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Gene expression profile of sodium channel subunits in the

anterior cingulate cortex during experimental paclitaxel-

induced neuropathic pain in mice

Willias Masocha

Paclitaxel, a chemotherapeutic agent, causes neuropathic pain whose supraspinal

pathophysiology is not fully understood. Dysregulation of sodium channel expression,

studied mainly in the periphery and spinal cord level, contributes to the pathogenesis of

neuropathic pain. We examined gene expression of sodium channel subunits by real time

PCR in the anterior cingulate cortex (ACC) at day 7 post first administration of paclitaxel,

when mice had developed paclitaxel-induced thermal hyperalgesia. The ACC was chosen

because increased activity in the ACC has been observed during neuropathic pain. In the

ACC of control animals the Ct values for Nav1.4, Nav1.5, Nav1.7, Nav1.8 and Nav1.9 were

above 30 and/or not detectable in some samples. Thus, comparison in mRNA expression

between control and paclitaxel treated animals was done for Nav1.1, Nav1.2, Nav1.3,

Nav1.6, Nax as well as Nav�1-Nav�4. Paclitaxel treatment significantly increased the mRNA

expression of Nav1.1, Nav1.2, Nav1.6 and Nax, but not Nav1.3, sodium channel alpha

subunits compared to vehicle-treated controls. Amongst the sodium channel beta subunits

treatment with paclitaxel significantly increased the expression of Nav�1 and Nav�3, but

not Nav�2 and Nav�4, compared to vehicle-treated controls. These findings suggest that

during PINP there is differential upregulation of sodium channels in the ACC, which might

contribute to the increased neuronal activity observed in the area during neuropathic pain.
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4 Abstract
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25 Introduction

26 Voltage-gated sodium channels are responsible for action potential initiation and propagation in 

27 neurons and other excitable cells. Sodium channels are composed of a pore-forming α subunit 

28 associated with one or more auxiliary β subunits that modulate channel gating, expression and 

29 localisation (Catterall et al. 2005; Isom 2001). There are ten sodium channel α subunits Nav1.1-

30 Nav1.9 and Nax encoded by genes SCN1A-SCN11A, and four β subunits Navβ1-Navβ4, encoded 

31 by genes SCN1B-SCN4B (Brackenbury & Isom 2008; Cummins et al. 2007; Yu & Catterall 

32 2003) expressed at different levels in a wide variety of tissues. 

33 Sodium channels play an important role in the propagation of nociceptive signals, and altered 

34 pain sensitivity and perception in various conditions including neuropathic pain (Bagal et al. 

35 2015; Cummins et al. 2007). Dysregulated expression of sodium channels in both the periphery 

36 and the central nervous system (CNS), as well as frequent and ectopic firing in neurons have 

37 been associated with the pathogenesis of neuropathic pain (Craner et al. 2002; Lindia et al. 2005; 

38 Pertin et al. 2005; Rogers et al. 2006). 

39 In the periphery the expression all sodium channel α subunits was downregulated, except for 

40 Nav1.2, in the dorsal root ganglia (DRG) of rats with spared nerve injury (SNI) (Laedermann et 

41 al. 2014). Another study observed downregulation of Nav1.8 and Nav1.9 in the DRG of a chronic 

42 constriction injury (CCI) model of neuropathic pain ((Dib-Hajj et al. 1999). However, other 

43 studies have observed upregulation of sodium channel subunits such as Nav1.3, Nav1.6, Nav1.9, 

44 Navβ2 and Navβ3 in the DRG of animal models of neuropathic pain (Craner et al. 2002; Lindia et 

45 al. 2005; Pertin et al. 2005; Shah et al. 2001; Shah et al. 2000). 
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46  In the spinal cord Nav1.3 was also found to be upregulated in the dorsal horn neurons of CCI 

47 and spinal cord injury (SCI) models of neuropathic pain (Hains et al. 2003; Hains et al. 2004). 

