
Analysis of Test Driven Development on sentiment and coding
activities in GitHub repositories

This paper studies the relationship between Test Driven Development (TDD), productivity

and developer sentiment in order to assess the impact of TDD on software development.

We used a set of 256572 Java repositories archived from GitHub in September 2015 and

made available through the Boa language and infrastructure. This research found that of

these repositories, 9537 could be classified as using the TDD methodology. After obtaining

these repositories we compared them to an equivalently sized set of control repositories.

In general those repositories practicing TDD had fewer commits and a faster median rate

of committing than did their control counterparts. We also found that TDD repositories

generally contained fewer bug fixing commits. Finally, sentiment analysis was performed

on both sets of repositories and it was determined that TDD repositories have a

significantly (p-value 3.857e-12) more positive sentiment in comparison to the control

repositories.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1920v2 | CC-BY 4.0 Open Access | rec: 5 Apr 2016, publ: 5 Apr 2016

Analysis of Test Driven Development on Sentiment and
Coding Activities in GitHub Repositories

Neil C. Borle
Department of Computing

Science
University of Alberta
Edmonton, Canada

nborle@ualberta.ca

Meysam Feghhi
Department of Computing

Science
University of Alberta
Edmonton, Canada

feghhi@ualberta.ca

Abram Hindle
Department of Computing

Science
University of Alberta
Edmonton, Canada

hindle1@ualberta.ca

ABSTRACT
This paper studies the relationship between Test Driven De-
velopment (TDD), productivity and developer sentiment in
order to assess the impact of TDD on software development.
We used a set of 256572 Java repositories archived from
GitHub in September 2015 and made available through the
Boa language and infrastructure. This research found that
of these repositories, 9537 could be classified as using the
TDD methodology. After obtaining these repositories we
compared them to an equivalently sized set of control repos-
itories. In general those repositories practicing TDD had
fewer commits and a faster median rate of committing than
did their control counterparts. We also found that TDD
repositories generally contained fewer bug fixing commits.
Finally, sentiment analysis was performed on both sets of
repositories and it was determined that TDD repositories
have a significantly (p-value 3.857e-12) more positive senti-
ment in comparison to the control repositories.

CCS Concepts
•Software and its engineering → Software creation
and management; Software development process man-
agement; •Information systems → Miscellaneous;

Keywords
Human Factors in Software Engineering; Opinion Mining;
Sentiment Analysis; Test Driven Development

1. INTRODUCTION
GitHub is an online developer resource that is based on the

Git version-control system (VCS). In GitHub, code reposito-
ries can be hosted publicly, encouraging open development
and recording social interaction through software artifacts
[3]. Because of GitHub’s size and scale, a domain-specific
language and infrastructure known as Boa has been devel-
oped to perform large scale queries over archived GitHub
repositories to extract and summarize the software artifacts
found in them[4].

Test Driven Development (TDD) is a software develop-
ment methodology in which failing tests are written first,
in advance of source code development, so that source code
can be tested as it is developed[1].The provision of imme-
diate feedback may have an emotional effect on the code

developers, an effect on code quality or an effect on the rate
at which code is developed.

In this paper we use Boa to gain insight into the software
development process. In particular we study the prevalence
and influence of TDD on software development processes
and opinion in Java repositories hosted on GitHub in 2015.
In our research we address the following questions:

RQ1: How many repositories use TDD?

RQ2: Does TDD affect the volume of commits in a
repository?

RQ3: Does TDD improve commit velocity?

RQ4: Does TDD reduce the required number of bug fixes?

RQ5: Does TDD improve developer satisfaction?

In the process of addressing these questions we consider soft-
ware commits/revisions as our primary source of informa-
tion. Sentiment analysis is applied to revision logs in RQ5
while log time stamps, changed files and key words are used
for the other questions.

2. RELATED WORK
In 2007, Hindle et al. described a taxonomy for classifying

revisions based on the type of files being changed in a revi-
sion. The classes of this taxonomy include source revisions,
test revisions, build revisions and documentation revisions
(STBD)[6]. In the context of Hindle et al. this study con-
siders source code revisions and test revisions, the revision
classes most relevant to TDD.

In the work of Zaidman et al., two different open source
repositories are studied to determine if testing strategies
such as TDD are detectable[8]. Zaidman et al. develop a
method of associating source code with test code by relying
on a naming convention where the word “Test” is added as
a postfix to a test file corresponding to a similarly named
source file[8]. Like Zaidman et al. we also took advantage of
this convention for associating test files to source files when
detecting TDD. We differ from Zaidman et al. in that we do
not only consider “Test” as a postfix, we match “Test” with
case insensitivity, and we impose a minimum limit on the
ratio of test files.

