
Boa: A Link Between Worlds
Stephen Romansky1, Sadegh Charmchi1, and Abram Hindle1

1Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada,

ABSTRACT

The business models of software/platform as a service have contributed to developers dependence on
the Internet. Developers can rapidly point each other and consumers to the newest software changes
with the power of the hyper link. But, developers are not limited to referencing software changes to one
another through the web. Other shared hypermedia might include links to: Stack Overflow, Twitter, and
issue trackers.
This work explores the software traceability of Uniform Resource Locators (URLs) which software
developers leave in commit messages and software repositories. URLs are easily extracted from commit
messages and source code. Therefore, it would be useful to researchers if URLs provide additional
insight on project development.
To assess traceability, manual topic labelling is evaluated against automated topic labelling on URL data
sets. This work also shows differences between URL data collected from commit messages versus URL
data collected from source code. As well, this work explores outlying software projects with many URLs
in case these projects do not provide meaningful software relationship information. Results from manual
topic labelling show promise under evaluation while automated topic labelling did not yield precise topics.
Further investigation of manual and automated topic analysis would be useful.

Keywords: Software Engineering, Traceability, Source Code, Commit Message

1 INTRODUCTION
Software services and platforms have been thriving in recent years due to their affordability for small
businesses and consumers. Instead of having to purchase your own enterprise-grade server equipment,
and having to administer its setup, you can rent just the right amount of resources you need from a service
company to host your web services. Software services can provide web interfaces that clients of the
service may interact with. Hence, it is becoming more common for web service software to provide
locators (URLs) to serve content and receive instructions from clients.

GitHub and SourceForge provide version control systems (VCSs) which act as software as a service
applications. Software developers can take advantage of VCS services to help with reliably storing
software changes during development. VCS alleviates the worry of deleting important code and it enables
developers to more easily share their software changes with whomever is interested in them. It is also
possible for software developers to increase their code traceability by associating their development code
on a VCS with tools like issue trackers. Developers can manually add links between software and software
artifacts like mail, bug trackers, or code documentation.

The purpose of our work is to find out the tools developers use such as: web forums, social media,
domain specific references, or variations of development tool configurations. Our work takes advantage
of the software repository data curated by the Boa software project Dyer et al. (2013). We pick a subset
of Boa GitHub software projects and all Boa commit messages available for GitHub related projects for
extracting URLs. Our work checks if there is a difference between URLs which are embedded in commit
messages compared to URLs which are embedded in source code. To accomplish these tasks, commit
data is collected and parsed using the Boa platform while source code and source code changes can be
copied from GitHub given the project URL from Boa. It is then possible to query these URLs for whether
or not a software project uses software development tools like issue, bug or build tracking tools in their
software development process. This work explores whether or not parsing URLs provides meaningful
information about software development process used by software projects.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1947v1 | CC-BY 4.0 Open Access | rec: 11 Apr 2016, publ: 11 Apr 2016

2 RELATED WORK
Kalliamvakou et al. Kalliamvakou et al. (2014) have investigated GitHub for properties of projects hosted
on the website. The properties which are particularly relevant to this work: most projects have few
commits, repositories are not guaranteed to be software projects, and that many active projects do not
work only using GitHub. Barua et al. Barua et al. (2014) use latent Dirichlet allocation (LDA) to extract
topics from software questions and answers on the developer website Stack Overflow. Hindle et al. Hindle
et al. (2012) use LDA to extract software requirement traceability data. Our work applies LDA for
topic-based software hyperlink traceability information.

Keivanloo and Rilling Keivanloo and Rilling (2014) construct a set of semantic graph links between
software code using code analysis and provide a means of sharing this linked data by beginning the
construction of an open data analysis tool. Keivanloo and Rilling do not look at expanding their set of
projects through URLs like we propose. Therefore, our work is novel and could be applicable to their
semantic security web. Dyer et al. Dyer et al. (2013) is relevant to our work as well as it provides a corpus
of software repositories for our investigation and methods for analyzing commit messages. No prior work
appears to investigate hyperlink traceability from source code and commit messages.

3 METHOD
To evaluate topic extraction from URLs several data processing steps are taken. Data is collected using
Boa to return all commit messages associated with Boa’s GitHub dataset and the GitHub project repository
URLs. A subset of the GitHub projects are then copied from GitHub onto a researchers machine. A
program was written and used to parse each collected commit message for URLs. The same program was
modified to iterate through each copied GitHub project and analyze the projects changesets for added or
modified URLs. The commit URL and source code URL datasets were then tokenized and assessed with
expert crafted labels. LDA was applied to the source code URL dataset to evaluate unsupervised topic
labelling.

