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ABSTRACT8

Floods are frequent and widespread in Italy and pose a severe risk for the population. Local adminis-
trations commonly use flow propagation models to delineate the flood prone areas. These modeling
approaches require a detail geo-environmental data knowledge, intensive calculation and long compu-
tational times. Conversely, statistical methods can be used to asses flood hazard over large areas, or
to extend the flood hazard zonation to the portion of the river networks where hydraulic models have
still not been applied or can be applied with difficulties. In this paper, we describe a statistical approach
to prepare flood hazard maps for the whole of Italy. The proposed method is based on a multivariate
machine learning algorithm calibrated using in input flood hazard maps delineated by the local authorities
and terrain elevation data. The preliminary results obtained in several major Italian catchments indicate
good performances of the statistical algorithm in matching the training data. Results are promising giving
the possibility to obtain reliable delineations of flood prone areas obtained in the rest of the Italian territory.
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INTRODUCTION21

Flood Hazard Maps (FHMs) delineate flood prone areas and are fundamental for a proper land and22

development planning. FMHs are commonly produced exploiting 1D or 2D flow propagation models,23

capable of determining potential inundated areas corresponding to different peak discharges, for different24

return periods. Flow propagation models require detailed descriptions of the topographic surface and25

multiple river profiles, intensive calculation and long computational times. In Italy, FHMs were derived26

by River Basin Authorities (RBA) and by regional and provincial administrations, in accordance with the27

”EU Directive on the assessment and management of flood risks [2007/60/EC]”. that have used different28

propagation models (i.e. different modeling schema) often adopting different boundary conditions. This29

limits the comparability of the different FHMs, across the Italian territory. Moreover, the RBAs have30

prepared FHMs only for parts of the major rivers under their direct administrative responsibility. As a31

result, parts of the major rivers and most of the minor tributaries are not covered by FHMs. ISPRA (2015)32

has mosaicked all the available FHMs to produce three national flood hazard maps showing (i) areas of33

high flood hazard (HHF) for expected flood return periods from 20 to 50 years, (ii) areas of medium flood34

hazard (MHF) for return periods from 100 to 200 years, and (iii) areas of low flood hazard (LHF) for35

rare flood events. A considerable amount of literature is available on the use of statistical approaches for36

mapping areas prone to natural hazards. As an example, a number of machine learning methods were used37

to determine areas susceptible to landslides (Rossi et al., 2010). Few experiments were done to delineate38

potentially flood prone areas using statistical approaches (Degiorgis et al., 2012; De Risi et al., 2015;39

Manfreda et al., 2015). In particular, Degiorgis et al. (2012) described an approach to flood mapping40

that exploited a linear Support Vector Machine (SVM) classifier, coarse-resolution terrain elevation data41

(hydrosheds.cr.usgs.gov/index.php), and two morphometric variables i.e., the difference in elevation and42

the distance to nearest stream, measured along the drainage path. Similarly, we adopted a supervised43

multivariate machine learning statistical approach, exploiting terrain elevation data, to prepare FHMs for44

the whole river network of Italy and we present the preliminary results obtained for a subset of some of45
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the major Italian river catchments.46

1 METHOD47

In our experiment, to derive the statistical classification model, we used, as independent data, the48

same morphometric variables proposed by Degiorgis et al. (2012) corresponding to the difference in49

elevation (Hp) and the distance (Lp) to nearest stream, measured along the drainage path. Differently50

from Degiorgis et al. (2012) , we used a Logistic Regression (LR) classification model to derive the51

FHMs. In addition, we used two different sources of terrain elevation data: (i) the 25 m resolution EU-52

DEM (http://www.eea.europa.eu/data-and-maps/data/eu-dem), provided by the European Environmental53

Agency, and (ii) the 10 m resolution TINITALY/01 DEM (with 4.3 m vertical accuracy) (Tarquini et al.,54

2007) compiled by the Italian Istituto Nazionale di Geofisica e Vulcanologia. Lastly, we exploited the55

national FHMs mosaicked by ISPRA (2015) for the calibration of the LR models (i.e. used as grouping56

variable in the supervised analysis). We used GRASS GIS (GRASS Development Team, 2016) and R (R57

Core Team, 2013) to perform the necessary geographical and statistical analyses.58

Figure 1 portrays the simplified logical framework (and the algorithm) adopted for the production of59

the LR classification models for flood hazard zonation, and the preparation of FHMs. The framework60

assumes that the algorithm is applied to the entire river network in a single RBA, using one of the two61

available DEMs. The inputs to the algorithm are: (i) the selected DEM, (ii) the available FHMs for the62

selected RBA (in the same raster format and resolution of the DEM). In addition, a flow accumulation63

threshold parameter value need to be specified for the extraction of the river network. First, the river64

network is extracted from the DEM and the river network originating points are identified using the flow65

accumulation threshold (Metz et al., 2011). Next, the grid cells representing the river network inside66

the high flood hazard (HHF) zones shown in the FHMs are selected, and the portions of the catchments67

draining into these cells are identified and used successively for calibration of the LR models (calibration68

areas). Maps of Lp and Hp are also prepared. In each selected catchment, we calibrated three different LR69

models, using Lp and Hp as independent variables (i.e. predictors) and the different dependent grouping70

variables corresponding to the FHMs provided by ISPRA (2015). To determine the grouping variables,71

the first LR model exploits the HHF zones and sets to 1 the areas mapped as potentially flooded and to72

