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Abstract 29 

The skewness and kurtosis of community trait distributions (CTDs) can provide important 30 

insights on the mechanisms driving community assembly and species coexistence. However, 31 

they have not been considered yet when describing global patterns in CTDs. We aimed to do 32 

so by evaluating how environmental variables (mean annual temperature [MAT] and 33 

precipitation [MAP], precipitation seasonality [PS], slope angle and sand content) and their 34 

interactions affected the mean, variance, skewness, kurtosis of the plant CTDs in global 35 

drylands. We gathered specific leaf area and maximum plant height data from 130 dryland 36 

communities from all continents except Antarctica. Over 90% of the studied communities had 37 

skewed CTDs for SLA and height or had kurtosis values differing from those of normal 38 

distributions. Higher MAT and/or lower MAP led to a shift toward plant communities over-39 

represented by “conservative” strategies, and a decrease in functional diversity. However, 40 

considering interactions among environmental drivers increased the explanatory power of our 41 

models by 20%. Sand content strongly altered the responses of height to changes in MAT and 42 

MAP (climate × topo-edaphic interactions). Increasing PS reversed the effects of MAT and 43 

MAP (climate × climate interactions) on the four moments of CTDs for SLA, particularly in 44 

dry-subhumid regions. Our results indicate that the increase in PS forecasted by climate 45 

change models will reduce the functional diversity of dry-subhumid communities. They also 46 

indicate that ignoring interactions among environmental drivers can lead to misleading 47 

conclusions when evaluating global patterns in CTDs, and thus may dramatically undermine 48 

our ability to predict the impact of global environmental change on plant communities and 49 

associated ecosystem functioning.  50 

 51 

Keywords: arid systems, functional biogeography, maximum plant height, precipitation 52 

regimes, sand content, slope, specific leaf area, temperature. 53 
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INTRODUCTION 54 

Community trait distributions (CTDs) are the frequency patterns of trait values weighted by 55 

the species abundance observed in communities (Violle et al. 2007). They can be used to 56 

make accurate prediction of plant species distributions (Frenette-Dussault et al. 2013), to 57 

assess plant community responses to environmental gradients (Soudzilovskaia et al. 2013), 58 

and to quantify ecosystem stability  under varying environmental conditions (Valencia et al. 59 

2015). Therefore, evaluating patterns of CTDs along biogeographic gradients is a powerful 60 

tool to predict the impact of climate change on communities and ecosystems (Violle et al. 61 

2014, Enquist et al. 2015), particularly at the global scale (Parmesan et al. 2013). 62 

 Ongoing climate change involves simultaneous shifts in multiple environmental 63 

factors, such as temperature and precipitation regimes (IPCC 2013). These variables are 64 

expected to interact in a complex way to determine their impacts on plant communities and 65 

ecosystem functioning (see Peñuelas et al. 2013 for a review). For instance, concomitant 66 

effects of annual amount and seasonality of precipitations can equally affect aboveground net 67 

plant productivity (Guo et al. 2012). Additionally, plant community responses to altered 68 

temperature and precipitations regimes can also be conditional on local topography (Liancourt 69 

et al. 2013) and soil parameters (e.g., Fridley et al. 2011). To date, regional patterns of CTDs 70 

have been assessed along isolated climatic (Fonseca et al. 2000, Freschet et al. 2011, Laughlin 71 

et al. 2011, Swenson et al. 2012) or edaphic gradients (e.g., Fonseca et al. 2000, Gross et al. 72 

2008). However, global patterns of CTDs in response to interacting environmental factors are 73 

barely known. Therefore, understanding how interactions between environmental factors 74 

determine global patterns of CTDs can substantially advance our understanding of the 75 

complex effects of climate change on plant functional diversity and ecosystem functioning.  76 

Studies quantifying patterns of CTDs have mostly targeted the community-weighted 77 

mean (e.g., Gross et al. 2008, Laughlin et al. 2011), which focuses on the traits of the most 78 
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dominant species, and the community-weighted variance (or related indices, e.g., Freschet et 79 

al. 2011, Swenson et al. 2012), which measures the general extent of functional diversity in a 80 

community. While the mean and variance of CTDs suffice to characterize normal 81 

distributions, CTDs are often non-normal and sometimes even multimodal (Fonseca et al. 82 

2000, Enquist et al. 2015). In such cases, the skewness and kurtosis of CTDs complement the 83 

information provided by the mean and variance by providing insights on the mechanisms 84 

determining community assembly and species coexistence (Schamp et al. 2008, Kraft et al. 85 

2008, Enquist et al. 2015; Fig. 1). Swenson and Weiser (2010) found that the skewness and 86 

kurtosis of CTDs from Eastern North American trees were highly sensitive to temperature and 87 

precipitation. Their results highlight the importance of their investigation in a context of 88 

functional biogeography and global environmental change. 89 

 Drylands, including arid, semi-arid and dry-subhumid ecosystems, cover ∼41% of 90 

Earth’s land surface and support over 38% of the total global population (Safirel and Adeel 91 

2005), and are particularly sensitive to climate change (see Maestre et al., 2012a for a 92 

review). Despite their importance, no study so far has simultaneously considered the 93 

interactive effects of climate, topography and soil factors on the four moments of the traits 94 

distributions in global drylands. We aimed to do so by assessing specific leaf area (SLA) and 95 

maximum plant height of perennial vegetation in 130 dryland communities worldwide, which 96 

encompass the major abiotic features and vegetation types found in drylands globally 97 

(Appendix S1). Specific leaf area is a key trait indexing leaf-level carbon gain strategies (leaf 98 

“economics”; Wright et al. 2004). Maximum plant height reflects a trade-off for biophysical 99 

constraints in determining water fluxes within the plant (Enquist 2002), and is related to 100 

competitive ability (Westoby 1998). Specific leaf area and maximum plant height reflect two 101 

important independent axes of plant ecological strategy (Westoby 1998), and are sensitive to 102 

both climatic (e.g., Wright et al. 2004) and edaphic (e.g., Fonseca et al. 2000) variables. In 103 
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drylands, these traits can help to explain species coexistence and the dominance of particular 104 

plant strategies (e.g. stress-tolerant vs. stress avoidant: Fonseca et al. 2000, Frenette-Dussault 105 

et al. 2012, Gross et al. 2013). Along a regional aridity gradient, changes in CTDs of the two 106 

studied traits have been shown to impact the strength of biotic interactions (Gross et al. 2013), 107 

and the stability of ecosystem multifunctionality (Valencia et al. 2015).  108 

 Following the environmental filtering hypothesis (Keddy 1992), we predict that (i) 109 

higher environmental stress will lead to a shift toward plant communities over-represented by 110 

short species with “conservative” strategies. A decrease in the mean and/or an increase in the 111 

skewness for height and SLA with environmental stress will reflect this functional shift. 112 

Additionally, we expect (ii) either a decrease in functional diversity due to environmental 113 

stress (lower variance and/or higher kurtosis) or an increase in functional diversity due to a 114 

decrease in the importance of competitive interactions (higher variance and/or lower kurtosis). 115 

Finally, we forecast that (iii) the interactions between climate, topography and soil factors 116 

will strongly influence the four moments of CTDs. 117 

 118 

MATERIALS AND METHODS  119 

Study sites and environmental variables 120 

Field data for this study were obtained from 130 sites located in 13 countries (Argentina, 121 

Australia, Chile, China, Ecuador, Israel, Kenya, Mexico, Morocco, Spain, Tunisia, USA and 122 

Venezuela; Fig S1). These sites are a subset of the global network of sites from Maestre et al. 123 

(2012b) that cover a wide range of the environmental conditions found in global drylands 124 

(excluding hyper arid areas, which usually have little or no perennial vegetation). Mean 125 

annual temperature (MAT) and mean annual precipitation (MAP) of the studied sites varied 126 

between -1.8°C to 27.8°C, and from 79 mm to 1177 mm, respectively. Slope values ranged 127 
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between 0.2° and 28°. The sites studied include a wide variation in soil types, with more than 128 