The commit messages and source code URLs were tokenized using the following delimiters:

/,=,?,:,#,&

Tokenization of the URLs was chosen to determine if frequently appearing tokens had immediate semantic
meaning with respect to software development. For instance, the word “bug”, “issue”, or “docs” appearing
in a URL are usually associated with software development services. Our work explores taking advantage
of these simple word-software conventions by trying to label projects based on the URLs found in the
projects commit messages and source code.

To collect URLs out of source code history a program was written to replay commits over time and
to calculate the code difference between consecutive commits. Lines that were added by new files, or
modified from a change to an existing file, were recorded and processed for URLs. Each mined project
was then associated with a set of commits, and the commits with a corresponding set of URLs depending
on whether or not the software changes contained detected URL changes.

To generate topic labels for the commit message URLs, the 500 most frequently occurring tokens
were analyzed by one of the authors. Such tokens include: repo, wiki, doc, developer, jira, mailman, gerrit,
png, twitter, ticket, and issue. These tokens were grouped into the categories: repository, documentation,
development tools, and communication depending on what the URL token is referring to as approximated
by the author. These tokens are significant with respect to software process. For instance, jira and gerrit
provide features for reviewing code changes developers are making. This allows development teams to
create higher quality code, catch bugs, and audit their software. Tokens like twitter and mailman are likely
to contain social network information relevant to the software project like how open source developers
and software users are communicating with one another.

Table 1 shows a list of manually extracted categories and a subset of the keywords used to generate
each category. The category keywords can be applied to tokens from a URL to approximate which part of
the software process the URL is associated with. To simplify data comparison the label categories were
merged into 4 topics. Table 3 shows counts for these labelled groups from the git commit message data.
The repository label is attached to URLs that contain tokens related to repositories; the documentation label
is attached to URLs that contain tokens related to development documentation like platform information
or API information; the development tools label is used to refer to software services like issue trackers,

2/6

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1947v1 | CC-BY 4.0 Open Access | rec: 11 Apr 2016, publ: 11 Apr 2016

Table 1. Manual Topic Labelling and Topic Keywords

Category Keywords
repository svn, git, hg, repo

forum thread, post, forum, group
document doc, dev, wiki, lib

issue ticket, issue, tracker, bug
dev tools jira, gerrit, review

media twitter, blog, articles, png, gif
communication mail, stackoverflow

Table 2. Counts of Protocol Accessing GitHub

Protocol Commits Percent of Commits
http 11 734 3
https 217 636 69
ssh 38 428 12
git 19 949 6

other 27 806 8

code review, and data sharing; and the communication label is used to identify URLs that lead to blogs,
forums, social media, images, or mailing lists.

For automated topic extraction LDA is applied to the tokenized URLs from source code. The URLs
are grouped by project and separately by commit message. LDA is used to generate different numbers of
topics. In this work the number of extracted topics investigated are: 10, 20, 30, and 50. The extracted
topics can then be given a label by the researcher based on the highest weighted URL tokens found in
each topic.

4 RESULTS

4.1 Commit Message Topic Labelling
4 399 711 URLs were extracted from 23 229 427 commit messages from 380 125 GitHub projects or
0.19 URLs per commit message. It was found that most of the commit URLs were created by the tool
git-svn which synchronizes git and svn projects. 81.9% of the commit message URLs contained the
word “svn” and referenced a project and software revision, due to the format of svn commits. Only 7.17%
of the commit message URLs contained the word “git”. The majority of commit messages containing
“git” pointed to software repositories on GitHub. Table 2 shows the prefixes used on git related commit
messages.

From the preliminary analysis of checking which URLs contain “git” or “svn” it is not surprising that
the number of repository labels is so high in Table 3. This result does show that most of the URLs from
commit messages do not contain references to external projects. This is likely a result of sample bias due
to several of the projects using git-svn which creates many uninformative URLs in commit messages.

The other labelled commit message URLs, from Table 3, are still useful in that: the URLs could be
used to label what type of project is under development based on documentation references; whether or
not, the software project is using some form of code review, continuous integration, or issue tracking
service; and, if the project is using a forum or other web service communication tools.

