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An explicit-solvent conformation search method using open

software

Kari Gaalswyk, Christopher N Rowley

Computer modeling is a popular tool to identify the most-probable conformers of a

molecule. Although the solvent can have a large effect on the stability of a conformation,

many popular conformational search methods are only capable of describing molecules in

the gas phase or with an implicit solvent model. We have developed a work-flow for

performing a conformation search on explicitly-solvated molecules using open source

software. This method uses replica exchange molecular dynamics to sample the

conformational states of the molecule efficiently. Cluster analysis is used to identify the

most probable conformations from the simulated trajectory. This work-flow was tested on

drug molecules a-amanitin and cabergoline to illustrate its capabilities and effectiveness.

The preferred conformations of these molecules in gas phase, implicit solvent, and explicit

solvent are significantly different.
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ABSTRACT

Computer modeling is a popular tool to identify the most-probable conformers of a molecule. Although

the solvent can have a large effect on the stability of a conformation, many popular conformational search

methods are only capable of describing molecules in the gas phase or with an implicit solvent model.

We have developed a work-flow for performing a conformation search on explicitly-solvated molecules

using open source software. This method uses replica exchange molecular dynamics to sample the

conformational states of the molecule efficiently. Cluster analysis is used to identify the most probable

conformations from the simulated trajectory. This work-flow was tested on drug molecules α-amanitin

and cabergoline to illustrate its capabilities and effectiveness. The preferred conformations of these

molecules in gas phase, implicit solvent, and explicit solvent are significantly different.

Keywords: conformation search, explicit solvent, cluster analysis, replica exchange molecular dynam-

ics

INTRODUCTION

Many molecules can exist in multiple conformational isomers. Conformational isomers have the same

chemical bonds, but differ in their 3D geometry because they hold different torsional angles [7]. The

conformation of a molecule can affect chemical reactivity, molecular binding, and biological activity

[22, 6]. Conformations differ in stability because they experience different steric, electrostatic, and

solute-solvent interactions. The probability, p, of a molecule existing in a conformation with index i, is

related to its relative Gibbs energies through the Boltzmann distribution,

pi =
exp(−∆Gi/kBT )

∑ j exp(−∆G j/kBT )
(1)

where kB is the Boltzmann constant, T is the temperature, and ∆G is the relative Gibbs energy of the

conformation. The denominator enumerates over all conformations.

Alternatively, the probability of a conformation can be expressed in classical statistical thermodynam-

ics in terms of integrals over phase space,

pi =

∫

i exp(−V (r)/kBT )dr
∫

exp(−V (r)/kBT )dr
(2)

The integral over configurational space in the numerator is restricted to coordinates corresponding to

conformation i. The denominator is an integral over all configurational space.

Computational chemistry has enabled conformational analysis to be performed systematically and

quantitatively with algorithms to generate different conformations and calculate their relative stabil-

ity. Automated conformational search algorithms can generate possible conformations, and molecular

mechanical or quantum methods can determine their relative energies.

Conformational search methods can be classified as either exhaustive/systematic or heuristic. Exhaus-

tive methods scan all, or a significant portion of the configuration space. Subspaces corresponding to

high energy structures can be eliminated without a loss in quality using a priori knowledge regarding

the structure of the configuration space to be searched [5]. These methods are usually limited to small

molecules due to the computational cost of searching so much of the configuration space. Heuristic
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methods generate a representative set of conformations by only visiting a small fraction of configuration

space [25]. These methods can be divided into non-step and step methods. Non-step methods generate

a series of system configurations that are independent of each other. Step methods generate a complete

system configuration in a stepwise manner by a) using configurations of molecular fragments, or b) using

the previous configuration [5].

Solvent Effects

A solvent can also affect the conformation of a molecule by effects like solvent-solute hydrogen bonding,

dipole-dipole interactions, etc. [5] Incorporating the effect of solvation can complicate conformation

searches. It is common to perform a conformation in the gas phase, neglecting solvent effects altogether.

Alternatively, the solvent can be included in the simulation either implicitly or explicitly.

Implicit models approximate the solvent as a dielectric continuum interacting with the molecular

surface [1]. Depending on the model used, the computational cost of calculating the solvation can be

modest, allowing solvation effects to be included in the conformation search. A common and efficient

implicit solvent method used with molecular mechanical models is the Generalized Born Implicit Solvent

(GBIS) method [3]. A limitation of this type of model is that features like solute-solvent hydrogen bonding

and solute-induced changes in the solvent structure are difficult to describe accurately when the solvent is

described as a continuum.

