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The relationship between air pollution and public health has gained increasing attention in

the past decade. Many time-series analyses have been conducted worldwide, including in

all the major cities of the United States, Europe, and Asia. However, the most current time-

series analysis study of Ontario, Canada dates back to 2012 and includes only a single city,

calling the need of a more recent study at a provincial scale. As a result, we propose to

conduct time-series analyses of major Ontario cities and then use a hierarchical model to

pool the results and construct a dose-response relationship and generate a predictive

regression.
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I. INTRODUCTION

The deleterious effects of high air pollution on public
health has been suspected for more than 50 years[1].
In the mid-twentieth century, striking increases in mor-
tality followed a series of severe air pollution incidents
in the US and Europe[2, 3]. By the early 1990s, time
series studies[4–7] of single locations have demonstrated
that even lower air pollution levels increase the rates
of mortality and morbidity throughout the developed
countries.
Air pollution is due to a heterogeneous mixture of
gaseous and particulate components. The main gaseous
pollutants are ozone, carbon monoxide, nitrogen oxides,
sulfur dioxide, and particulate matter(PM).
Ozone appears naturally in the Earths upper atmosphere
and shields organisms on earth from the suns harmful
ultraviolet rays[8]. However, near the troposphere
and lower atmosphere, ozone irritates the respiratory
system, reduces lung function, damages the cells that
line the lungs, aggravates asthma and other chronic lung
diseases9.
Fine particulate matter, also known as PM 2.5, are
particles only detectable using an electron microscope.
Major sources of PM2.5 include power plants, wood
burning, forest fires, agricultural burning, industrial pro-
cesses, and motor vehicles[9]. When exposed to particle
pollution, patients of heart diseases may experience pain,
palpitations, shortness of breath, and fatigue. PM2.5
has been associated with cardiac arrhythmias and heart
attacks[10]. Particle pollution also can increase the
susceptibility to respiratory infections and can aggravate
existing respiratory illnesses for example, asthma and
chronic bronchitis[11].
Carbon monoxide is an odorless, colorless gas during
incomplete combustion of carbon. According to the
United States Environmental Protection Agency, motor
vehicle exhaust accounts for 75% of carbon monoxide
emissions nationwide[12]. Carbon monoxide enters the
bloodstream through the lungs and binds to hemoglobin,
the protein molecules that carries oxygen from the
lungs to the bodys tissues[13]. Cardiovascular disease
patients, such as those with coronary artery disease, are

most at risk. They may experience chest pain and other
cardiovascular symptoms if they are exposed to high
concentrations of carbon monoxide[14].
Sulphur dioxide, a colorless, reactive gas, is emitted
when sulphur containing fuels such as coal and oil are
burned. Major sources of emissions include refineries,
power plants, and industrial boilers. At low concentra-
tions, very brief exposure causes bronchoconstriction
in asthma patients accompanied by wheezing, chest
tightness, and shortness of breath. Medication is
often required to clear the symptoms. At high levels,
even healthy individuals will experience similar ef-
fects. Long-term exposure to sulfur dioxide may lead to
respiratory symptoms and illness, and aggravate asthma.

Nitrogen oxides (NOx) are emitted as NO but then
rapidly reacts with ozone or radicals in the atmosphere
to form NO2. NOx gases react with precipitation,
oxygen, and other atmospheric substances to form smog
and acid rain as well as being central to the formation
of tropospheric ozone. The major anthropogenic source
of nitrogen oxides is the combustion of fossil fuels from
the stationary sources (power generation, heating, etc.)
and motor vehicles. It can interfere with the bloods
ability to carry oxygen through the body, causing
headache, fatigue, and dizziness16. Exposure to high
concentrations of nitrogen oxides can cause collapse,
rapid burning and swelling of tissues in the throat and
upper respiratory tract, and fluid build-up in the lungs,
and at times even death[15].

There is abundant published work that shows air
pollution episodes acutely increases the mortality of
exposed populations, as found in [fill in city names and
citation]. Theses effects have been related to all five of
the main pollutants, but tend to focus on particulate
matter, sulfur dioxide, and ozone. On the basis of
known effects on community health, an association of
exposure with mortality can be expected. However, the
pathogenesis of air pollutants diseases is very different
from those of acute toxic materials.