4.2 Manual Source Code Topic Labelling
Boa does not provide source code corresponding to the repositories it has collected data on. Therefore,
this work tried to reproduce 30 000 of the 380 125 reported GitHub repositories. However, after trying
to reproduce 29 908 repositories it was found that only 26 417 could be successfully retrieved. The
repositories used 588 gigabytes of storage which more than expected. Therefore, the first 3 739 repositories
were used in URL extraction due to time constraints on URL extraction. The 3 739 repositories were
chosen by lexicographically sorting the Boa project ids. This is a threat to validity since random sampling

3/6

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1947v1 | CC-BY 4.0 Open Access | rec: 11 Apr 2016, publ: 11 Apr 2016

Table 3. Commit Message URL Topic Counts

Category Number of URLs Percent of URLs
Repository 3 996 116 90

Documentation 226 889 5
Development Tools 38 973 0

Communication 19 298 0
Other 118 435 2

Table 4. Source Code URL Topic Counts

Category Number of URLs Percent of URLs
Repository 190 058 2

Documentation 510 770 7
Development Tools 14 835 0

Communication 436 344 6
Other 5 785 093 83

Table 5. URL Schemes from Source Code

Scheme Count Scheme Count
rsync 42 sip 1 093
rtsp 221 sips 20
ftp 6 236 ldap 299
data 30 724 git 2 611
https 459 585 news 262
mailto 18 684 mms 13
pop 246 svn 38 969
nntp 15 ssh 931
snews 3 file 170 150
telnet 43 ldaps 29
http 6 195 328 urn 11 379
svn+ssh 134 gopher 73

was not used. 77 374 unique hostnames were found from URLs with http, https, or ftp schemes. Table 5
lists the URL schemes that were found in the source code.

Similarly to the commit message URLs, the source code URLs were labelled using the four categories:
repository, documentation, development tools, and communication as shown in Table 4. There is a large
difference between the grouping from the commit messages compared to the groupings from the source
code. The number of repository related URLs has changed from 90.8% to 2.74% and the number of
communication related URLs has increased from 0.44% to 6.29%. References to development tools was
also smaller portion in the source code group. The change in development tools may be due to the fact that
commit messages are more coupled with services like issue trackers. This shows that commit messages
and source code contain different distributions of software process related URLs.

To investigate the difference between Table 3 and Table 4 source code projects with large numbers of
extracted URLs are investigated. Table 6 shows a set of projects with large ratios of URLs to number
of commits. The median number of URLs per number of commits is 1.4 from the mined projects. One
hypothesis for the difference between the tables is that the source code contains random URL spam from
web services like URL shorteners or spammers. Upon investigation it was found that out of the top 100
projects with respect to URLs/Commit, only 3 projects had more than 50 commits.

The projects from Table 6 are as follows: MuraCMS, a content management system which lets develop-
ers build and maintain websites more easily; sparqles, a sparql endpoint status monitoring tool for checking
the availability of sparql resource description framework database nodes; TSA (tikal share android),
an android application that provides end users with YouTube content from the Tikal YouTube channel;
Thesis, is a thesis project which mined Twitter accounts; epidetect, is called a natural language pro-

4/6

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1947v1 | CC-BY 4.0 Open Access | rec: 11 Apr 2016, publ: 11 Apr 2016

Table 6. Examples of Outlying Projects Contributing URLs

Project Boa id URLs URLs/Commits
MuraCMS 1 067 525 35 898 6
sparqles 10 820 907 242 937 725
TSA 10 888 943 11 356 203
Thesis 10 359 307 102 636 4 665
epidetect 10 720 252 56 783 591
emacs config 10 491 974 9 784 127
sumtotal-connector 10 178 789 29 605 1 644

cessing project used to study epidemic information from text corpuses created as a postgraduate thesis
project; emacs config, is a project which contains a programmers emacs text editor configuration; and
sumtotal-connector, an Internet service framework for build event driven architecture applications.

Further manual inspection showed that distributed-iris-reasoner is a resource description framework
which links web resources together. Unfortunately, distributed-iris-reasoner collects nonsoftware related
information and anonymizes it like the following URL:
http://www.Department0.University1.edu/FullProfessor2/. More than 50% of the
extracted source code URLs come from the distributed-iris-reasoner project. This causes a significant
portion of the data to be labelled as Other in Table 4 since it is not immediately related to software
development. However, not all of the large URL using projects are labelled as Other. Table 6 lists
web-integrated software applications that contain relevant URLs. This URL usage is interesting because
it could be used to identify web dependent software projects.

4.3 Automated Source Code Topic Labelling
LDA typically uses two parameters to control how many keywords belong to a topic and how many
documents belong to a category. In this work we refer to the parameters as α and β respectively. A
document in this work refers to the set of URLs grouped by commit or by project. The parameters are
set as α = 0.01 and β = 0.01 for the majority of analysis. LDA was applied to the tokenized source
code URLs twice by grouping URLs by commit message and then by project which the URL occurred
in. Extracted topic size was varied using topic counts of 10, 20, 30, and 50. The author attempted to
label each topic given the highest weighted keywords. However, the highest weighted keywords were
frequently ambiguous such as “apache”, “http”, “android”, or “amazonaws”. The lack of strongly related
weighted keywords caused many of the topics to be unlabelled. In some cases related keywords occurred
together but these topics were either about GitHub repositories or Java, which makes sense but is not
useful.