To establish the credibility of extracting sentiment from
software artifacts, Murgia et al. conducted a study to de-

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1920v2 | CC-BY 4.0 Open Access | rec: 5 Apr 2016, publ: 5 Apr 2016

termine if software developers left opinions behind during
the development process. They concluded that developers
do leave emotional content in their software artifacts. From
this they suggest that the automated mining of developers’
emotions from their software artifacts is feasible[7].

Guzman et al. used sentiment analysis to extract opin-
ions from commit messages belonging to GitHub projects.
Their research identified relationships between positive and
negative sentiment and factors such as the programming lan-
guage used, team members’ geographic locations, day of the
week and project approval[5]. Like Guzman et al. we sought
to apply sentiment analysis to the messages left behind dur-
ing the development process, but focused our approach on
the comparisons of projects using TDD process with those
not using TDD process.

3. METHODS

3.1 The Data Set
We used the Boa language and infrastructure to obtain

256572 Java repositories from a copy of GitHub archived
September, 2015. From each repository, we obtained the
repository URL, commit logs, commit time stamps, revi-
sions, and file names associated with revisions where Java
files were created. A Boa Output Parser1 was used to con-
vert Boa output into Python objects.

From these 256572 Java repositories we identified 9537
TDD repositories and extracted 97300 commit messages.
From the remaining repositories containing at least one com-
mit, we randomly sub-sampled a set of 9537 control Java
repositories for comparison purposes.The controls had a to-
tal of 321051 commit messages. The set of control and TDD
repositories were used for answering RQ2 through RQ5. It
is important to note that the TDD set and the control sets
were disjoint and that each repository from both sets had at
least one commit and commit message.

3.2 Approach

3.2.1 Approach to RQ1: How many repositories use
TDD?

To determine whether or not a repository was practicing
TDD, we reviewed all the revisions and all associated Java
files created in each revision. Here, we excluded all reposi-
tories where there were no Java files that could be identified
as test files. Below is the step by step logic employed by the
authors:

Step 1. We partitioned the Java files into two sets for each
of the repositories. The first set of files were those that were
identifiably test files, where the file name matched the reg-
ular expression shown below. The second set contained the
remaining Java files.

/.*test.*\.java/i

Step 2. For each file in each set we identified the creation
time by obtaining it from the revision in which it was cre-
ated.

Step 3. For each of the test files we found matching or simi-
larly named files. This assumed that Java programmers typ-
ically name their test files according to their source code files.
1https://github.com/eddieantonio/bop

For example, “someFile.java” might have a corresponding
test file called “TestSomeFile.java” or “someFileTest.java”.
If no matching file could be found, we found similar files.
Similar file names were identified using the Python Stan-
dard Library for string comparison. A similarity threshold
of 0.8 was used, where 0 is completely dissimilar and 1 is ex-
actly the same. This threshold was chosen because it could
match, for example, words like “search” with “searching”.
Here the file “searchTest.java” would be similar to “search-
ing.java”. Finally, if no matching or similar files were found
for a test file, that test file would be ignored in this step.

Step 4. Once we had obtained the mapping from a test
file to the source code files that matched it or were similar,
we then ensured that the time stamp associated with the
test file was either older or the same as the source file(s).
This ensured that the test file was either committed before
or at the same time as the source file(s).

Step 5. As a last step, if at least one out of every four Java
files in the repository were test files (25%), the repository
was declared to be practicing TDD. This was an arbitrary
threshold selected by the authors to reduce the number of
false positives being included in the TDD set. After the com-
pletion of this step we now had our 9537 TDD repositories
with a total of 97300 commit messages.

3.2.2 Approach to RQ2, RQ3, RQ4, RQ5
Having obtained a set of TDD repositories to answer RQ1,

we then used this set and the corresponding sub-sampled
control set of equal cardinality to answer the remaining re-
search questions.

To address RQ2, we counted the number of commits asso-
ciated with each repository from the two sets and observed
the differences between them.

To address RQ3, we extracted the time stamps associated
with all the the commits collected and then noted the aver-
age of the time stamp differences (deltas) between commits
in each repository

To address RQ4, we used the regular expression shown
below (continued on two lines) to identify bug fixing com-
mits in the repositories. We then used this count as an
approximation of the number of bugs that had existed in
that repository.

/.*((solv(ed|es|e|ing))|(fix(s|es|ing|ed)?)

|((error|bug|issue)(s)?)).*/i

To address RQ5 we applied the methodology described by
Guzman et. al.[5] using the software SentiStrength2. Sen-
tiStrength is described in detail in their work and so we refer
the reader to that publication[5]. Once sentiment scores had
been obtained for each of the 418351 commits, we then aver-
aged the scores for each repository to obtain repository level
sentiment scores.