Existing epidemiologic studies of air pollution in
Ontario and Canadian cities with illnesses are outdated

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1904v1 | CC-BY 4.0 Open Access | rec: 29 Mar 2016, publ: 29 Mar 2016



2

and incomplete: the most recent study were published in
2012 and most studies consists of a single city or location.

Time-series analysis needs to be updated consis-
tently, and offers a model to extract meaningful forecasts
of future trends. Such trends are vital to understand
for fields such as public health, occupational health,
environmental chemistry, and medicine. Indeed, there
is a need for a report for the effects of environmental
pollutant levels on mortality for Canada. Dominici et
al. have described a model to pool time-series analysis
data from different regions to construct a national dose-
response relationship between pollutant concentrations
and mortality[16]. We will conduct our study following
the described method.

II. METHODS

Time series studies aim to associate time-varying
pollution exposure with time-varying event counts [17].
These studies assume the health effects are small and
disease outcomes are rare, and thus the bias from
ignoring data aggregation across individuals should be
small[18]. As a sample calculation, we used a generalized
linear model (GLM) with natural cubic splines). For
sample calculations, please refer to the Sample Calcula-
tions section.
The use of multicity studies is a major milestone in
time-series research on air pollution. Single-city studies
are limited in its usefulness to other areas because the
statistical approaches used to analyze raw data vary
with each study and characteristics of both the city
and its citizens varies dramatically. Hierarchical model
in which the estimates are generated by city-specific
models can be combined in a second stage to produce a
regional or national effect estimate[19].

We will conduct analyze data of all 39 Ontario major
cities with data available on the Ontario Ministry of
Environment and Climate Change from 2000 2014 and
associate pollutant levels with daily mortality using a
GLM model with natural cubic splines based on the
published method described by Dominici et al[16].

We will first use a two-stage log-linear regression
model[20–23]. In the first stage, a separate log-linear xt
regression of the daily mortality rate on the air-pollution
measure and other confounders will be fitted to obtain
estimates of the relative rate of mortality associated
with the pollution variable along with its statistical
uncertainty. The outcome variable, Yct

r, is the total
number of mortality on day t, in city c, within region
and the exposure variable. Cr, R, and T describes the

number of cities within each region r, the number of
regions, and the number of days.

Yct
r|µct

t = Poisson(µct
t), (1)

c = 1, ..., Cr, r = 1, ..., R, t = 1, ...T, (2)

logµct
t = βc

rPMct−1 + ηcXt (3)

µct
r = E[Yvt

r] (4)

Xt is the itth row of the design matrix for the con-
founding factors (e.g. long-term trends and seasonality
in the mortality time series, weather and humidity vari-
ables, etc.); ηcis the corresponding vector of coefficients.
The justification for selecting the confounding variables
are listed below. These are all potential confounding fac-
tors in the calculation of the city-specific relative rates
associated with each air pollutant levels[20, 24–27].

During the first-stage of analysis, we will also analyze
the effect of the day of pollutant data collection (the cur-
rent day, the day before, or two days before). We will
determine the optimal lag interval to use on the case.

In the second stage, the heterogeneity of the city-
specific effects within regions will be described assuming
that

βr|α0
r, α,Zr, σr = Ncr(αr

0j
r + Zrα, σ2I) (5)

r = 1, ..., R, (6)

where βr=[β1
r,. . .,β(C

r)
r
] is the collection of true

PM10 coefficients for the Cr cities in region r,α0
r, is the

regional air pollution effect when all the covariates are
centered at their mean values, jr is a vector of length
Cr having all elements equal to 1, and α=[α1,. . .,αp] is
the vector of the second-stage regression coefficients (i.e.,
αj measures the change in βc

r per unit of change in the
city-specific covariate Zr

cj), and σ2 measures the variance
of the βc

rs within each region. The choice of these pre-
dictors have been discussed before30. The second-stage
covariates are included in the design matrix Z, and the
rationale for their inclusion are summarized in the fol-
lowing table.

