the roots of the seedlings, and 
the lowest values were found in the stems. The control treatment had less negative osmotic 
potentials compared to the other treatments. In most cases, the osmotic potential in leaf, stem and 
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root of quinoa decreased gradually with decreasing osmotic potential of the different treatments. 
At the same parts of the seedlings, decrease in osmotic potential was less pronounced among the 
stress treatments (p>0.05). Compared with the control treatment, the osmotic potential of stress 
solutions were 4.1-fold (B), 4.5-fold (C), and 7.8-fold (D), respectively (Table 1). In the quinoa 
roots from different stress treatments, the osmotic potential was 7.6-fold (B), 8.1-fold (C), and 
8.5-fold (D) higher than that of the control. In the quinoa stems of different stress treatments, the 
osmotic potential was 2.6-fold (B), 3.1-fold (C), and 3.7-fold (D) higher than that of the control. 
In the quinoa leaves of different stress treatments, the osmotic potential was 2.1-fold (B), 2.7-fold 
(C), and 2.4-fold (D) higher than that of the control.  
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Table 3 Effects of salt stress and calcium application on osmotic potential (Ψπ) in quinoa 
grown under greenhouse conditions. 

The root characteristics of quinoa 
Root length, projected area, surface area, average diameter, and root volume were used to 
evaluate the effects of NaCl and Ca(NO3)2 on morphological variations of the root system (Table 
4). The results showed that the presence of 200mM NaCl alone in growth medium decreased all 
these parameters of root characteristics (p>0.05). Although no significant difference was 
observed on the average diameter among all the treatments (p>0.05), the maximum values of the 
root parameters were observed in group C.  

Table 4 Effects of salt stress and calcium application on root morphology of quinoa grown 
under greenhouse conditions. 

DISCUSSION 
As one of essential macronutrients, calcium makes the major contribution to signal transduction, 
structural integrity and permeability to cellular membranes (Mengel & Kirkby, 1987), slowing 
the degradation of cell wall (An et al., 2014), counteracting the harmful effects of Na+(Lahaye & 
Epstein, 1971), availability and uptake of nutrients ((Pandolfi, Mancuso & Shabala, 2012), and so 
on. High levels of salinity might disturb absorb of nutrients, such as Ca2+ deficiency. Exogenous 
calcium should reduce the damage of Ca2+ deficiency. The conclusion has been confirmed by 
Agarwal et al. (2005) suggested that Ca2+ might be responsible for the activation of transcription 
factor associated with SOD, APOX and CAT under abiotic stress. Liu et al. (2014) also found 
that CaCl2 application increased stomatal conductance, and adjusted chloroplast structure in 
LNT-stressed plants. Still other studies suggested that 3 or 10 mM Ca2+ supplements possibly 
damaged the metabolism of the blueberry because of higher Ca2+ concentrations (Wright, Patten 
& Drew, 1993). Plants differ in both the amounts of Ca2+ they require and their tolerance of Ca2+ 
in the rhizosphere (White & Broadley, 2003). Therefore, such improvement in calcium 
application was associated with the concentration of calcium.  
Effects of salt treatments on the stomatal characteristics of quioa  
Under the salt stress condition, decreases in water potential of the environment resulted in the 
limited uptake of water. Water deficit-induced stomatal closure has been regarded as the initial 
response. In the current experiment, stomatal density did not show significant differences except 
for the higher level treatment of Ca(NO3)2 (150mM). The finding agreed with the previous report 
(Jacobsen, Liu & Jensen, 2009) that leaf expansion is also sensitive to water deficit. The lower 
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osmotic potential in the leave may be significant in inhibition of cell division. While the division 
of the epidermis was inhibited, the relative number of the stomata was increased at the same time. 
This is the reason for the result that the highest value of stomatal density was observed in the 
treatment of 150mM Ca(NO
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3)2 and 200mM NaCl.  
Compared with the variations of stomatal density and length of stomatal pore, stomatal 