48 Sciatic nerve injury (axotomy) resulted in upregulation of Nav1.7 in the spinal cord, which had 

49 strong correlation with the level of pain behaviour (Persson et al. 2009). In a model of painful 

50 diabetic neuropathy there was upregulation of Navβ3 expression in spinal cord (Shah et al. 2001). 

51 Navβ1 expression increased whereas Navβ2 decreased in the spinal cord of neuropathic rats 

52 (Blackburn-Munro & Fleetwood-Walker 1999).

53 In the brain dysregulation of sodium channel expression has been observed in different areas 

54 during neuropathic pain. In the prefrontal cortex Nav1.1 expression was upregulated in mice with 

55 SNI (Alvarado et al. 2013). The expression of Nav1.3 was upregulated in the ventral 

56 posterolateral (VPL) nucleus of the thalamus of rats with CCI  or spinal cord contusion injury 

57 (Hains et al. 2005; Zhao et al. 2006). 

58 Recently, we observed increased excitability of the anterior cingulate cortex (ACC) to 

59 electrophysiological stimulation in a rat model of paclitaxel-induced neuropathic pain (PINP) (H 

60 Nashawi, IO Edafiogho, SB Kombian, W Masocha, unpublished data). Paclitaxel is a 

61 chemotherapeutic drug whose therapeutic use is sometimes limited by the development of dose-

62 dependent painful neuropathy (Scripture et al. 2006; Wolf et al. 2008). The ACC is an area in the 

63 brain involved in pain perception and modulation, and has increased activity during neuropathic 

64 pain (Hsieh et al. 1995; Vogt 2005; Xie et al. 2009; Zhuo 2008). We have observed changes in 

65 the expression of gamma-aminobutyric acid (GABA)-ergic and glutamatergic molecules in the 

66 ACC of a mouse model of PINP (Masocha 2015a; Masocha 2015b). However, the expression of 

67 sodium channels in the ACC during PINP has not been studied as yet. Studying the expression of 

68 sodium channels in the ACC during PINP is important as they might contribute to the increased 
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69 neuronal excitability we observed in the ACC during PINP. Thus, the gene expression of sodium 

70 channel subunits in the ACC was evaluated in mice at a time point when the mice had paclitaxel-

71 induced thermal hyperalgesia and gene expression changes of other molecules in the ACC 

72 (Masocha 2015a; Masocha 2015b; Nieto et al. 2008; Parvathy & Masocha 2013).

73 Materials and Methods

74 Animals 

75 Female BALB/c mice (8 to 12 weeks old; 20 � 30 g; n = 23) supplied by the Animal Resources 

76 Centre (ARC) at the Health Sciences Center (HSC), Kuwait University were used. The animals 

77 were kept in temperature controlled (24 ± 1°C) rooms with food and water given ad libitum. 

78 Animals were handled in compliance with the Kuwait University, HSC, ARC guidelines and in 

79 compliance with Directive 2010/63/EU of the European Parliament and of the Council on the 

80 protection of animals used for scientific purposes. All animal experiments were approved by the 

81 Ethical Committee for the use of Laboratory Animals in Teaching and in Research, HSC, Kuwait 

82 University.

83 Paclitaxel administration 

84 Paclitaxel (Cat. No. 1097, Tocris, Bristol, UK) was dissolved in a solution made up of 50% 

85 Cremophor EL and 50% absolute ethanol to a concentration of 6 mg/ml and then diluted in 

86 normal saline (NaCl 0.9%), to a final concentration of 0.2 mg/ml just before administration. 

87 Mice were treated intraperitoneally (i.p.) for 5 consecutive days with paclitaxel 2 mg/kg, the 

88 cumulative dose was 10 mg/kg, or its vehicle. This treatment regimen produces painful 
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89 neuropathy and thermal hyperalgesia in mice on day 7 post first administration (Nieto et al. 

90 2008; Parvathy & Masocha 2013). 