25 different categories from the FAO´s classification (FAO 1998). 129 

 Site climate was summarised using three variables: mean annual temperature (MAT), 130 

mean annual precipitation (MAP) and precipitation seasonality (PS: coefficient of variation of 131 

12 monthly rainfall totals). We selected these variables because: i) their measurement is 132 

unambiguous; ii) they are important drivers of trait variation both at regional and global scales 133 

(e.g., Wright et al. 2004, Swenson et al. 2012, Moles et al. 2014); iii) they are key variables 134 

for explaining global variation in dryland ecosystem functioning (Maestre et al. 2012b); and 135 

(iv), MAT, MAP and PS describe largely independent features of site climate in the studied 136 

dataset (bivariate correlations, r < 0.36 in all cases, Appendix S2). Temperature seasonality 137 

(standard deviation * 100) was not considered due to its correlation with MAT in the studied 138 

dataset (r = 0.59). Standardized climate data for all study sites were obtained from Worldclim 139 

(www.worldclim.org), a high resolution (30 arc seconds or ~ 1km at equator) global database 140 

(Hijmans et al. 2005).  141 

 Topo-edaphic variables (i.e. soil properties and topography) at each site were 142 

summarised using slope angle and soil sand content. These variables are particularly 143 

interesting in the context of this study because they can largely affect moments of CTDs such 144 

as community-weighted mean and variance (Dubuis et al. 2013), and because they play key 145 

roles in controlling infiltration, water and nutrient availabilities and run-on/run-off processes 146 

in drylands (e.g., Gómez-Plaza et al. 2001). Sand, clay and silt contents were measured in soil 147 

samples (0-7.5 cm depth) from under the canopy of the dominant perennial plants, and in 148 

open areas devoid of vascular vegetation, corresponding to the main microsites present at 149 

each site (see Maestre et al. 2012b for details). Soil pH was measured with a pH meter, in a 1: 150 

2.5 mass: volume soil and water suspension. Site-level estimates for all variables were 151 

obtained by using the average of the mean values observed in bare ground and vegetated 152 
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areas, weighted by their respective area at each site (Maestre et al. 2012b).  We did not 153 

consider soil pH in further analyses due to its correlation with MAP and sand content (r = -154 

0.62 and -0.53, respectively). Similarly, clay and silt contents were not used in our analyses 155 

due to their correlation with sand content (r = -0.52 and -0.55, respectively). Slope at each site 156 

was quantified by direct measurements in situ with a clinometer.  157 

Community trait distributions 158 

Community trait distributions were estimated by merging two independent datasets. The 159 

cover of each perennial plant species measured in situ was used as a proxy of species 160 

abundance. SLA and maximum plant height were retrieved from the TRY database (Kattge et 161 

al. 2011). Site selection was based on the availability of trait data. A site was selected when 162 

SLA and plant height data were available for all the perennial species that accounted together 163 

for at least 60% of the total perennial vegetation cover (Appendix S3). In total, 130 sites were 164 

selected, providing SLA and maximum plant height data for 347 and 512 species, 165 

respectively. We also repeated our analyses using a subset of 95 sites for which SLA and 166 

plant height data were available for all the perennial species that accounted together for at 167 

least 80% of the total perennial vegetation cover at each site, a threshold recommended when 168 

estimating CTDs (Pakeman and Quested 2007). Results from this subset of data were 169 

consistent with those based on the dataset used with the 60% threshold (Appendix S4), and 170 

thus will not be presented in the main text.  171 

 For each of the 130 studied sites, community-weighted mean, community-weighted 172 

variance, community-weighted skewness and community-weighted kurtosis were computed 173 

using the R functions of Bernard-Verdier et al. (2012). In the case of non-normal CTDs, 174 

differences in the degree of skewness highlight a shift in the dominance of species with trait 175 

values toward one of the extreme of the trait range in a given community (Fig. 1). This pattern 176 

may arise from abiotic filtering selecting for a particular set of extreme trait values (Keddy 177 
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1992), from biotic filtering such as asymmetric light competition among species (Schamp et 178 

al. 2008), the importance of rare species in local co-existence or time lags in community 179 

responses to rapid environmental changes (Enquist et al. 2015). Kurtosis highlights the level 180 

of trait differentiation between co-occurring species (similar to the trait spacing in Kraft et al. 181 

2008). High kurtosis is characteristic of peaked CTDs, and reflects the occurrence of strong 182 

environmental filtering. Low kurtosis is characteristic of flat CTDs, reflecting multiple 183 

community assembly processes, or the occurrence of stabilizing niche differences among 184 

interacting species (Chesson 2000). Very low kurtosis is characteristic of bimodal CTDs. 185 

Bimodal CTDs arise from multiple optimal trait values reflecting either the co-existence of 186 

contrasting functional strategies (Gross et al. 2013), or the co-occurrence of past and present 187 

optimal trait values in response to recent environmental changes (Enquist et al. 2015). 188 

Statistical analyses 189 

We first built separate linear regression models for each moment of CTDs (mean, variance, 190 

skewness and kurtosis) for SLA and height using the five selected environmental variables as 191 

predictors (MAT, MAP, PS, slope and sand content) without interactions. Correlation among 192 

the predictors used, and thus multicollinearity, was low (r < 0.39 and Variance Inflation 193 

Factor [VIF] <1.25 in all cases, Appendix S2). Latitude and longitude were also included in 194 

all models to account for potential effects of spatial autocorrelation between sites (Maestre et 195 

al. 2012b). Correlation between geographical and studied environmental variables was also 196 

low (r < 0.33 and VIF < 1.44 in all cases, Appendix S2). Then, we ran a second set of 197 

analyses where all possible two-way interactions between MAT, MAP, PS, slope and sand 198 

content were included in the models. For each trait and moment, we used a backward-forward 199 

stepwise regression procedure to select the models that minimized the second-order Akaike 200 

information criterion (AICc).  201 
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 We evaluated the relative importance of the predictors considered and their 202 

interactions as drivers of the variation found for each trait and moment using a variance 203 

decomposition analysis based on the best model selected (see Dubuis et al. 2013 for a similar 204 

approach). First, the variance decomposition was used to highlight the percentage of variance 205 

explained by the interactions among predictors. Thus, the following five identifiable variance 206 

fractions were disentangled: i) latitude and longitude, ii) MAT, MAP and PS, iii) slope and 207 

sand content, iv) interactions among predictors and v) unexplained variance. Second, the 208 

variance decomposition was used to highlight the percentage of variance explained by climate 209 

(and their interactions), topo-edaphic (and their interactions) and climate × topo-edaphic 210 

interactions. Thus, the following seven identifiable fractions of variance were disentangled: i) 211 

latitude and longitude, ii) climatic variables, iii) climate × climate interactions, iv) local topo-212 

edaphic variables (slope and sand content), v) topo-edaphic × topo-edaphic interactions, vi) 213 

climate × topo-edaphic interactions and vii) unexplained variance. 214 

 Finally, we conducted a sensitivity analysis of the selected models to illustrate how 215 

climate × climate and climate × topo-edaphic interactions drive variations in CTDs in the 216 

studied drylands. For doing so, we used the parameter estimates of the climatic and topo-217 

edaphic variables obtained from the best models (based on AICc). Other variables included in 218 

these best models were treated as constants and fixed to their mean. Predicted values were 219 

obtained by fixing one of the two interacting predictors both at the lowest and highest values 220 

observed in the dataset. 221 

All statistical analyses were performed using the R statistical software 2.15.1 (R Core 222 

Team 2012). All response variables (community-weighted moments) were log-transformed, 223 

and all the predictors (climatic and topo-edaphic variables) were standardized and normalized 224 

(z-score) before analyses. 225 

 226 
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RESULTS 227 

Most of the CTDs did not follow a normal distribution, highlighting the relevance of the use 228 

of skewness and kurtosis in evaluating change in CTDs (Appendix S5). Among the 130 229 

studied communities, over 90% of the CTDs for SLA and height were skewed (skewness < -1 230 

or > 1) or had kurtosis values differing from those of normal distributions (kurtosis < -1 or > 231 