Explicit solvation methods surround the solute with a number of solvent molecules that are represented

as discrete particles. Provided that this model accurately describes solvent molecules and their interactions

with the solute, some of the limitations in accuracy associated with implicit solvent models can be

overcome. Although the accuracy of these models is potentially an improvement over continuum

models, the inclusion of explicit solvent molecules presents challenges in conformation searches. Some

conformational search algorithms that arbitrarily change dihedral angles cannot be used in an explicit

solvent because an abrupt change in a solute dihedral angle can cause an overlap with solvent molecules.

A significant drawback of explicit solvent representations is that the computational cost of these

simulations is increased considerably due to the additional computations needed to describe the interactions

involving solvent molecules. Longer simulations are also needed to thoroughly sample the configurations

of the solvent; the stability of each conformation is the result of a time average over an ensemble of

possible solvent configurations, rather than the potential energy of one minimum-energy structure.

Conformation Searches Using Molecular Dynamics

Molecular dynamics (MD) simulations are a popular method for sampling the conformational space of a

molecule. Equations of motion are propagated in a series of short time steps that generates a trajectory

describing the motion of the system. These simulations are usually coupled to a thermostat to sample a

canonical or isothermal–isobaric ensemble for the appropriate thermodynamic state. Unlike Monte Carlo

methods, all particles move in each MD step and all the generated configurations are accepted. One of the

limitations of MD is that simulations will only rarely cross high barriers between minima, so a simulation

at standard or physiological temperatures may be trapped in its initial conformation and will not sample

the full set of available conformations.

Replica Exchange Molecular Dynamics (REMD) enhances the sampling efficiency of conventional

MD by simulating multiple copies of the system at a range of temperatures. Each replica samples an

ensemble of configurations occupied at its corresponding temperature. Periodically, attempts are made to

exchange the configurations of neighboring systems (see Figure 1). The acceptance or rejection of these

exchanges is determined by an algorithm analogous to the Metropolis Monte Carlo algorithm, which

ensures that each replica samples its correct thermodynamic distribution. This type of simulation is well

suited for parallel computing because replicas can be divided between many computing nodes. Exchanges

between the replicas are only attempted after hundreds or thousands of MD steps, so communication

overhead between replicas is low compared to a single parallel MD simulation.

REMD simulations can sample the conformational space of a molecule more completely because the

higher temperature replicas can cross barriers more readily. Analysis of the statistical convergence of

REMD simulations has shown that when there are significant barriers to conformational isomerization, an

REMD simulation of m replicas is more efficient than a single-temperature simulation running m times

longer [23]. The lowest temperature replica is typically the temperature of interest. Exchanges allow each

replica to be simulated at each temperature in the set. Barriers that prevent complete sampling at low

temperatures can be overcome readily at high temperatures.
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Figure 1. Schematic of exchange attempts between four replicas simulated at temperatures T1, T2, T3,

and T4. After a large number of exchanges, each replica will have been simulated at the full range of

temperatures. The lowest temperature replica will have contributions from each simulation.

Input: 

SMILES string

obabel:

 Convert SMILES to PDB

antechamber:

generate parameter files

vmd’s psfgen:

generate .psf file

vmd’s solvate:

solvate pdb + psf

Explicit?

NAMD:

1 ns MD

NAMD:

10 ns REMD

VMD:

clustering

Generated files

NAMD:

1 ns NpT + 1 ns NVT

Yes

Figure 2. The work-flow for the conformation

search method presented in this paper. A parent

script executes OpenBabel, VMD, and NAMD

to generate the set of lowest energy

conformations.

After a sufficiently long REMD simulation, the

trajectory for this replica will contain a correctly-

weighted distribution of the conformations available

at this temperature. This trajectory must be analyzed

to group the structures sampled into distinct confor-

mations.