91 Tissue preparation and Real time RT-PCR

92 Mice were anesthetized with isoflurane, sacrificed by decapitation on day 7 post first 

93 administration of paclitaxel. The ACC was dissected and prepared for RNA extraction as 

94 described previously (Masocha 2015b)

95 Gene transcripts of the 10 sodium channel alpha subunits ( Nav1.1, Nav1.2, Nav1.3, Nav1.4, 

96 Nav1.5, Nav1.6, Nav1.7, Nav1.8, Nav1.9 and Nax) and 4 sodium channel beta subunits (Navβ1, 

97 Navβ2, Navβ3 and Navβ4) were quantified in the ACC of vehicle-treated or paclitaxel-treated by 

98 real time PCR. Total RNA was extracted from the fresh frozen ACC using the RNeasy Kit 

99 (Qiagen GmbH), reverse-transcribed, and the mRNA levels were quantified on an ABI Prism® 

100 7500 sequence detection system (Applied Biosystems) as previously described (Masocha 2009; 

101 Masocha 2015a). The primer sequences which were used, listed in Table 1, were ordered from 

102 Invitrogen (Life Technologies) and/or synthesized at the Research Core Facility (RCF), HSC, 

103 Kuwait University. Threshold cycle (Ct) values for all cDNA samples were obtained and the 

104 amount of mRNA of individual animal sample (n = 7 to 12 per group) was normalized to 

105 cyclophilin (housekeeping gene) (ΔCt). The relative amount of target gene transcripts was 

106 calculated using the 2-ΔΔCt method as described previously (Livak & Schmittgen 2001). These 

107 values were then used to calculate the mean and standard error of the relative expression of the 

108 target gene mRNA in the ACC of paclitaxel- and vehicle-treated mice.

109 Statistical analyses
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110 Statistical analyses were performed using unpaired two-tailed Student�s t-test using Graph Pad 

111 Prism software (version 5.0). The differences were considered significant at p < 0.05. The results 

112 in the text and figures are expressed as the means ± S.E.M.
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113 Results 

114 The mRNA expression of sodium channel subunits were analysed in the ACC at day 7, a time 

115 when the mice treated with paclitaxel had developed thermal hyperalgesia (~36% and 31%, 

116 reduction in reaction latency compared to the baseline latency and vehicle-treated mice, 

117 respectively) as we described previously (Masocha 2014; Parvathy & Masocha 2013) .

118 Expression of sodium channel alpha subunits transcripts in the ACC at 7 days after 

119 paclitaxel administration 

120 In control animals the Ct values for Nav1.4, Nav1.5, Nav1.7, Nav1.8 and Nav1.9 were above 30 

121 and not detectable in some samples, whereas the Ct values for Nav1.1, Nav1.2, Nav1.3, Nav1.6 

122 and Nax were below 30. Thus, comparison in mRNA expression between control and paclitaxel 

123 treated animals was done for Nav1.1, Nav1.2, Nav1.3, Nav1.6 and Nax.

124 Amongst the 5 sodium channel alpha subunits (Nav1.1, Nav1.2, Nav1.3, Nav1.6 and Nax) 

125 treatment with paclitaxel did not significantly alter the mRNA expression of the Nav1.3 (p = 

126 0.1228), but significantly increased the expression of Nav1.1 (p<0.0001), Nav1.2 (p = 0.0077), 

127 Nav1.6 (p = 0.0079), compared to vehicle-treated controls (Figure 1). Nax was significantly 

128 upregulated (p = 0.0174) in the ACC by treatment with paclitaxel compared to treatment with 

129 vehicle (Figure 2). The most upregulated sodium channel alpha subunits were Nav1.2 and Nax, 

130 which were increased by more than sixfold.

131 Expression of sodium channel beta subunits transcripts in the ACC at 7 days after 

132 paclitaxel administration 

133 Amongst the 4 sodium channel beta subunits analysed treatment with paclitaxel significantly 

134 increased the expression of Navβ1 (p = 0.0166) and Navβ3 (p = 0.0145), but not Navβ2 (p = 

135 0.2411) and Navβ4 (p = 0.0742), compared to vehicle-treated controls (Figure 3). The most 
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136 upregulated sodium channel beta subunit was Navβ3, which was increased by more than 

137 fourfold.