1). Furthermore, more than 53% of the CTDs for SLA and height were highly skewed 232 

(skewness < -2 or > 2) or had a kurtosis highly departing from that characterizing normal 233 

distributions (kurtosis < -2 or > 2). 234 

Additive effects of climate soil and topographic factors on CTDs 235 

When interactions among predictors were not included in the models, the predictive power of 236 

the models was relatively modest, and decreased for skewness and kurtosis (Table 1). 237 

Climatic variables were always significant predictors for all moments and traits evaluated 238 

(Table 1), explaining up to 27% of the total variance for SLA (Fig. 2a: variance) and up to 239 

18% for height (Fig. 2b: mean). Topo-edaphic variables explained less than 4% of the total 240 

variance in all cases (Table 1). 241 

 Higher MAT simultaneously decreased the mean and variance for SLA and increased 242 

kurtosis (Table 1), reflecting a shift from flat and wide spread or even bimodal distributions, 243 

dominated by high SLA values, to narrow and peaked trait distributions dominated by low 244 

SLA. In contrast, higher MAP increased the mean and decreased the skewness for SLA, 245 

apparently leading to skewed distributions dominated by high SLA values. Higher MAP was 246 

also associated with increased variance for SLA, reflecting wide spread distributions. Finally, 247 

higher sand content was also associated with trait distributions dominated by low mean SLA 248 

(Table 1), with flat, wide spread or even bimodal distribution (low kurtosis).  249 

Higher MAT and slope angle values increased the mean and kurtosis for height (Table 250 

1), reflecting changes in trait distributions toward peaked CTDs dominated by tall species. In 251 
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contrast, higher MAP led to skewed and peaked trait distributions for height (high skewness 252 

and kurtosis), i.e., communities over-represented by relatively small species. Both mean and 253 

variance for height decreased with increases in PS, indicating changes toward narrow trait 254 

distributions dominated by small species. 255 

Interactive effect of climate, soil and topographic factors on CTDs 256 

Including interactions among predictors substantially increased the predictive power of the 257 

models (Table 1). Interactions between MAT and PS, and between MAP and PS (Table 1), 258 

explained a large part of the variation in SLA (Fig. 2c: climate × climate interactions). At low 259 

values of PS, MAT and MAP increased the mean and variance for SLA, and decreased its 260 

skewness (Fig. 3a, c and e). This reflected changes in CTDs toward left-skewed and 261 

widespread distributions dominated by species with high SLA values. In contrast, large PS 262 

values strongly dampened, and even reversed the effect of MAT and MAP (Fig. 3b, d anf f). 263 

Narrow distributions (low variance) dominated by species with low SLA values (low mean 264 

and right-skewed) occurred under higher MAT and MAP conditions. 265 

 Interactions between MAT and sand content, and between MAP and sand content, 266 

explained a large part of variation for height (Table 1, Fig. 2d: climate × topo-edaphic 267 

interactions). These results indicate that sand content mediates the effect of climate on CTDs. 268 

For instance, CTDs were primarily dominated by short species (Fig 4a and e) but were 269 

bimodal (Fig. 4g) at low levels of sand content under high MAT and low MAP. At high level 270 

of sand contents, and under similar MAT and MAP conditions, CTDs were dominated by the 271 

tallest species (Fig. 4b), and were unimodal (Fig 4h). 272 

 273 

DISCUSSION 274 

Community trait distributions (CTDs) in global drylands are highly sensitive to climatic 275 

variables such as MAT and MAP. Following our first two hypotheses, environmental stress 276 
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(i.e. higher MAT and/or lower MAP values) leads to plant communities over-represented by 277 

“conservative” strategies and a decrease in functional diversity. However, climate × climate 278 

interactions largely explain variations in CTDs of global drylands, and topo-edaphic variables 279 

mediate the effect of climate on the four moments (climate × topo-edaphic interactions), 280 

consistently with our third hypothesis. Precipitation seasonality reverses the effects of mean 281 

temperature and precipitation on CTDs for SLA. Similarly, soil parameters such as sand 282 

content determine the effect of MAT and MAP on plant community height. Importantly, the 283 

CTDs of most of the studied communities strongly departed from normal distributions, which 284 

highlight the need for detailed analyses of skewness and kurtosis. 285 

Additive effects of climate, soil and topographic factors on CTDs 286 

The effects of climate on the mean of the CTDs for SLA and maximum plant height are 287 

consistent with other global studies conducted at the species level (e.g., Wright et al. 2004, 288 

Reich et al. 2007, Moles et al. 2014). Higher MAT decreased the mean SLA and increased the 289 

height of communities (Soudzilovskaia et al. 2013, Moles et al. 2014), reflecting a decrease in 290 

abundance of herbaceous perennial vegetation relative to the abundance of shrubs with 291 

evergreen leaves in warmer drylands. Such functional shifts have been documented in the 292 

Chihuahuan Desert, and have been attributed to recent climate warming (Brown et al. 1997). 293 

Interestingly, functional shifts toward higher abundances of evergreen shrubs have also been 294 

observed in response to experimental climate warming in colder biomes (e.g., Walker et al. 295 

2006). 296 

Higher MAP led to communities with increased average SLA values. Communities 297 

occurring in the wettest part of the precipitation range studied (i.e. sub-humid drylands) are 298 

dominated by species with exploitative strategies, with potential for relatively quick returns 299 

on investments of nutrient and dry mass in leaves (Fonseca et al. 2000, Wright et al. 2004). 300 

Soil characteristics and topography had much lower explanatory power than climatic 301 
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variables as predictors of variations in SLA and maximum height, and only slightly drove 302 

variations in the distributions of both traits. Soil texture is an important abiotic filtering that 303 

selects for particular set of trait values (e.g., Keddy 1992), i.e. slow-growing perennial 304 

vegetation (or evergreen habit). Such a functional shift likely occurs because high sand 305 

content is typically found in sites with low nitrogen contents within the sites studied (Maestre 306 

et al. 2012b, Delgado-Baquerizo et al. 2013). 307 

 Skewness and kurtosis of CTDs were highly sensitive to climate, soil and topography. 308 

Higher MAT led to peaked or narrow distributions for SLA and height, reflecting a loss of 309 

functional diversity due to the strong effect of abiotic filtering (Keddy 1992). In contrast, flat 310 

and even bimodal distributions for SLA occurred for communities in cooler conditions, 311 

reflecting an increase in the importance of competitive interactions (Gross et al. 2013).  312 

 Higher MAP increased the over-representation of short species with relatively high 313 

SLA, co-occurring with rare tall species with low SLA (i.e. a shift toward right-skewed 314 

distributions for height and left-skewed distributions for SLA). This over-representation in 315 

high SLA may reflect a direct response to a more favorable environment. Alternatively, it 316 

may also reflect the occurrence of positive interactions between tall stress-tolerant and 317 

exploitative stress-intolerant species. Gross et al. (2013) found that, at low aridity levels, 318 

conservative tall species can facilitate the persistence of short fast-growing species that do not 319 

tolerate water stress in Mediterranean shrublands. 320 

Interactive effects of climate, soil and topographic factors on CTDs 321 

Considering interactions among environmental drivers strongly increased the explanatory 322 

power of our models. Thus, our findings highlight the importance of considering these 323 

interactions when assessing large-scale patterns of CTDs. Until now, both climate × climate 324 

and climate × topo-edaphic interactions have received very little attention when exploring the 325 

drivers of variations in functional traits at both species and community levels (see Reich et al. 326 
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2007 for climate × climate interactions, Ordonez et al. 2009 for climate × topo-edaphic 327 

interactions). While considering effects of environmental variables as additive (without 328 

interactions) can allow capturing general biological trends of large-scale patterns of CTDs 329 