conductance was inhibited significant in previous conditions. Under low level of Ca(NO3)2 
(20mM), it may be suggested that reduction in gs is favorable to better water retention (Pandolfi, 
Mancuso & Shabala, 2012). With increasing in the Ca2+ concentration, the effect on the stomata 
aperture became more and more seriously. The results were consistent with reports of Montesano 
and Van (2007), suggesting that reductions in stomatal indexes were probably attributed to 
osmotic effects rather than Na+ specifically, especially in the identical NaCl condition. In short 
term, stomatal conductance may contribute to plant metabolism and growth. Thus, it is a more 
practical approach to maintain the higher stomatal conductance, improve salt tolerance through 
applying the optimal concentration of calcium.   
Effects of salt treatments on the osmotic potential (Ψπ) of different tissues in quinoa 
The presence of NaCl in the nutrient solution reduces the osmotic potential of the root 
environment, and inhibits water absorption. Results presented in this study indicated that the 
osmotic potential (Ψπ) of different tissues in quinoa was not influenced by the same way. There 
were no proportional variations in the osmotic potential between the solutions and the different 
tissues. This may be involved in employing internal exclusion (vacuolar sequestration) and 
external (sequestration in EBC) exclusion for the cytosolic Na+ (Bonales-Alatorre et al., 2013), 
reducing the following accumulation in the cytoplasm of the shoot. And on the other hand, 
osmotic potential of the same tissues became more negative with decreasing the osmotic potential 
of all the treatments. Reduced values of osmotic potential may be due to externally supplied Ca2+ 

under the identical NaCl concentration. The low osmotic potential in tissues was favorable to 
maintain of the potential gradient for water uptake, delaying the physiological drought of the 
seedlings in salt-stressed plants. Once the osmotic potential belows a threshold level, 
physiological damages might occur. Therefore, it seemed that the beneficial effect of Ca2+ did not 
persist when Ca2+ supply exceeded the critical level (Vaghela et al., 2010).  

Effects of salt treatments on the root characteristics of quinoa 
Environmental conditions affected root development processes in different ways. Root 
architecture has been directly related to plant productivity (Lynch, 1995) under limiting edaphic 
conditions. As expected, better root morphology meant more salt-tolerant (Ashraf et al., 2005). In 
order to maintain the absorption function of root system, plant should adjust root morphology and 
physiology. In current work, the NaCl treatment alone reduced all the parameters of the root 
system (p>0.05) due to water-deficit and ion- excess effects. The results of Ca(NO3)2 application 
were consistent with the previous observation that maize - treated with low level of NaCl showed 
the reduction in root elongation, and partly restored by the addition of Ca2+ (Cramer, Epstein & 
Lauchli, 1988). Under the identical Na+ concentration, low level of Ca(NO3)2 (20mM) 
maintained the optimal states of the root system. It indicated that the interaction between Na+ and 
Ca2+ was significant for the lengths, surface areas, projected areas and volumes of the roots. At 
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higher level (150 mM), serious effect of Ca(NO3)2 application on the root length was detected. 
The results also confirmed the hypothesis that the optimal concentration of calcium may be 
significant in determining the rate and the extent of Na
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+ - related inhibition of cell elongation 
(Rengel, 1992).  
CONCLUSION 
In summary, it might be concluded that the synergic effects of NaCl and Ca(NO3)2 on quinoa 
seemed to depend on suitable calcium concentration level and the applied tissues. Even as a kind 
of beneficial element, the optimal concentration of calcium varied with the sensitivity of different 
tissues. The results of the present study may serve as a reference for future research on exogenous 
application of chemicals. 
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Table 1 The physical properties of the treatments. 423 

Treatment 
Electrical conductivity

(ds· m-1) 
Osmotic potential 

(MPa) 
A  1.87 -0.22 
B  18.61 -0.89 
C  22.65 -0.99 
D  37.85 -1.71 

Notes. 424 
425 
426 
427 
428 

A, Hoagland’s nutrient solution (control), without the addition of NaCl or Ca (NO3)2; B, 
Hoagland’s nutrient solution with 200mM NaCl; C, Hoagland’s nutrient solution with 200mM 
NaCl + 20mM Ca (NO3)2; D, Hoagland’s nutrient solution with 200mM NaCl + 150mM Ca 
(NO3)2.  
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Table2 Effects of salt stress and calcium application on stomatal characteristics in quinoa 
grown under greenhouse conditions. 