Cluster Analysis

The product of an REMD simulation is a trajectory

for each temperature. For a sufficiently long simula-

tion where the simulations were able to cross barriers

freely, the configurations will be sampled according to

their equilibrium probability. A discrete set of confor-

mations must be identified from this trajectory. Cluster

analysis can be used to identify discrete conformations

in this ensemble by identifying groups of conformers

that have similar geometries according to a chosen

metric. Clustering works by identifying some pattern

between the conformations, measuring the distance

between pairs, and then grouping the conformations

based on this distance metric. Cluster analysis allow

common conformations to be identified from the con-

figurations of a trajectory using little to no a priori

knowledge.

Work Undertaken

In this paper, we present the implementation of a work

flow for conformation searches using REMD and clus-

ter analysis (see Figure 2). This method supports con-

formation searches for molecules in the gas phase,

implicit solvents, and explicit solvents. The method is

implemented by integrating open source software us-

ing Python scripting. Examples of the conformations

search results for two drug molecules are presented.
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THEORY

Replica Exchange Molecular Dynamics

In replica exchange molecular dynamics, m non-

interacting replicas of the system are run, each at its

own temperature, Tm . Periodically, replicas i and j

exchange temperature and velocity according to a criterion derived from the Boltzmann distribution

[8, 16]. In the implementation used here, exchanges are only attempted between replicas with neighboring

temperatures in the series. Exchange attempts for replica i alternate between attempts to exchange with

the i− 1 replica and the i+ 1 replica. The exchanges are accepted or rejected based on an algorithm

that ensures detailed balance, similar to the Metropolis criterion [9]. By this criterion, the probability of

accepting an exchange is,

Pacc = min

[

1,exp

(

1

kB

(

1

Ti

−
1

Tj

)

(V (ri)−V (r j))

)]

(3)

where V is the potential energy, and ri specifies the positions of the N particles in system i. A

conformation is accepted/rejected if this criterion is less than a random number between 0 and 1, which is

taken from a uniform distribution. In a successful exchange, the coordinates of the particles of the two

replicas are swapped. When the momenta of the particles are swapped, they are also scaled by a factor of
√

Ti
Ti+1

to generate a correct Maxwell distribution of velocities. The process of REMD is illustrated in the

following pseudocode.

Algorithm 1: Algorithm for Replica-Exchange Molecular Dynamics

Function REMD (cycles c, replicas n, steps m)

for c cycles do

for a← 0 to n do

perform m steps of NVT MD;

for neighboring pairs of replicas {i, i+1} do

choose random z ∈ (0,1) ;

Pacc = min
[

1,exp
(

1
kB

(

1
Ti
− 1

Ti+1

)

(V (ri)−V (ri+1)
)]

;

if z < Pacc then

ri↔ri+1 ;

pi↔pi+1 ;

Cluster Analysis

Configurations in the REMD trajectory are grouped into clusters that correspond to distinct conformations.

The lowest energy conformation will correspond to the cluster with the greatest number of configurations.

The process of clustering conformers involves using some proximity function to measure the similarity

between pairs of conformations. The difference in corresponding atomic coordinates’ x,y,z positions

for two conformers equates to the distance between them. This clustering algorithm groups these

configurations according to the pattern proximity of this function [11].

In this work, the solute root mean square deviation (RMSD) metric is used to identify the highly-

probably conformations from the REMD trajectory. The RMSD provides a metric as the quality threshold

of the similarity of two solute configurations. It is calculated from the Cartesian coordinates of the two

configurations rk
(i) rk

(j) each having N atoms using [2],

di j =

[

1

N

N

∑
k=1

∣

∣

∣
r
(i)
k − r

( j)
k

∣

∣

∣

2
]1/2

(4)
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The quality threshold clustering algorithm groups objects such that the diameter of a cluster does not

exceed a set threshold diameter. The number of clusters (N) and the maximum diameter must be specified

by the user prior to the clustering analysis. A candidate cluster is formed by selecting a frame from the

trajectory (a conformer) as the centroid. The algorithm iterates through the rest of the configurations in

the trajectory, and the conformer with the smallest RMSD with respect to the centroid is added to the

cluster. Configurations are added to this cluster until there is no remaining configuration with an RMSD

less than the threshold. The clustered configurations are removed from consideration for further clusters,

and a new cluster is initiated. This process is repeated until N clusters have been generated.

COMPUTATIONAL WORK FLOW

The first section describes a work flow that was developed to perform an explicitly-solvated conformational

search of small drug molecules. In the second section, applications of the work flow are described, and

the results are compared to gas phase and GBIS implementations.