(e.g., Freschet et al. 2011, Swenson and Weiser 2010, Swenson et al. 2012), conclusions 330 

drawn from such analyses could be misleading, and may dramatically undermine our ability 331 

to predict the impact of global environmental change on plant community structure and 332 

associated ecosystem functioning. 333 

The importance to consider interactions between environmental drivers is clearly 334 

illustrated by the effect of precipitation seasonality, which reversed the effects of MAT and 335 

MAP on SLA (Fig. 3). Climate warming is expected to spatially and temporally alter 336 

precipitation regimes, and to trigger complex interactive influences on diversity (see Peñuelas 337 

et al. 2013 for review). Our results indicate that an increase in PS can particularly affect 338 

drylands with warm and relatively wet climate, such as the dry-subhumid regions of our 339 

dataset (e.g., Ecuador and Venezuela). Under low seasonality, dry-subhumid ecosystems are 340 

dominated by communities with relatively fast-growing and water stress-intolerant vegetation 341 

(high SLA), and harbor a high functional diversity. Increasing seasonality can strongly affect 342 

the functional structure of these communities by increasing the dominance of slow-growing 343 

species and thus reducing their functional diversity. This finding is particularly important 344 

because dry-subhumid regions are facing altered seasonal climatic patterns due to ongoing 345 

climate change which will likely increase the degree of drought stress they will experience in 346 

the future (IPCC 2013). 347 

Sand content altered the height responses to changes in MAT and MAP, highlighting 348 

the importance to also consider edaphic factors to forecast the effect of climate change on 349 

plant communities (Fridley et al. 2011, Liancourt et al. 2013). Small and tall species tend to 350 

co-occur within communities under high MAT and low MAP conditions (bimodal trait 351 
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distributions for height). Bimodal distributions for height reflect the structure of perennial 352 

dryland vegetation characterized by patches of tall shrubs co-occurring with small species 353 

(e.g., Australian woodlands; Eldridge 1999). However, an increase in sand content can alter 354 

the functional structure of those communities by selecting for tall species only (unimodal trait 355 

distributions for height). The support of taller and denser perennial vegetation on coarse 356 

(sandy) soils than on finer-textured soils is a commonly observed pattern in arid and semi-arid 357 

climates, generally referred as “inverse texture effect” (Noy Meier 1973). 358 

Finally, it is interesting to notice that latitude and longitude explained a large part of the 359 

variation found in our data, and drove the overall decrease in explanatory power for the higher 360 

moments of the trait distribution. While our dataset did not allow us to explore the role of 361 

these geographic variables (they were not correlated with the studied environmental 362 

variables), their predictive power on CTDs is intriguing, and calls for further studies to 363 

identify their biological meaning. Latitude and longitude are increasingly used to assess 364 

patterns in functional biogeography (e.g., Swenson et al. 2012), and they likely reflect non-365 

considered sources of variations associated to geography in our study. They may encompass 366 

differences in species pool, solar irradiance, soil variables not measured here or land-use 367 

patterns and history, which are all likely to affect CTDs.  368 

Conclusions 369 

Our study illustrates how trait-based approaches that consider the four moments of the CTDs, 370 

reveals the signature of ecological processes at large scales. It has ramifications for improving 371 

our predictions on the effect of climate change on plant communities (Violle et al. 2014) and 372 

on ecosystem functions (Enquist et al. 2015). This approach would certainly gain predictive 373 

power by integrating intraspecific trait variations, and particularly by considering complex 374 

shapes of individual-level trait distributions (Laughlin et al. 2015).  375 

 376 
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TABLE 529 

TABLE 1.  Best-fitting regression models with and without interactions among predictors. Models are presented for each moment and each trait 530 

separately. The best models are selected according to AICc values (Appendix S5). Shaded cells indicate variables that were selected in a 531 

particular model. Latitude and longitude were introduced to avoid spatial auto-correlations. Slope directions are indicated when significant.  532 

LL: latitude / longitude, MAT: mean temperature, MAP: mean precipitation, PS: precipitation seasonality, SL: slope, and SC: sand content 533 

 534 
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 538 
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FIGURE LEGENDS  540 

FIG. 1. Formulas (after Enquist et al. 2015), shapes and ecological implications of the four 541 

moments of community trait distributions.  542 

 543 

FIG. 2. Percentage of variance explained for each group of predictors (i.e. climate and topo-544 

edaphic variables) and two-way interactions (a, b), and for each group of predictors and their 545 

interactions separately (c, d). Grey portions represent the unexplained variances. The 546 

proportions were calculated using a variance decomposition analysis based on the best model 547 

selected for each trait and moment (Table 1, Appendices S4 and S6). 548 

 549 

FIG. 3. Predicted values (black dots) and planes representing the interactions between mean 550 

temperature (MAT) and precipitation seasonality, and between mean  precipitation (MAP) 551 

and precipitation seasonality on the mean (a, b), variance (c, d) and skewness (e, f) for 552 

specific leaf area (SLA). The interactions were selected by the best fitting models (Table 1, 553 

Appendices S4 and S6). Effects of interactions are presented at low (CV seasonality = 12: a, c 554 

and e) and high seasonality (CV seasonality = 124: b,d and f). The colours of the predicted planes 555 

change from blue (low values of the moments) to red (high values). 556 

 557 

FIG. 4. Predicted values (black dots) and planes representing the interactions between mean 558 

temperature (MAT) and sand content and between mean precipitation (MAP) and sand 559 

content on the mean (a, b), variance (c, d), skewness (e, f) and kurtosis (g, h) for height. The 560 

interactions were selected by the best fitting models (Table 1, Appendices S4 and S6). Effects 561 

of interactions are presented at low (sand content = 27.66%: a, c, e and g) and high sand 562 

content (sand content = 94.54%: b,d, f and h). The colours of the predicted planes change 563 

from blue (low values of the moments) to red (high values of the moments). 564 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1913v1 | CC-BY 4.0 Open Access | rec: 31 Mar 2016, publ: 31 Mar 2016



25 

 

FIGURES 

FIG. 1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Normal distributionPositively skewed Negatively skewed

Skewness = 0Skewness > 0 Skewness < 0

- Importance of rare species in local co-existence

- Time lags in community responses to rapid environmental changes

- Change in the dominance of species with trait values toward one

of the extreme of the trait range

- Abiotic filtering: selection for a particular set of extreme values

- Biotic filtering: asymmetric light competition

Normal distributionLeptokurtic Bimodal

Kurtosis > 0

Platykurtic

Kurtosis = 0 Kurtosis < 0 Kurtosis << 0

- Co-occurrence of past and present optimal trait values in response to

rapid environmental changes (bimodal)

- Co-occurrence of multiple community assembly process in a community

- Level of trait differenciation between co-occurring species

- Abiotic filtering: selection for a particular set of trait values (leptokurtic)

- Co-existence of contrasting functional strategies due to competition or to 

cope with the abiotic constraint (platykurtic / bimodal)

K
u

rt
o

si
s

S
k

e
w

n
e

ss

- General extent of functional diversity in a community 

- Trait values of the most dominant species in a community 

(normal distributions) 

V
a

ri
a

n
ce

M
e

a
n

High variance Low variance

CWMj,y = ∑ Ak,j × zk

nj

k = 1

CWM = community-weighted mean

A = relative abundance of species k

z = mean trait value of species k

n = number of sampled species in a plot j

with

CWV
j,y

= ∑ A
k,j

× (z
k
– CWM

j,y
)²

n
j

k = 1

CWV = community-weighted variancewith

∑ Ak,j × (zk – CWMj,y)
3

n
j

k = 1
CWS

j,y 
=

CWV
j,y

3/2

CWS = community-weighted skewnesswith

∑ Ak,j × (zk – CWMj,y)
4

n
j

k = 1
CWKj,y =

CWV
j,y

2
- 3

CWK = community-weighted kurtosiswith

Formula Shape Ecology

Normal distributionPositively skewed Negatively skewed

Skewness = 0Skewness > 0 Skewness < 0

- Importance of rare species in local co-existence

- Time lags in community responses to rapid environmental changes

- Change in the dominance of species with trait values toward one

of the extreme of the trait range

- Abiotic filtering: selection for a particular set of extreme values

- Biotic filtering: asymmetric light competition

Normal distributionLeptokurtic Bimodal

Kurtosis > 0

Platykurtic

Kurtosis = 0 Kurtosis < 0 Kurtosis << 0

- Co-occurrence of past and present optimal trait values in response to

rapid environmental changes (bimodal)