138 Discussion

139 This study presents the first comprehensive analysis of the expression of transcripts of sodium 

140 channel subunits in the ACC during neuropathic pain, specifically paclitaxel-induced 

141 neuropathic pain (PINP). The ACC is associated with pain perception and modulation (Vogt 

142 2005; Xie et al. 2009; Zhuo 2008).

143 No reports about the expression of sodium channels in the ACC specifically were found. 

144 However, Nav1.1, Nav1.2, Nav1.3, Nav1.6 and also Nax have been reported to be expressed 

145 predominantly (but not exclusively) in the brain with differential expression in different brain 

146 areas such as hippocampus, thalamus, cerebellum etc. (Beckh et al. 1989; Catterall 2000; 

147 Gautron et al. 1992; Levy-Mozziconacci et al. 1998; Schaller & Caldwell 2003; Westenbroek et 

148 al. 1989; Whitaker et al. 2000; Whitaker et al. 2001). In the current study using real time PCR all 

149 the 10 α subunits and 4 β subunits were detected in the ACC with different degrees of 

150 expression. Nav1.1, Nav1.2, Nav1.3, Nav1.6 and Nax as well as Navβ1 � Navβ4 were highly 

151 expressed in the ACC. On the other hand, although Nav1.4, Nav1.5, Nav1.7, Nav1.8 and Nav1.9 

152 were detected in the ACC they were lowly expressed and/or were not detectable in some 

153 samples. Thus, the findings of this study are in agreement with studies described above.

154 Nav1.1, Nav1.2, Nav1.6 and Nax as well as NavB1 and NavB3 were upregulated in the ACC of 

155 mice with paclitaxel-induced thermal hyperalgesia. Upregulation of sodium channel expression 

156 has been observed in other areas of the brain during neuropathic pain. In the prefrontal cortex 

157 Nav1.1 expression was upregulated in mice with SNI (Alvarado et al. 2013). The expression of 
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158 Nav1.3 was upregulated in the ventral posterolateral (VPL) nucleus of the thalamus of rats with 

159 CCI (Zhao et al. 2006). Nav1.3 expression was also upregulated in the VPL of rats with spinal 

160 cord contusion injury (Hains et al. 2005). The findings of the current study suggest that 

161 upregulation of sodium channel subunits might contribute to hyperexcitability in the ACC. 

162 Hyperexcitability has been associated with dysregulation in sodium channels (Devor 2006). A 

163 link between upregulation of Nav1.3 and hyperexcitability of neurons in the spinal cord was 

164 found in neuropathic pain after spinal cord injury (Hains et al. 2003). Recently, we observed 

165 increased excitability of the anterior cingulate cortex (ACC) to electrophysiological stimulation 

166 in a rat model PINP (H Nashawi, IO Edafiogho, SB Kombian, W Masocha, unpublished data), 

167 which could be in part be due upregulation of sodium channels amongst other mechanisms such 

168 as decreased GABA availability at the synapse because of increased GABA transporter 1 (GAT-

169 1) expression (Masocha 2015b). Changes in the expression of other molecules such as those of 

170 the GABAergic, glutamatergic, muscarinic dopaminergic systems have been observed in the 

171 ACC during experimental neuropathic pain (Masocha 2015a; Masocha 2015b; Ortega-Legaspi et 

172 al. 2011; Ortega-Legaspi et al. 2010).

173

174 Conclusions

175 In conclusion, the findings of this study show that during experimental paclitaxel-induced 

176 neuropathic pain there is increased expression of various sodium channel subunit transcripts in 

177 the ACC, which could contribute to the increased excitability and activity observed in this brain 

178 region during neuropathic pain. 