0 the other (marginal) areas. Similarly, the second and the third models exploit MHF (medium flood73

hazard) and the LHF (low flood hazard) zones, respectively. We apply the three calibrated LR models to74

produce three raster maps showing the probability that each grid cell in the DEM is inundated, for short75

(HHprob), medium (MHprob) and long (LHprob) return periods. We used a threshold to classify the LR76

probability maps into binary maps showing potentially inundated (1) and marginal (0) areas. We tested77

various thresholds, and compared the corresponding maps with the original dependent variables. The78

optimal threshold maximizes at the same time the True Positive Rate (TPR) and the True Negative Rate79

(TNR) i.e., the capability of the binary map to predict the spatial distribution of the potentially inundated80

and the marginal areas. Lastly, we applied the optimal threshold to the entire catchment to obtain the81

modeled, statistically based binary FHMs (HHmod, MHmod, LHmod).82

2 RESULTS AND CONCLUSIONS83

We determined the extent of the flood prone areas for six RBAs (Figure 2), and assessed the performance84

of the LR models constructing Receiver Operating Characteristic (ROC) curves (Table 1). Inspection of85

Table1 reveals that the Area Under the ROC Curve (AUC) values are large or very large, indicating from86

good to excellent performances of the LR models. We note that the differences in performance of the LR87

models for the different hazard levels are limited. Interestingly, with the exception of RBA 3, where a88

significant improvement of the AUC was obtained using EU-DEM, the performances of the classification89

models is not affected significantly by the DEM.90

Our results about the TPR and TNR (Table 1) indicates that the models were able to predict between91

71% and 95% true flooded and marginal areas (average 85%).92

For the Serchio RBA (7), Figure 3 shows a comparison between the FHMs used for the calibration,93

and the maps obtained applying the calibrated LR models using the EU-DEM. The inserts reveal the94

general agreement between the maps, and the capability of the LR-derived map to extend the mapping of95

the flood hazard zones to the entire study area.96

2/5

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1937v1 | CC-BY 4.0 Open Access | rec: 8 Apr 2016, publ: 8 Apr 2016



Figure 1. Logical framework and algorithm adopted for the production of Logistic Regression (LR)
classification models for flood hazard zonation, and the preparation of the modeled, statistically based
binary FHMs for selected areas in Italy.

3/5

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1937v1 | CC-BY 4.0 Open Access | rec: 8 Apr 2016, publ: 8 Apr 2016



Figure 2. Boundaries of the Italian River Basin Authorities (RBAs). Red shows catchments considered
in this study.

AUC TPR=TNR
RBA HAZARD LEVEL TINITALY EU-DEM TINITALY EU-DEM

High (HHF) 0.906 0.918 0.83 0.84
1 Medium (MHF) 0.933 0.933 0.89 0.88

Low (LHF) 0.957 0.953 0.89 0.89
High (HHF) 0.875 0.872 0.79 0.79

2 Medium (MHF) 0.884 0.888 0.80 0.80
Low (LHF) 0.890 0.885 0.80 0.80
High (HHF) 0.789 0.851 0.71 0.77

3 Medium (MHF) 0.820 0.862 0.73 0.77
Low (LHF) 0.802 0.855 0.73 0.77
High (HHF) 0.932 0.926 0.85 0.85

4 Medium (MHF) 0.956 0.951 0.91 0.91
Low (LHF) 0.981 0.981 0.91 0.91
High (HHF) 0.948 0.954 0.88 0.88

5 Medium (MHF) 0.951 0.964 0.89 0.90
Low (LHF) 0.967 0.967 0.89 0.90
High (HHF) 0.947 0.965 0.88 0.91

7 Medium (MHF) 0.972 0.978 0.94 0.95
Low (LHF) 0.992 0.987 0.94 0.95

Table 1. AUC ROC obtained from the calibration of the logistic regression (LR) models for six river
catchments using two different DEMs, TINITALY and EU-DEM. Values of the TPR = TNR obtained
from the optimization of the probability threshold. RBA: River Basin Authorities, AUC: Area Under
Curve, TPR: True Positive Rates, TNR: True Negative Rates.

4/5

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1937v1 | CC-BY 4.0 Open Access | rec: 8 Apr 2016, publ: 8 Apr 2016



Figure 3. Comparison of FHMS produced by River Basin Authorities and prepared in this study using a
statistically-based zonation.
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Manfreda, S., Samela, C., Gioia, A., Consoli, G. G., Iacobellis, V., Giuzio, L., Cantisani, A., and Sole,109

A. (2015). Flood-prone areas assessment using linear binary classifiers based on flood maps obtained110

from 1d and 2d hydraulic models. Natural Hazards, 79(2):735–754.111

Metz, M., Mitasova, H., and Harmon, R. (2011). Efficient extraction of drainage networks from massive,112

radar-based elevation models with least cost path search. Hydrology and Earth System Sciences,113

15(2):667–678.114

R Core Team (2013). R: A Language and Environment for Statistical Computing. R Foundation for115

Statistical Computing, Vienna, Austria.116

Rossi, M., Guzzetti, F., Reichenbach, P., Mondini, A. C., and Peruccacci, S. (2010). Optimal landslide117

susceptibility zonation based on multiple forecasts. Geomorphology, 114(3):129–142.118

Tarquini, S., Isola, I., Favalli, M., Mazzarini, F., Bisson, M., Pareschi, M. T., and Boschi, E. (2007).119

Tinitaly/01: a new triangular irregular network of italy. Annals of Geophysics.120

5/5

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1937v1 | CC-BY 4.0 Open Access | rec: 8 Apr 2016, publ: 8 Apr 2016