4. ANALYSIS AND FINDINGS

4.1 How many repositories use TDD?
Of the 256572 Java repositories available from Boa, we

identified 9537 (3.7%) as practicing TDD according to our
criteria.

2http://sentistrength.wlv.ac.uk/

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1920v2 | CC-BY 4.0 Open Access | rec: 5 Apr 2016, publ: 5 Apr 2016

4.2 Does TDD affect commit volume?
TDD Controls

Mean 10.20 33.66
STD 32.59 231.47
Quantile 0% 1 1
Quantile 25% 2 2
Quantile 50% 4 6
Quantile 75% 10 17
Quantile 100% 2526 8851

Table 1: Number of Commits per Repo

In Table 1 it can be seen that both measures of centre,
mean and median (Quantile 50%), indicate that the control
repositories have a larger number of commits in compar-
ison to the TDD repositories. We can also observe that
the largest control repository (8851 commits) is much larger
than the largest TDD repository in terms of commits. A two
sample Mann–Whitney–Wilcoxon test for this data returns
“p-value < 2.2e-16”, showing there is extremely strong ev-
idence that these samples come from different populations
and that control repositories have larger numbers of com-
mits in general. We have omitted the the CDF curves in
this section for brevity, noting that Table 1 provides us with
a good understanding of the data.

4.3 Does TDD improve commit velocity?

0 500 1000 1500

0.2
0.4

0.6
0.8

1.0

Average Commit Velocity (Hours)

Cu
mu

lat
ive

 D
en

sit
y

CTR
TDD

Figure 1: CDF of Average Commit Velocity per Repo

As shown in Figure 1 the TDD density curve sits above the
control density curve until approximately 0.7, after which
point the the control density curve becomes the upper curve.
This indicates that most of the TDD repositories have a
smaller average time difference between their commits as
compared to the controls. Due to the right skewed in this
data, the graph is truncated at 1500.

TDD Controls
Mean 297.92 263.19
STD 1099.73 1050.18
Quantile 0% 0 0
Quantile 25% 0.99 3.71
Quantile 50% 19.01 26.55
Quantile 75% 153.69 141.26
Quantile 100% 34072.11 31997.48

Table 2: Average Commit Time Difference per Repo (Hours)

As seen in Table 2, control repositories have a larger me-
dian commit time than TDD repositories, the more impor-

tant measure of centre due to skew. A two sample Mann–
Whitney–Wilcoxon test for this data returns a p-value of
3.174e-10, showing there is extremely strong evidence that
control repositories generally have larger elapsed times be-
tween commits.

It is also interesting to note here that the TDD set has
larger values for the 75% and 100% quantiles. This suggests
that the TDD repositories with the slowest commit velocity
tend to be slower than the controls with the slowest commit
velocity.

4.4 Does TDD reduce the number of bug fixes?

0 20 40 60 80 100

0.6
0.7

0.8
0.9

1.0

Number of Bug Fixing Commits
Cu

mu
lat

ive
 D

en
sit

y CTR
TDD

Figure 2: CDF of Number of Bug Fixing Commits per Repo

As shown in Figure 2, the density curve for the TDD
repositories always sit above the density curve for the control
repositories. Due to the right skew in this data, the graph
is truncated at 100.

TDD Controls
Mean 0.75 4.79
STD 5.34 48.91
Quantile 0% 0 0
Quantile 25% 0 0
Quantile 50% 0 0
Quantile 75% 0 1
Quantile 100% 416 1894

Table 3: Number of Bug Fixing Commits per Repo

As shown in Table 3, most quantile values are 0 and so
the data are very skewed. A two sample Mann–Whitney–
Wilcoxon test for this data returns“p-value < 2.2e-16”, show-
ing there is extremely strong evidence that control reposito-
ries generally have larger number of bug fixing commits.

4.5 Does TDD improve developer satisfaction?

Average Sentiment per TDD Repository

Average Sentiment Score

Fr
eq
ue
nc
y

-3 -2 -1 0 1 2 3 4

0
20
00

40
00

60
00

80
00

Average Sentiment per CTR Repository

Average Sentiment Score

Fr
eq
ue
nc
y

-3 -2 -1 0 1 2 3

0
20
00

40
00

60
00

80
00

Figure 3: Average Sentiment Score per Repo

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1920v2 | CC-BY 4.0 Open Access | rec: 5 Apr 2016, publ: 5 Apr 2016

Figure 3 shows that sentiment expressed in these reposito-
ries is symmetric approximately around 0 and that in most
cases no sentiment is expressed.

TDD Controls
Mean -0.065 -0.075
STD 0.33 0.31
Quantile 0% -3.0 -3.5
Quantile 25% 0 -0.12
Quantile 50% 0 0
Quantile 75% 0 0
Quantile 100% 4.0 3.0

Table 4: Average Sentiment Score per Repo

Table 4 show us that the mean sentiment of control repos-
itories is slightly more negative than the mean sentiment of
TDD repositories with approximately the same variance.