- Co-occurrence of multiple community assembly process in a community

- Level of trait differenciation between co-occurring species

- Abiotic filtering: selection for a particular set of trait values (leptokurtic)

- Co-existence of contrasting functional strategies due to competition or to 

cope with the abiotic constraint (platykurtic / bimodal)

K
u

rt
o

si
s

S
k

e
w

n
e

ss

- General extent of functional diversity in a community 

- Trait values of the most dominant species in a community 

(normal distributions) 

V
a

ri
a

n
ce

M
e

a
n

High variance Low variance

CWMj,y = ∑ Ak,j × zk

nj

k = 1

CWMj,y = ∑ Ak,j × zk

nj

k = 1

CWM = community-weighted mean

A = relative abundance of species k

z = mean trait value of species k

n = number of sampled species in a plot j

with

CWV
j,y

= ∑ A
k,j

× (z
k
– CWM

j,y
)²

n
j

k = 1

CWV = community-weighted variancewith

CWV
j,y

= ∑ A
k,j

× (z
k
– CWM

j,y
)²

n
j

k = 1

CWV
j,y

= ∑ A
k,j

× (z
k
– CWM

j,y
)²

n
j

k = 1

CWV = community-weighted variancewith

∑ Ak,j × (zk – CWMj,y)
3

n
j

k = 1
CWS

j,y 
=

CWV
j,y

3/2

CWS = community-weighted skewnesswith

∑ Ak,j × (zk – CWMj,y)
3

n
j

k = 1
CWS

j,y 
=

CWV
j,y

3/2

∑ Ak,j × (zk – CWMj,y)
3

n
j

k = 1
CWS

j,y 
=

CWV
j,y

3/2

CWS = community-weighted skewnesswith

∑ Ak,j × (zk – CWMj,y)
4

n
j

k = 1
CWKj,y =

CWV
j,y

2
- 3

CWK = community-weighted kurtosiswith

∑ Ak,j × (zk – CWMj,y)
4

n
j

k = 1
CWKj,y =

CWV
j,y

2

∑ Ak,j × (zk – CWMj,y)
4

n
j

k = 1
CWKj,y =

CWV
j,y

2
- 3

CWK = community-weighted kurtosiswith

Formula Shape Ecology

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1913v1 | CC-BY 4.0 Open Access | rec: 31 Mar 2016, publ: 31 Mar 2016



26 

 

FIG. 2. 
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FIG. 4. 
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APPENDICES 

APPENDIX S1. Map showing the sampling effort for a) the 130 studied dryland 

communities and b) the Mediterranean basin. 
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APPENDIX S2. Correlation matrices among the four moments (mean, variance, skewness 

and kurtosis) and among environmental predictors (climate and edaphic conditions). 

Correlations with Pearson coefficients higher than 0.50 (absolute value) are indicated in bold. 

We also present the results of the variance inflation factor (VIF) to evaluate the risk of 

multicollinearity. 
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1.3940.282Long ~ MAT + MAP + prec.season + slope + sand

1.1620.140MAT ~ Long + MAP + Prec.season + Slope + sand

1.2700.213MAP ~ Long + MAT + Prec.season + Slope + sand

1.2480.198Prec.season ~ Long + MAT + MAP + Slope + sand

1.2520.201Slope ~ Long + MAT + MAP + Prec.season + sand

1.3240.245Sand ~ Long + MAT + MAP + Prec.season + Slope

1.3950.283Lat ~ MAT + MAP + prec.season + slope + sand

1.3080.235Slope ~ Lat + MAT + MAP + Prec.season + sand

1.0410.040Prec.season ~ Lat + MAT + MAP + Slope + sand

1.2250.184MAP ~ Lat + MAT + Prec.season + Slope + sand

1.1870.158MAT ~ Lat + MAP + Prec.season + Slope + sand

1.4390.305Sand ~ Lat + MAT + MAP + Prec.season + Slope

1.2420.195Sand ~ MAT + MAP + Prec.season + Slope

1.2410.194Slope ~ MAT + MAP + Prec.season + sand

1.0400.039Prec.season ~ MAT + MAP + Slope + sand

1.2090.173MAP ~ MAT + Prec.season + Slope + sand

1.1560.135MAT ~ MAP + Prec.season + Slope + sand

VIFModel r²Model
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1.3950.283Lat ~ MAT + MAP + prec.season + slope + sand
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1.0410.040Prec.season ~ Lat + MAT + MAP + Slope + sand

1.2250.184MAP ~ Lat + MAT + Prec.season + Slope + sand

1.1870.158MAT ~ Lat + MAP + Prec.season + Slope + sand

1.4390.305Sand ~ Lat + MAT + MAP + Prec.season + Slope

1.2420.195Sand ~ MAT + MAP + Prec.season + Slope

1.2410.194Slope ~ MAT + MAP + Prec.season + sand

1.0400.039Prec.season ~ MAT + MAP + Slope + sand

1.2090.173MAP ~ MAT + Prec.season + Slope + sand
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VIFModel r²Model
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APPENDIX S3. Species number (Sp.nb) and abundance of perennial vegetation for which 

trait data were available in each of the 130 sites. Data are shown for both Specific Leaf Area 

and maximum plant height. 

 
Specific Leaf Area 

(SLA) Maximum plant height 
Country Latitude (°) Longitude (°) Sp. nb % abundance Sp. nb % abundance 
Argentina -41.81 -69.68 7 92.94 13 99.95 
Argentina -41.24 -70.42 9 91.52 19 99.80 
Argentina -41.11 -70.89 10 86.89 20 98.17 
Argentina -41.00 -71.06 9 98.98 13 100.00 
Argentina -41.03 -70.52 7 77.18 19 100.00 
Argentina -31.49 -67.28 5 76.59 4 64.54 
Argentina -31.72 -67.84 5 98.67 2 74.76 
Australia -34.22 142.55 12 99.12 15 100.00 
Australia -34.20 142.56 16 97.93 21 100.00 
Australia -34.25 142.48 16 99.27 16 100.00 
Australia -34.02 142.51 12 98.17 13 100.00 
Australia -34.11 142.54 12 82.58 15 100.00 
Australia -34.20 142.42 12 98.41 15 100.00 
Australia -33.96 142.46 10 98.44 12 100.00 
Australia -33.97 142.66 11 91.90 14 100.00 
Australia -34.11 142.57 15 95.16 16 100.00 
Australia -33.96 142.46 11 99.29 14 100.00 
Australia -33.93 142.69 13 99.78 17 100.00 
Australia -33.94 142.67 15 99.73 18 100.00 
Australia -32.16 145.89 20 91.69 27 99.59 
Australia -31.56 146.31 31 94.71 38 99.79 
Australia -31.30 146.91 16 96.77 24 99.86 
Australia -31.86 147.71 27 84.46 39 99.92 
Australia -32.12 146.66 17 84.00 19 100.00 

Chile -34.11 -71.35 3 86.23 4 95.46 
Chile -29.75 -71.25 4 76.69 8 95.01 
Chile -29.75 -71.25 5 77.13 14 86.28 
Chile -29.75 -71.25 5 70.81 11 83.54 
Chile -31.20 -71.58 3 71.08 11 98.72 
Chile -31.20 -71.58 3 78.43 10 96.26 
Chile -31.20 -71.59 3 76.95 9 90.99 
China 49.26 119.18 11 88.03 9 85.87 
China 49.49 118.40 14 62.00 9 84.60 
China 49.53 117.27 11 95.39 7 94.50 
China 49.03 116.99 10 81.44 5 68.05 