To try and refine the data from the extracted topics, additional approaches used with LDA. One
example was only using the hostnames of the URLs were input to LDA and grouping the hostnames
by commit. This did not improve the keyword grouping in each of 50 topics. The second alternative
approach applied was altering the α and β values to be 1 over the number of projects which is 0.0002
with 50 extracted topics and the original source code URL data. The parameter change resulted in: 5
topics being identified as the “distributed-iris-reasoner” as they contained almost entirely RDF formatted
tokens, and 1 topic being identified as “amazonaws” as it contained web API response keywords and
additional variations of the amazonaws token.

No decisive conclusion can be drawn from the application of LDA to tokenized source code URLs
other than outlying projects can bias the results. It is also possible that topic keywords formed a group but
the author did not recognize it due to how specific the tokens were. To deal with these problems, future
work could hand pick a dataset of projects with co-occurring URLs to evaluate if topics can be extracted
on a known dataset.

4.4 Project URL Queries
An application of having identified URL tokens which have a relationship with software development
process is the matter of using these tokens to query software projects for development tools. We apply
queries for software tools related to URLs on the source code data set. Table 7 shows several URL queries
and the number of projects which contain them from the source code URL dataset. The localhost query

5/6

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1947v1 | CC-BY 4.0 Open Access | rec: 11 Apr 2016, publ: 11 Apr 2016

Table 7. Software Process Queries on Source Code URLs

Query Number of Projects
localhost 510
bug—ticket—issue 715
jira—gerrit 139
doc.—dev. 459
ajax—jquery—angular—reactjs 377
api. 302
stackoverflow 235
travis-ci 83

informs us how many projects involve interprocess communication to a service running on the developers
computer; the bug query informs us how many projects make references to bugs, tickets or issue trackers;
the jira query informs us how many project are likely to be using a code review processes which allow
developers or third parties to perform code inspections or audits; the doc. subdomain query checks for
projects that are referencing documentation; the ajax query looks for projects that reference web related
technologies; the api. subdomain query looks for projects which are utilizing web service apis; the
stackoverflow query looks for projects which have taken advantage of community collaboration on Stack
Overflow; and the travis-ci query looks for projects which use the practice of continuous integration
which involves building and testing the given software project after each new changeset is added to the
version control system. The localhost query was refined to show that 50 projects used https and 475
projects used http. This demonstrates collecting high level information quickly from software repositories
and answers our first research question, can meaningful software relationships be extracted from URLs.

5 CONCLUSION
Our exploration has shown that meaningful software related tokens can be extracted from URLs. That
both commit message URLs and source code URLs can refer to software process related topics as well as
unrelated topics. We also looked at extracting information about the software tools GitHub projects are
using by querying the URLs they contain. The biggest contribution is the demonstration of manual and
automatic topic extraction from commit and source code URLs and how well manual topic labelling can
provide additional insight into the development process of software projects.

REFERENCES
Barua, A., Thomas, S. W., and Hassan, A. E. (2014). What Are Developers Talking About? An Analysis

of Topics and Trends in Stack Overflow. Empirical Software Engineering, 19(3):619–654.
Dyer, R., Nguyen, H. A., Rajan, H., and Nguyen, T. N. (2013). Boa: A Language and Infrastructure for

Analyzing Ultra-Large-Scale Software Repositories. In 35th International Conference on Software
Engineering, ICSE 2013, pages 422–431.

Hindle, A., Bird, C., Zimmermann, T., and Nagappan, N. (2012). Relating requirements to implementation
via topic analysis: Do topics extracted from requirements make sense to managers and developers? In
Proceedings of the 28th IEEE International Conference on Software Maintenance. IEEE.

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D. M., and Damian, D. (2014). The
promises and perils of mining github. In Proceedings of The 11th Working Conference on Mining
Software Repositories, pages 92–101. ACM.

Keivanloo, I. and Rilling, J. (2014). Software Trustworthiness 2.0-A Semantic Web Enabled Global
Source Code Analysis Approach. Journal of Systems and Software, 89:33–50.

6/6

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1947v1 | CC-BY 4.0 Open Access | rec: 11 Apr 2016, publ: 11 Apr 2016