A two sample Mann–Whitney–Wilcoxon test for differ-
ences in sentiment returned a p-value of 3.857e-12. This
suggests that there is very strong evidence to conclude that
there are differences between the sentiments expressed in
TDD repositories vs. non TDD repositories. In particular,
that repositories using the TDD methodology generally have
more positive commit messages.

To determine the degree to which the discrepancy in num-
ber of commits between control and TDD repositories might
be affecting the sentiment scores, Spearman correlation was
used on the union of both repository sets to determine the
correlation between absolute sentiment score and number of
commits. The resulting correlation was 0.5008541 which in-
dicates that there is a relationship between these features.
Therefore, the difference in number of commits between the
control and TDD repositories could partially account for the
stronger sentiment expressed in the control repositories.

5. THREATS TO VALIDITY
In this work, internal validity is threatened by our choice

to use file names as our basis of TDD identification, and
our selection of a 0.25 threshold for the proportion of Java
files that had to be test files. In particular, this approach
does not consider file contents and it is noted that not all
developers use the source/test file naming convention we
assumed, for example they may name files by their use case.
It may be the case that repositories truly employing TDD
were omitted from our count due to low test to source file
ratio.

Another threat to internal validity was our use of hand
crafted regular expressions for the identification of bugs fix-
ing commits. This may be an over or underestimation of the
true number of bugs.

External validity is threatened in this work by the authors’
choice to work only with Java files. This was done out of
convenience but means that this work may not generalize to
other programming languages.

A final threat to external validity was our choice to not
exclude small or personal projects from the study. While
we have studied a set of repositories that are representa-
tive of GitHub, this work may not necessarily generalize to
enterprise level software.

6. CONCLUSIONS AND FUTURE WORK
In this work we studied Java repositories on GitHub and

compared those practicing Test Driven Development to those

that did not. While our results are interesting, this study
cannot claim that any of these results are the direct effect
of implementing the TDD paradigm as there may be con-
founding factors in the data.

In our study we found that there were 9537 repositories on
GitHub practicing TDD in September 2015, which corrobo-
rates evidence by Beller et al. that TDD in not commonly
practiced[2]. When compared to a control set of non TDD
repositories we found that generally, TDD repositories have
fewer commits, have a faster commit velocity, require fewer
bug fixes and have an overall more positive sentiment. Our
results indicate that TDD might be an effective strategy for
improving developer satisfaction and productivity.

Having discovered differences between repositories prac-
ticing TDD and those that do not, future work needs to be
done to rigorously determine if these are the direct results
of implementing a TDD methodology and to identify, if any,
confounding factors that may have influenced these results.
Extensions of this work will involve identifying TDD repos-
itories by references to test classes instead of through file
names, as well as investigating how source and test files cor-
relate over time between TDD repositories and repositories
using other development methodologies.

7. REFERENCES
[1] K. Beck. Test-driven development: by example.

Addison-Wesley Professional, 2003.

[2] M. Beller, G. Gousios, A. Panichella, and A. Zaidman.
When, how, and why developers (do not) test in their
ides. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, pages 179–190.
ACM, 2015.

[3] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social
coding in github: transparency and collaboration in an
open software repository. In Proceedings of the ACM
2012 conference on Computer Supported Cooperative
Work, pages 1277–1286. ACM, 2012.

[4] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen.
Boa: A language and infrastructure for analyzing
ultra-large-scale software repositories. In 35th
International Conference on Software Engineering,
ICSE 2013, pages 422–431, May 2013.

[5] E. Guzman, D. Azócar, and Y. Li. Sentiment analysis
of commit comments in github: an empirical study. In
Proceedings of the 11th Working Conference on Mining
Software Repositories, pages 352–355. ACM, 2014.

[6] A. Hindle, M. W. Godfrey, and R. C. Holt. Release
pattern discovery via partitioning: Methodology and
case study. In Mining Software Repositories, 2007.
ICSE Workshops MSR’07. Fourth International
Workshop on, pages 19–19. IEEE, 2007.

[7] A. Murgia, P. Tourani, B. Adams, and M. Ortu. Do
developers feel emotions? an exploratory analysis of
emotions in software artifacts. In Proceedings of the
11th Working Conference on Mining Software
Repositories, pages 262–271. ACM, 2014.

[8] A. Zaidman, B. Van Rompaey, S. Demeyer, and
A. Van Deursen. Mining software repositories to study
co-evolution of production & test code. In Software
Testing, Verification, and Validation, 2008 1st
International Conference on, pages 220–229. IEEE,
2008.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1920v2 | CC-BY 4.0 Open Access | rec: 5 Apr 2016, publ: 5 Apr 2016