179
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Figure 1(on next page)

Effects of paclitaxel on sodium channel alpha subunits transcript levels in the anterior

cingulate cortex (ACC)

Relative mRNA expression of sodium channel alpha subunits Nav1.1, Nav1.2, Nav1.3 and

Nav1.6 in the ACC of BALB/c mice on day 7 after first administration of the drug or its vehicle.

Each point represents the mean � S.E.M of the values obtained from 9-11 vehicle-treated

control mice and 12 paclitaxel-treated mice ** p < 0.01 compared to vehicle-treated control

mice.
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Figure 2(on next page)

Effects of paclitaxel on the sodium channel alpha subunit Nax transcript levels in the

anterior cingulate cortex (ACC)

Relative mRNA expression of Nax in the ACC of BALB/c mice on day 7 after first

administration of the drug or its vehicle. Each point represents the mean � S.E.M of the

values obtained from 11 vehicle-treated control mice and 12 paclitaxel-treated mice. * p <

0.05 compared to vehicle-treated control mice.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1936v1 | CC-BY 4.0 Open Access | rec: 7 Apr 2016, publ: 7 Apr 2016



Nax

Control Paclitaxel

0

1

2

3

4

5

6

7

8

9

10

11

*

R
e
la

ti
v
e
 e

x
p

re
s
s

io
n

 o
f 

m
R

N
A

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1936v1 | CC-BY 4.0 Open Access | rec: 7 Apr 2016, publ: 7 Apr 2016



Figure 3(on next page)

Effects of paclitaxel on sodium channel beta subunits transcript levels in the anterior

cingulate cortex (ACC)

Relative mRNA expression of sodium channel beta subunits Nav�1 to 4 in the ACC of BALB/c

mice on day 7 after first administration of the drug or its vehicle. Each point represents the

mean m ����� �� ��� 	
��� ���
���� ���� ���� 	����������
��� ������� ���� 
�� ����

paclitaxel-treated mice. * p < 0.05 compared to vehicle-treated control mice.
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Table 1(on next page)

PCR primer sequences of cyclophilin, and sodium channel subunits
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1 Table 1. PCR primer sequences of cyclophilin, and sodium channel subunits

Polarity Gene

Sense

Sequence 5´to 3´

Anti-sense

Sequence 5´to 3´

Cyclophilin GCTTTTCGCCGCTTGCT CTCGTCATCGGCCGTGAT

Nav1.1 AACAAGCTTCATTCACATACAATAAG AGGAGGGCGGACAAGCTG

Nav1.2 GGGAACGCCCATCAAAGAAG ACGCTATCGTAGGAAGGTGG

Nav1.3 GGGTGTTGGGTGAGAGTGGAG AATGTAGTAGTGATGGGCTGATAAGAG

Nav1.4 CGCGCTGTTCAGCATGTT CTCCACGTCCTTGGACCAAG

Nav1.5 AGACTTCCCTCCATCTCCAGATA TGTCACCTCCAGAGCTAGGAAG

Nav1.6 AGCAAAGACAAACTGGACGATACC CACTTGAACCTCTGGACACAACC

Nav1.7 TCCTTTATTCATAATCCCAGCCTCAC GATCGGTTCCGTCTCTCTTTGC

Nav1.8 ACCGACAATCAGAGCGAGGAG ACAGACTAGAAATGGACAGAATCACC

Nav1.9 TGAGGCAACACTACTTCACCAATG AGCCAGAAACCAAGGTACTAATGATG

Nax TGTCTCCTCTAAACTCCCTCAG TGCGTAAATCCCAAGCAAAGT

Navβ1 GTGTATCTCCTGTAAGCGTCGTAG ATTCTCATAGCGTAGGATCTTGACAA

Navβ2 GGCCACGGCAAGATTTACCT CACCAAGATGACCACAGCCA

Navβ3 ACTGAAGAGGCGGGAGAAGAC GGTGAGGAAGACCAGGAGGATG

Navβ4 CCCTTGGTGTAGAAACTAAGCAGAG CAGAAGCGAGTCAGTCAGATACG

2

3
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