Our method automatically performs conformational searches in the gas phase, implicit aqueous

solvent, and explicit aqueous solvent for each solute structure. The work flow makes use of several open

source programs, as illustrated in Figure 2. The conformation search work flow can be divided into 5

steps.

1. Generation of initial 3D molecular structure.

2. Solvation of solute (for explicit solvent method only).

3. Equilibration MD simulation.

4. REMD simulation.

5. Cluster analysis.

1. Structure Generation

The initial 3D structure is generated using the OBBuilder class of OpenBabel version 2.3.2. OpenBabel is

a chemistry file translation program that is capable of converting between various file formats, but can

also automatically generate 2D and 3D chemical structures and perform simple conformation searches

[17]. Our work-flow uses OpenBabel to converts the SMILES string input, which is an ASCII string

representation of a molecular structure, into an initial 3D structure that is saved in Protein Data Bank

(pdb) format. OpenBabel supports many other chemical file formats, so alternative input formats can

also be used. To generate a reasonable initial conformation, a conformer search is performed using the

OBConformerSearch class of OpenBabel. This algorithm uses rotor keys, which are arrays of values

specifying the possible rotations around all rotatable bonds [18]. Structures for each combination of

rotor keys are generated and the potential energies for these conformations are calculated. The lowest

energy structure for a rotor key is identified [26]. Once all possible conformers have been generated, the

algorithm selects the one with the lowest energy. The Generalized Amber Force Field (GAFF) is used for

all OpenBabel MM calculations [29]. Solvation effects are not included in this model.

2. Solvation of Solute

The Antechamber utility of the Ambertools suite is used to generate the necessary topology (.rtf) and

CHARMM-format parameter (.prm) files of the solute [28]. This utility automatically detects the

connectivity, atom types, and bond multiplicity of organic molecules and generates the parameter file and

topology files based on the Generalized Amber Force Field (GAFF). The psfgen plugin VMD is used

to generate a Protein Structure File (PSF) for the molecule from the RTF file. For simulations with an

explicit solvent, the Solvate plugin of VMD is used to add a 10 Å layer of water in each direction from the

furthest atom from the origin in that direction. This creates a periodic unit cell that is sufficiently large so

that solute-solute interactions and finite-size effects are small. For ionic molecules, the autoionize VMD

plugin is used to add Na+ or Cl– ions such that the net charge of the simulation cell is zero.
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3. Equilibration

For simulations with an explicit solvent, MD simulations are performed with NAMD to equilibrate the

system prior to the conformational search. For the gas phase and GBIS models, a 1 ns MD simulation

using a Langevin thermostat is performed. For the explicit solvent simulations, a 1 ns isothermal-isochoric

(NVT) simulation is followed by a 1 ns isothermal-isobaric ensemble (NpT) simulation A Langevin

thermostat and a Langevin piston barostat are used to regulate the temperature and pressure of the system,

respectively.

To simplify visualization and analysis, the center of mass of the solute is restrained to remain at the

center of the simulation cell using a weak harmonic restraining force. This restraint is imposed with the

Colvar (Collective Variables) module of NAMD using a force constant of 5.0 kcal Å−2.

4. Replica Exchange MD

Using the equilibrated system, a replica exchange MD simulation is performed to sample the configura-

tional space of the system. A total of 24 replicas are simulated, with a range of temperatures between 298

and 500 K. The temperatures of the replicas are spaced according to a geometric series [14, 8]. A 1 ns

equilibration followed by a 10 ns sampling simulation is performed for each replica. Configurations are

saved and exchanges are attempted every 1000 time steps. The REMD simulations were were performed

at constant volume, which was the final volume of the NpT equilibration simulation.

5. Cluster Analysis

The trajectory of the lowest temperature replica is analyzed by clustering analysis to identify the most

probable conformations. The positions of the solute atoms in each frame of the trajectory are rotated and

translated to minimize the RMSD. The cluster routine of the measure module of VMD is used to identify

highly-weighted conformations. This routine uses the quality threshold clustering algorithm, with the

RMSD as the metric. An RMSD cutoff of 1.0 Å was used. In this work flow, 5 clusters are generated. The

clusters are sorted in order of the largest to smallest numbers of configurations included, the first of which

is the most important as it represents the most probable conformer for the lowest temperature replica.