429 
430 

Treatment 
Stomatal conductance (mmol·m-2 s-1) 

Adaxial surface  Abaxial surface 

Stomatal density (No·mm-2) 

Adaxial surface   Abaxial surface 

Length of stomatal pore (μm) 

Adaxial surface   Abaxial surface 

A 475.68±76.94 a 684.80±62.57 a 138.00±9.50 b 165.33±12.51 a 90.21±4.00 a 96.89±1.54 a 

B 192.52±31.96 b 278.88±46.23 b 137.33±18.58 b 132.00±12.48 ab 75.50±7.22 ab 82.48±2.55 bc 

C 90.38±12.67 bc 87.24±11.27 c 112.00±8.86 bc 138.67±13.80 ab 63.68±8.07 b 89.00±2.66 b 

D 64.20±8.94 c 83.15±13.92 c 234.67±17.24 a 166.00±9.60 a 61.10±4.33 bc 63.50±2.04 d 

Notes. 431 
432 
433 
434 
435 
436 
437 

A, Hoagland’s nutrient solution (control), without the addition of NaCl or Ca (NO3)2; B, 
Hoagland’s nutrient solution with 200mM NaCl; C, Hoagland’s nutrient solution with 200mM 
NaCl + 20mM Ca (NO3)2; D, Hoagland’s nutrient solution with 200mM NaCl + 150mM Ca 
(NO3)2.  

Different letters indicate significant differences according to LSD at p<0.05. Data were 
presented as the mean ± standard error (SE, n=4). 
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Table 3 Effects of salt stress and calcium application on osmotic potential (Ψπ) in quinoa 
grown under greenhouse conditions. 

438 
439 

Treatment Leaf (MPa) Stem (MPa) Root (MPa) 
A -0.79±0.11a -0.71±0.05a -0.18±0.05a 
B -1.63±0.19 b -1.84 ±0.21 b -1.37±0.32 b 
C -2.16±0.24 bc -2.22±0.07 bc -1.46±0.27 bc 
D -1.89±0.29 b -2.62±0.10 c -1.54±0.31 bc 

Notes. 440 
441 
442 
443 
444 
445 
446 

A, Hoagland’s nutrient solution (control), without the addition of NaCl or Ca (NO3)2; B, 
Hoagland’s nutrient solution with 200mM NaCl; C, Hoagland’s nutrient solution with 200mM 
NaCl + 20mM Ca (NO3)2; D, Hoagland’s nutrient solution with 200mM NaCl + 150mM Ca 
(NO3)2.  

Different letters indicate significant differences according to LSD at p<0.05. Data were 
presented as the mean ± standard error (SE, n=4). 
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Table 4 Effects of salt stress and calcium application on root morphology of quinoa grown 
under greenhouse conditions. 

447 
448 

Treatment 
Root length 

(cm) 
ProjectedArea 

(cm2) 
Surface Area 

(cm2) 
Average 

Diameter (mm) 
Root Volume 

(cm3) 
A 4445.95 ab 112.75 b 354.21 b 0.68 a 2.27 b 
B 3136.41 ab 90.77 bc 285.17 bc  0.56 a 2.19 bc 
C 4648.39 a 161.80 a 508.33 a 0.70 a 4.44 a 
D 2915.95 b 114.90 ab  360.98 ab 0.66 a 3.56 ab 

Notes. 449 
450 
451 
452 
453 
454 
455 

A, Hoagland’s nutrient solution (control), without the addition of NaCl or Ca (NO3)2; B, 
Hoagland’s nutrient solution with 200mM NaCl; C, Hoagland’s nutrient solution with 200mM 
NaCl + 20mM Ca (NO3)2; D, Hoagland’s nutrient solution with 200mM NaCl + 150mM Ca 
(NO3)2.  

Different letters indicate significant differences according to LSD at p<0.05. Data were 
presented as the mean (SE, n=4). 
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