Ecuador -3.98 -79.43 3 63.48 3 67.62 
Ecuador -4.00 -79.43 3 71.09 5 71.50 
Ecuador -4.00 -79.44 3 63.40 3 67.54 
Ecuador -4.00 -79.50 3 71.65 5 72.62 
Ecuador -4.00 -79.49 4 76.66 5 78.45 
Ecuador -4.00 -79.50 4 61.14 6 61.26 
Ecuador -4.01 -79.49 4 88.31 5 89.71 
Ecuador -4.01 -79.49 4 66.27 4 66.27 

Israel 31.36 34.82 5 100.00 5 100.00 
Israel 31.36 34.82 6 100.00 6 100.00 
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Israel 31.36 34.82 6 100.00 6 100.00 
Israel 31.36 34.82 5 100.00 5 100.00 
Israel 31.36 34.82 6 100.00 6 100.00 
Israel 31.36 34.82 6 100.00 6 100.00 
Israel 31.27 34.65 3 97.10 4 100.00 
Kenya 0.35 36.89 9 69.02 17 78.35 
Mexico 23.21 -101.27 6 76.03 7 80.84 
Mexico 22.35 -102.46 3 78.13 3 78.37 
Mexico 21.77 -101.67 3 74.21 4 98.49 
Mexico 21.77 -101.67 3 74.88 4 76.67 
Morocco 34.16 -2.37 7 92.75 8 93.44 
Morocco 34.43 -2.19 8 99.68 6 99.46 
Morocco 34.47 -3.64 6 99.22 6 100.00 
Morocco 34.44 -3.59 6 97.01 7 98.08 
Morocco 34.31 -2.00 7 85.55 8 85.55 
Morocco 33.87 -3.63 7 98.89 7 99.81 
Morocco 33.93 -3.56 3 91.09 2 91.94 
Morocco 33.07 -2.73 4 72.36 5 82.62 
Morocco 34.63 -3.41 5 80.76 4 72.36 
Morocco 34.63 -3.46 5 80.69 5 80.76 

Spain 39.05 -2.23 10 100.00 12 100.00 
Spain 39.05 -2.23 7 98.36 9 98.47 
Spain 40.33 -3.42 7 99.89 7 99.49 
Spain 40.32 -3.43 9 99.76 9 99.38 
Spain 40.25 -3.26 7 71.85 10 75.26 
Spain 37.80 -1.30 20 94.22 23 94.42 
Spain 37.80 -1.31 16 95.68 21 96.03 
Spain 40.27 -3.51 10 72.52 14 88.98 
Spain 40.27 -3.51 3 60.57 4 80.18 
Spain 40.14 -3.13 4 76.08 5 83.15 
Spain 40.07 -2.90 27 93.90 29 94.81 
Spain 40.07 -2.90 20 96.34 21 95.51 
Spain 40.21 -3.42 14 98.45 15 95.63 
Spain 40.21 -3.42 12 98.70 13 99.60 
Spain 39.99 -3.62 6 96.77 7 96.09 
Spain 39.99 -3.62 3 95.87 5 96.83 
Spain 39.99 -3.62 4 72.84 5 85.89 
Spain 37.82 -1.67 18 98.52 17 98.74 
Spain 37.82 -1.67 13 95.33 17 95.45 
Spain 40.19 -3.50 11 99.22 12 98.93 
Spain 40.04 -3.21 7 92.91 7 94.53 
Spain 39.21 -2.51 10 97.31 9 99.34 
Spain 39.21 -2.51 9 94.97 11 99.44 
Spain 38.59 -1.20 26 93.64 31 98.97 
Spain 38.59 -1.20 15 88.72 23 93.49 
Spain 40.36 -2.88 24 99.69 27 99.53 
Spain 40.36 -2.88 21 96.81 24 99.23 
Spain 38.79 -1.72 15 100.00 15 100.00 
Spain 38.31 -0.76 12 97.23 15 96.66 
Spain 39.04 -2.26 8 99.94 8 99.94 
Spain 39.01 -2.66 8 97.74 9 94.83 
Spain 37.72 -1.84 10 99.65 12 98.62 
Spain 40.16 -2.89 28 97.74 29 98.65 
Spain 37.92 -1.47 8 97.28 10 98.37 
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Spain 37.73 -1.78 7 94.32 9 94.67 
Spain 38.31 -0.96 17 98.80 17 99.10 
Spain 40.37 -3.39 10 99.97 10 99.59 
Spain 37.59 -1.23 6 98.79 8 99.47 
Spain 39.54 -1.80 18 99.36 20 93.77 
Spain 38.07 -1.53 13 99.44 12 97.65 
Spain 39.13 -2.35 6 99.98 6 99.98 
Spain 38.77 -1.02 7 95.45 9 96.71 
Spain 39.00 -2.84 16 98.40 20 99.99 
Spain 39.05 -2.57 7 97.85 11 98.16 
Spain 40.02 -2.88 18 86.58 20 95.45 
Spain 40.26 -3.49 9 100.00 11 99.51 
Spain 37.63 -2.04 9 99.95 10 99.43 
Spain 40.11 -3.46 12 99.90 15 99.47 
Spain 39.86 -2.54 12 63.25 18 85.60 
Spain 37.89 -1.70 14 84.85 18 84.12 

Tunisia 35.17 8.67 7 96.80 7 97.05 
Tunisia 33.52 9.97 6 88.72 7 97.36 
Tunisia 35.16 9.12 6 96.79 6 97.03 
Tunisia 34.96 9.72 4 100.00 4 100.00 
Tunisia 32.98 10.50 4 86.08 5 95.19 
Tunisia 34.69 10.51 8 81.32 10 82.27 
Tunisia 33.76 10.03 8 86.83 9 78.96 
Tunisia 35.63 9.69 5 74.35 7 82.26 
Tunisia 35.86 9.77 6 95.39 6 71.89 
USA 37.85 -111.31 6 76.10 7 81.89 
USA 37.51 -112.02 6 86.90 7 98.10 
USA 33.75 -115.81 3 78.20 3 83.80 

Venezuela 8.43 -65.40 5 89.87 8 99.36 
Venezuela 8.43 -65.41 5 95.16 10 100.00 
Venezuela 8.32 -65.19 3 86.38 7 100.00 

Mean   
9.4 ± 
(sd) 
6.04 

89.48 ± (sd) 
11.29 

11.45 ± 
(sd) 7.32 

92.77 ± (sd) 
9.89 
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APPENDIX S4. Results of analyses using community abundances above 80% (n = 95 

communities. a) Best-fitting regression models in absence of interactions among predictors. 

Models are presented for each moment and each trait separately. The best models are selected 

according to AICc values. Shaded cells indicate variables that were selected in a particular 

model. Latitude and longitude were introduced to avoid spatial auto-correlations. Slope 

directions are indicated when significant. b) Proportion of variance explained for each group 

of predictors (i.e. climate and topo-edaphic variables) and two-way interactions (a. and b). and 

for each group of predictors and their interactions separately (c and d). Grey portions 

represent the unexplained variances. The proportions were calculated using a variance 

decomposition analysis based on the best model selected for each trait and each moment. 

LL: latitude and longitude. MAT: mean annual temperature. MAP: mean annual precipitation. 

PS: precipitation seasonality, SL: slope angle, SC: sand content.  
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APPENDIX S5. Boxplots representing the ranges of data for community-weighted mean, 

variance, skewness and kurtosis for both specific leaf area (SLA) and maximum plant height. 

The grey boxes represent the envelope of the 50% central region 
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APPENDIX S6. Best models selected from the multiple regressions including geographical, 

climatic and edaphic variables as predictors (Table 1) and with interactions among predictors 

(Table 2). Models are presented for each moment separately for a) specific leaf area and b) 

height. 