The configurations that are part of each cluster are saved to separate trajectory files. The conformation is

defined by the set of configurations grouped into this trajectory file.

IMPLEMENTATION AND USAGE

The work flow is implemented in a Python script that calls external programs and processes the data from

these programs. This script is responsible for handling user input and integrating the work flow into the

a PBS-type queuing system. PBS is a distributed workload management system, which is responsible

for queuing, scheduling, and monitoring the computational workload on a system [24]. The program is

executed by the command,

python fluxionalize.py -p [number of processors, default is 2]

-n [name, default is ‘‘test’’]

-l [location/directory, default is current working directory]

-c [number of clusters to save in {[}name{]}_out per instance, default is 1]

-i [input]

When the calculation has completed, the following files/directories will have been generated in the

specified/default location:
[name] out contains the conformer pdb files for each instance

[name].out the logfile from the queue containing all the runtime command line outputs

[name].tar.gz contains all the files used and generated by the work flow, compressed for space

OpenBabel is used to parse the molecular structure provided by the user and convert it to an initial 3D

conformation, so any of the input formats supported by OpenBabel can be used. The examples presented

here use SMILES (Simplified Molecular Input Line Entry System) strings as the input. SMILES denotes

chemical structure as ASCII-type strings. If using a SMILES string, the input for the fluxionalize.py script

is in the form of -i ’[SMILES string]’. For other files types, the input is in the form of: -i [file]. In this

case, if no name is specified with the -n option, then the file name is used in its place.
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Availability

The code and required source files are available freely from GitHub at https://github.com/

RowleyGroup/fluxionalize.

TECHNICAL DETAILS

The current version of this code uses OpenBabel 2.3.2 [17] and VMD 1.9.1 [10]. All MD and REMD

simulations were performed using NAMD 2.10 [19]. Bonds containing hydrogen were constrained using

the SHAKE algorithm [20]. Lennard-Jones interactions were truncated using a smoothed cutoff potential

between 9 Å and 10 Å. A Langevin thermostat with a damping coefficient of 1 ps−1 was used. The

simulation time step was 1 fs. Generalized born model simulations used a dielectric constant of 78.5

and an ion concentration of 0.2 M. For the simulations with an explicit solvent, water molecules were

described using the TIP3P model [13]. The molecule and solvent were simulated under orthorhombic

periodic boundary conditions. The electrostatic interactions were calculated using the Particle Mesh Ewald

(PME) method with a 1 Å grid spacing [19]. Isothermal–isobaric MD simulations used a Nosé–Hoover

Langevin piston barostat with a pressure of 101.325 kPa, a decay period of 100 fs, and a oscillation period

of 2000 fs. The potential energy terms for the solute were described using the General Amber Force Field

(GAFF). The total potential energy function for this force field is [29],

V (r) = ∑
bonds

kb(r− req)
2 + ∑

angles

kθ (θ −θeq)
2 + ∑

dihedrals

ϑn

2
[1+ cos(nϕ− γ)]+

∑
i

∑
i< j

4εi j

[

(

σi j

ri j

)12

−

(

σi j

ri j

)6
]

+
qiq j

4πεo

1

ri j

(5)

where req is the equilibrium bond length, θeq is the equilibrium angle, kb, kθ , and Vn are the

force constants, n is the multiplicity, and γ is the phase angle for torsional angle parameters. The last

summation represents the non-bonded interactions, including London dispersion forces, Pauli repulsion,

and electrostatic interactions. εi j and σi j are the Lennard-Jones well depths and radii for a given pair of

atoms, and qi is the partial charge of atom i. Atomic charges are assigned using the restrained electrostatic

potential fit (RESP) charge fitting method [27], where the atomic charges were fit to the AM1-BCC model

[12].
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(b) Cabergoline

Figure 3. Chemical structures of molecules used to demonstrate conformation search work-flow. (a)

α-Amanitin and (b) cabergoline are mid-sized pharmaceuticals with significant conformational flexibility.

The intramolecular and solute-solvent interactions result in complex conformer distributions.

To demonstrate the capabilities and performance of our method, conformation searches were per-

formed on two drug molecules: α-amanitin and cabergoline (Figure 3) [4] [21]. α-Amanitin serves as

a good example of the effectiveness of the work-flow. There are significant differences between the

primary conformers in the gas phase, implicit solvent, and explicit solvent models. The most probable
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(a) Most probable conformers. The explicitly

solvated (blue) and GBIS (grey) conformers

show the effect of the solvent, as compared to

the more compact conformer in the gas phase

(red)

(b) Conformations generated from the

simulations in explicit solvent. In order of

most to least probable: blue, red, grey, orange

Figure 4. Comparison of the α-amanitin conformers.

conformations derived from these models are overlaid in Figure 4 (a). The gas phase structure is more

compact than the explicit solvent structure, which is consistent with the tendency of gas phase molecules

to form intramolecular interactions, while solution structures can extend to interact with the solvent. The

implicit solvent model structure is more similar to the explicit solvent structure, but is still distinct from

the explicit solvent structure. Figure 4 (b) shows the four most probable conformations from the explicit

solvent simulations. The clustering algorithm successfully categorized conformations with different

configurations of the fused rings and orientations of the pendant chains.

Cabergoline has a simpler chemical structure, containing no long chains and a more rigid ring structure.

The most probable conformers with the explicit solvent (see Figure 5 (b)) are all quite similar; the RMSD

values are under 0.98. Significant differences are apparent in the primary conformers of the explicit,

GBIS, and gas phase simulations (see Figure 5 (a)). In particular, the configuration of the alkyl chains

are sensitive to the effect of solvation. Generally, more rigid molecules will likely be less sensitive to

solvation effects.

(a) Most probable conformers, where is the

explicit solvent is blue, gas phase is red, and

GBIS is grey. All three conformers are slightly

different, although the effect of solvation less

significant on such a rigid molecule

(b) Most probable conformations calculated

using explicit solvent models. In order of most

to least probable: blue, red, grey, orange

Figure 5. The lowest energy conformations of cabergoline calculated using the implicit and explicit

solvent models.

The computational cost of these simulations is moderate. The most computationally-intensive step

is the REMD simulations in the explicit solvent. These simulations completed after approximately 80

hours when run on 72 2100 MHz AMD Opteron 6172 processors. Although the computational resources

needed for REMD conformational searches are considerably greater than for the high-throughput heuristic

methods that are currently used in high-throughput screening, these calculations are currently tractable. As
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the cost of these simulations scales well, this type of simulation could become routine when computational

resources are widely available.

Molecule Simulation Average

Acceptance Rate

α-amanitin

Explicit 0.27

Gas Phase 0.83

GBIS 0.84

cabergoline

Explicit 0.31

Gas Phase 0.88

GBIS 0.88

Table 1. Acceptance rates of exchanges

for replica exchange simulations,

averaged over all replicas. The gas phase

and GBIS simulations have very high

acceptance rates, but the explicit solvent

simulations have much lower acceptance

The average acceptance rates for the exchanges in the

REMD simulations are collected in Table 1. The accep-

tance probabilities of the gas phase and implicit solvent

models were high (> 80%). REMD in an explicit solvent

was found to be an efficient means to sample the configu-

ration space, with acceptance probabilities of 27% and 31%

for the simulations of α-amanitin and cabergoline, respec-

tively. REMD can be inefficient for simulations in explicit

solvents because the acceptance probability decreases with

the heat capacity of the system, which is proportional to the

number of atoms in the system [15]. For large molecules

that must be enclosed in a large solvent box, a prohibitively

high number of replicas would be needed to ensure a suf-

ficiently exchange probability. For small and medium sized

molecules, like the ones used here, the simulation cell is

small enough so that the exchange acceptance probability

is > 0.25.

CONCLUSIONS

In this paper, we described a work-flow for performing conformational searches using REMD and

clustering analysis for molecules in the gas phase, implicit solvents, and explicit solvents. The work-flow

consists of five primary steps: generation of a 3D structure, solvation of the solute (for the explicit solvent

method), an equilibration MD simulation, a REMD simulation, and cluster analysis. This method is

implemented in Python scripting by integrating several open source packages (i.e., OpenBabel, VMD,

and NAMD). The work-flow makes use of the greater conformation sampling achieved by REMD, and

then performs cluster analysis to find the most probable conformers sampled in the trajectory. Two

drug molecules were used as examples of the work-flow, which show significant differences between

conformers in the gas phase, implicit solvent, and explicit solvent.
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