P values of each best multiple regression model are indicated as follows: ns = P > 0.05. * =. P 

< 0.05. ** = P < 0.01. *** = P < 0.001). 

a) Specific Leaf Area (SLA) 
 
Mean 
 
Coefficients: 
                   Estimate Std. Error t value Pr(>|t|)     
(Intercept)         4.12110    0.04091 100.734  < 2e-16 *** 
Latitude           -0.19960    0.04637  -4.305 3.36e-05 *** 
Longitude          -0.29176    0.04420  -6.601 1.07e-09 *** 
mean_temp          -0.23849    0.04434  -5.378 3.60e-07 *** 
mean_precipitation  0.12558    0.04637   2.708  0.00772 **  
sand               -0.11461    0.04542  -2.524  0.01288 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 0.4665 on 124 degrees of freedom 
Multiple R-squared: 0.4197. Adjusted R-squared: 0.3963  
F-statistic: 17.94 on 5 and 124 DF.  p-value: 2.354e-13  
 
Mean + interactions  
 
Coefficients: 
                               Estimate Std. Error t value Pr(>|t|)     
(Intercept)                     4.10656    0.03550 115.665  < 2e-16 *** 
Latitude                       -0.05148    0.05004  -1.029  0.30572     
Longitude                      -0.51606    0.06409  -8.052 7.63e-13 *** 
mean_temp                       0.22597    0.09042   2.499  0.01384 *   
mean_precipitation              0.48790    0.08786   5.553 1.78e-07 *** 
prec_season                    -0.28308    0.06637  -4.265 4.07e-05 *** 
slope                          -0.04601    0.04333  -1.062  0.29052     
sand                            0.00305    0.04905   0.062  0.95052     
mean_temp:prec_season          -0.30009    0.05387  -5.570 1.65e-07 *** 
mean_temp:slope                 0.08965    0.07880   1.138  0.25753     
mean_precipitation:prec_season -0.41290    0.09583  -4.309 3.44e-05 *** 
mean_precipitation:sand        -0.10807    0.03072  -3.518  0.00062 *** 
prec_season:slope               0.11759    0.06453   1.822  0.07098 .   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 0.3826 on 117 degrees of freedom 
Multiple R-squared: 0.6317. Adjusted R-squared: 0.594  
F-statistic: 16.72 on 12 and 117 DF.  p-value: < 2.2e-16  

 
Variance 
 
Coefficients: 
                   Estimate Std. Error t value Pr(>|t|)     
(Intercept)          6.4252     0.1006  63.879  < 2e-16 *** 
Latitude            -0.2657     0.1068  -2.488  0.01415 *   
Longitude           -0.3195     0.1192  -2.681  0.00834 **  
mean_temp           -0.5618     0.1101  -5.101 1.23e-06 *** 
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mean_precipitation   0.3202     0.1111   2.883  0.00465 **  
prec_season         -0.5362     0.1131  -4.743 5.70e-06 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 1.147 on 124 degrees of freedom 
Multiple R-squared: 0.2765. Adjusted R-squared: 0.2473  
F-statistic: 9.476 on 5 and 124 DF.  p-value: 1.131e-07  
 
Variance + interactions  
 
Coefficients: 
                               Estimate Std. Error t value Pr(>|t|)     
(Intercept)                     6.40009    0.09812  65.226  < 2e-16 *** 
Latitude                       -0.16409    0.10793  -1.520 0.131083     
Longitude                      -0.92322    0.15883  -5.813 5.26e-08 *** 
mean_temp                       0.45439    0.20821   2.182 0.031049 *   
mean_precipitation              0.72447    0.20473   3.539 0.000575 *** 
prec_season                    -0.98249    0.15751  -6.238 7.03e-09 *** 
slope                          -0.12570    0.11105  -1.132 0.259963     
mean_temp:mean_precipitation   -0.18363    0.09010  -2.038 0.043760 *   
mean_temp:prec_season          -0.77997    0.14247  -5.475 2.48e-07 *** 
mean_precipitation:prec_season -0.34769    0.20356  -1.708 0.090235 .   
mean_precipitation:slope        0.20269    0.12397   1.635 0.104700     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 1.015 on 119 degrees of freedom 
Multiple R-squared: 0.4557. Adjusted R-squared:  0.41  
F-statistic: 9.964 on 10 and 119 DF.  p-value: 5.501e-12  

 
Skewness 
 
Coefficients: 
                   Estimate Std. Error t value Pr(>|t|)     
(Intercept)         2.78190    0.01619 171.799  < 2e-16 *** 
Latitude            0.01688    0.01694   0.996  0.32096     
Longitude           0.05538    0.01732   3.197  0.00176 **  
mean_temp           0.02871    0.01753   1.638  0.10390     
mean_precipitation -0.05958    0.01788  -3.333  0.00113 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 0.1846 on 125 degrees of freedom 
Multiple R-squared: 0.1914. Adjusted R-squared: 0.1655  
F-statistic: 7.398 on 4 and 125 DF.  p-value: 2.217e-05  
 
Skewness+ interactions  
 
Coefficients: 
                                Estimate Std. Error t value Pr(>|t|)     
(Intercept)                     2.800172   0.018195 153.894  < 2e-16 *** 
Latitude                       -0.020416   0.022741  -0.898  0.37116     
Longitude                       0.130593   0.029579   4.415 2.28e-05 *** 
mean_temp                      -0.064449   0.035615  -1.810  0.07295 .   
mean_precipitation             -0.135138   0.041304  -3.272  0.00141 **  
prec_season                     0.061300   0.028120   2.180  0.03128 *   
slope                           0.034268   0.020595   1.664  0.09884 .   
sand                            0.007016   0.022150   0.317  0.75199     
mean_temp:prec_season           0.079503   0.025505   3.117  0.00230 **  
mean_precipitation:prec_season  0.104395   0.047522   2.197  0.03002 *   
mean_precipitation:slope       -0.033637   0.022842  -1.473  0.14357     
prec_season:slope              -0.036113   0.032406  -1.114  0.26742     
prec_season:sand                0.048707   0.023901   2.038  0.04384 *   
slope:sand                      0.043777   0.025423   1.722  0.08774 .   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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Residual standard error: 0.1729 on 116 degrees of freedom 
Multiple R-squared: 0.342. Adjusted R-squared: 0.2683  
F-statistic: 4.639 on 13 and 116 DF.  p-value: 2.21e-06  
 
Kurtosis 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   1.8873     0.1111  16.991   <2e-16 *** 
Latitude     -0.1645     0.1260  -1.305   0.1944     
Longitude     0.2749     0.1271   2.163   0.0325 *   
mean_temp     0.2854     0.1170   2.439   0.0161 *   
prec_season   0.2260     0.1252   1.805   0.0736 .   
sand         -0.2585     0.1205  -2.145   0.0339 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 1.266 on 124 degrees of freedom 
Multiple R-squared: 0.1281. Adjusted R-squared: 0.09293  
F-statistic: 3.643 on 5 and 124 DF.  p-value: 0.004137  
 
Kurtosis + interactions  
 
Coefficients: 
                   Estimate Std. Error t value Pr(>|t|)     
(Intercept)        1.936173   0.107946  17.937  < 2e-16 *** 
Latitude          -0.231775   0.137831  -1.682 0.095228 .   
Longitude          0.521882   0.140738   3.708 0.000316 *** 
mean_temp          0.622793   0.155102   4.015 0.000103 *** 
prec_season        0.074760   0.127431   0.587 0.558520     
slope             -0.003104   0.133272  -0.023 0.981459     
sand              -0.231873   0.128036  -1.811 0.072622 .   
mean_temp:slope    0.605646   0.223593   2.709 0.007734 **  
prec_season:slope -0.623508   0.187514  -3.325 0.001170 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 1.215 on 121 degrees of freedom 
Multiple R-squared: 0.2167. Adjusted R-squared: 0.1649  
F-statistic: 4.185 on 8 and 121 DF.  p-value: 0.0001894  

 

B) Height 
 
Mean 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  4.63717    0.03943 117.606  < 2e-16 *** 
Latitude    -0.51669    0.04585 -11.268  < 2e-16 *** 
Longitude    0.23301    0.04595   5.071 1.41e-06 *** 
mean_temp    0.09862    0.04129   2.388   0.0184 *   
prec_season -0.35912    0.04437  -8.094 4.54e-13 *** 
slope        0.10326    0.04533   2.278   0.0244 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 0.4496 on 124 degrees of freedom 
Multiple R-squared: 0.7297. Adjusted R-squared: 0.7188  
F-statistic: 66.94 on 5 and 124 DF.  p-value: < 2.2e-16  
 
Mean + interactions  
 
Coefficients: 
                             Estimate Std. Error t value Pr(>|t|)     
(Intercept)                   4.52395    0.03533 128.042  < 2e-16 *** 
Latitude                     -0.46556    0.04678  -9.953  < 2e-16 *** 
Longitude                     0.12123    0.06113   1.983 0.049744 *   
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mean_temp                     0.11990    0.08069   1.486 0.140049     
mean_precipitation           -0.05866    0.05720  -1.026 0.307249     
prec_season                  -0.40401    0.04603  -8.778 1.92e-14 *** 
slope                         0.13235    0.04079   3.245 0.001541 **  
sand                         -0.04307    0.04579  -0.941 0.348932     
mean_temp:mean_precipitation  0.10172    0.03920   2.595 0.010701 *   
mean_temp:prec_season        -0.12637    0.05207  -2.427 0.016792 *   
mean_temp:slope              -0.14775    0.07355  -2.009 0.046907 *   
mean_temp:sand                0.13374    0.04297   3.112 0.002348 **  
mean_precipitation:slope      0.10158    0.06357   1.598 0.112810     
mean_precipitation:sand      -0.18136    0.05183  -3.499 0.000666 *** 
prec_season:slope             0.17422    0.06172   2.823 0.005619 **  
prec_season:sand              0.06777    0.04678   1.449 0.150197     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 0.3539 on 114 degrees of freedom 
Multiple R-squared: 0.846. Adjusted R-squared: 0.8258  
F-statistic: 41.76 on 15 and 114 DF.  p-value: < 2.2e-16  

 
Variance 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   7.5762     0.1361  55.652  < 2e-16 *** 
Latitude     -1.0569     0.1444  -7.320 2.65e-11 *** 
Longitude     0.6818     0.1557   4.380 2.48e-05 *** 
mean_temp     0.2267     0.1426   1.590    0.114     
prec_season  -1.0158     0.1530  -6.641 8.56e-10 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 1.552 on 125 degrees of freedom 
Multiple R-squared: 0.5994. Adjusted R-squared: 0.5866  
F-statistic: 46.76 on 4 and 125 DF.  p-value: < 2.2e-16  
 
Variance + interactions  
 
Coefficients: 
                               Estimate Std. Error t value Pr(>|t|)     
(Intercept)                     7.43040    0.14409  51.569  < 2e-16 *** 
Latitude                       -0.83856    0.18904  -4.436 2.09e-05 *** 
Longitude                       0.50633    0.17755   2.852  0.00514 **  
mean_temp                      -0.01185    0.19932  -0.059  0.95268     
mean_precipitation              0.75901    0.35186   2.157  0.03304 *   
prec_season                    -1.30106    0.21038  -6.184 9.43e-09 *** 
slope                           0.10508    0.16356   0.642  0.52185     
sand                            0.18770    0.19131   0.981  0.32854     
mean_temp:mean_precipitation    0.29248    0.14754   1.982  0.04978 *   
mean_temp:slope                -0.61931    0.29276  -2.115  0.03651 *   
mean_precipitation:prec_season -0.94856    0.34511  -2.749  0.00694 **  
mean_precipitation:sand        -0.31961    0.12407  -2.576  0.01124 *   
prec_season:slope               0.72310    0.24419   2.961  0.00371 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 1.448 on 117 degrees of freedom 
Multiple R-squared: 0.6736. Adjusted R-squared: 0.6401  
F-statistic: 20.12 on 12 and 117 DF.  p-value: < 2.2e-16  

 
Skewness 
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)        3.8123088  0.0068842 553.777  < 2e-16 *** 
Latitude           0.0060895  0.0076358   0.797   0.4267     
Longitude          0.0004769  0.0074329   0.064   0.9489     
mean_precipitation 0.0317211  0.0074923   4.234 4.41e-05 *** 
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sand               0.0131745  0.0076314   1.726   0.0868 .   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 0.07849 on 125 degrees of freedom 
Multiple R-squared: 0.1403. Adjusted R-squared: 0.1128  
F-statistic: 5.102 on 4 and 125 DF.  p-value: 0.000768  
 
Skewness + interactions 
 
Coefficients: 
                                Estimate Std. Error t value Pr(>|t|)     
(Intercept)                     3.803854   0.007449 510.658  < 2e-16 *** 
Latitude                        0.022997   0.009935   2.315 0.022421 *   
Longitude                       0.024273   0.012168   1.995 0.048455 *   
mean_temp                      -0.052191   0.017888  -2.918 0.004249 **  
mean_precipitation              0.049405   0.018612   2.654 0.009079 **  
prec_season                     0.012271   0.012507   0.981 0.328598     
slope                          -0.020265   0.008376  -2.420 0.017120 *   
sand                            0.009703   0.009521   1.019 0.310309     
mean_temp:mean_precipitation    0.021378   0.007940   2.692 0.008163 **  
mean_temp:prec_season           0.040736   0.010857   3.752 0.000278 *** 
mean_temp:slope                -0.027401   0.014976  -1.830 0.069924 .   
mean_precipitation:prec_season -0.033039   0.019377  -1.705 0.090906 .   
mean_precipitation:slope       -0.034237   0.013392  -2.557 0.011884 *   
mean_precipitation:sand        -0.026067   0.009597  -2.716 0.007634 **  
prec_season:slope               0.024962   0.012810   1.949 0.053806 .   
slope:sand                     -0.016495   0.010879  -1.516 0.132241     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 0.06998 on 114 degrees of freedom 
Multiple R-squared: 0.3768. Adjusted R-squared: 0.2948  

 
Kurtosis 
 
Coefficients: 
                   Estimate Std. Error t value Pr(>|t|)     
(Intercept)          2.0452     0.1022  20.012  < 2e-16 *** 
Latitude             0.3887     0.1069   3.635 0.000405 *** 
Longitude           -0.2122     0.1093  -1.942 0.054432 .   
mean_temp            0.2376     0.1106   2.148 0.033655 *   
mean_precipitation   0.4508     0.1128   3.996 0.000109 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 1.165 on 125 degrees of freedom 
Multiple R-squared: 0.3004. Adjusted R-squared: 0.278  
F-statistic: 13.42 on 4 and 125 DF.  p-value: 3.962e-09  
 
Kurtosis + interactions 
 
Coefficients: 
                             Estimate Std. Error t value Pr(>|t|)     
(Intercept)                   2.00532    0.10966  18.286  < 2e-16 *** 
Latitude                      0.37655    0.13528   2.783  0.00627 **  
Longitude                     0.19334    0.18138   1.066  0.28865     
mean_temp                    -0.42288    0.23284  -1.816  0.07190 .   
mean_precipitation            0.26573    0.17372   1.530  0.12879     
prec_season                   0.25221    0.13617   1.852  0.06652 .   
slope                        -0.01365    0.12354  -0.110  0.91220     
sand                         -0.06738    0.13876  -0.486  0.62816     
mean_temp:mean_precipitation  0.31956    0.12267   2.605  0.01038 *   
mean_temp:prec_season         0.45421    0.15848   2.866  0.00493 **  
mean_temp:sand                0.21389    0.12607   1.697  0.09245 .   
mean_precipitation:slope     -0.49243    0.20046  -2.456  0.01550 *   
mean_precipitation:sand      -0.41305    0.16228  -2.545  0.01222 *   
--- 
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Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 1.118 on 117 degrees of freedom 
Multiple R-squared: 0.3968. Adjusted R-squared: 0.3349  
F-statistic: 6.413 on 12 and 117 DF.  p-value: 1.184e-08 
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