In the third stage, the estimates of the relative rate
will be combined for all cities (after adjustment for the
various levels of uncertainty) to yield an overall pooled
estimate and to assess whether area-specific characteris-
tics modified the estimated effect of air pollution on the
relative rate of death. Assume

α0
r|α0, τ

2 = N(α0, τ
2) (7)

α0 is the overall relative rate of mortality for PM10,
and τ2 measures the variance of α0

r across regions.
The vector ηc is multi-dimensional, and a full Bayesian

approach to simulate using joint posterior distributions of
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βc
r and ηc and then integrating to obtain the marginal

posterior distributions of the βc
r is laborious. To sim-

ply calculations and save computational times, Dominici
and colleagues have identified a method to replace the
first stage of the model with the MLE-based normal ap-
proximation to the likelihood function4,18.

βr|Nc
r(βr, V r) (8)

To construct regional dose-response curves of each
pollutant,βc

r PMct−1 in (1) could be replaced with
S(PMct−1,knots) in which S is a natural cubic spline with
an unknown locations v=(v1, . . ., vk) and with bound-
ary knots fixed at specific values for each pollutant.

logµct
t = S(PMct−1, knots) + ηcXt (9)

To primitively understand the change in the number
of deaths per pollutant, a relationship between pollutant
levels and time (months) was taken and bilinearly inter-
polated. A three-dimensional plot was then generated
with respect to the number of deaths. The data used the
regression weight function for data points contained in a
span of 25, this prevents the data from being resistant to
outliers. Thus, the plot was fitted with a two-dimensional
curve and smoothed as a locally weighted scatter plot
with MATLAB further described below.

Local regression computes the regression weights, wi,
given by the tricube function:

wi =

(
1− |x− xi|

d(x)

3)3

(10)

Where x is the predictor value, xi are the nearest neigh-
bours of x as defined by the span, and d(x) is the distance
along the abscissa from x to the most distant predictor
value within the span. A weighted linear least squares
regression is done using the first-degree polynomial. The
smoothed value is given by the weighted regression.

III. RESULTS AND DISCUSSION

We have conducted a monthly time-series analysis us-
ing publicly available data on Ontario Ministry of the En-
vironment and Climate change and Mortality Database,
as well as primitive 3D regression with smoothing. All
calculations were performed on STATA13 and MATLAB.

IV. SAMPLE TIME SERIES

We used a flexible cubic spline functions with 3 equally
spaced reference points. Then the data was fitted in the

model and the coefficients of the basis terms are esti-
mated by maximum likelihood such that the linear com-
bination models the seasonal patterns in the outcome
data as closely as possible.

The 2011 concentration data for CO, SO2, and NOx

are missing. As a result, we only conducted analysis from
2003 2010 to study the relationship between mortality
and pollutant concentration and 2003-2011 for PM2.5
and ozone. We also adjusted for the effects of tempera-
ture using publicly-available historical temperature data.

Our analysis found positive results for four pollutants
(CO, SO2, PM2.5, and NOx) and one negative result
(ozone). The effects of per unit(1 ppm) increase of CO,
the chances of mortality increases by almost 20%.

A. Locally Smoothed Regression of Mortality
versus Pollutant and Time

Regression was done for three pollutants: CO, SO2,
NOx. A contour plot is used to show the smoothed re-
gression of the data, whereas the local mean is shown as
a 2D surface based on the span. [28] The relationship be-
tween the number of deaths and the interpolants of the
pollutant and time are taken. From this, there are areas
of high local density at time greater than 80, and high rel-
ative pollutant concentrations. The contour representing
death favors higher time, pollutant concentrations such
that the regression suggests there will be increased num-
ber of deaths over time and pollutant increases. More
analysis needs to be done by fitting Gaussian distribu-
tions for a more robust analysis of the trend.
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TABLE I. Table caption

Predictors Reason
Indicator variables for the three age groups Allow for different baseline mortality rates within each age group
Indicator variables for the day of the week Allow for different mortality rates within each day of the week
Smooth functions of time with 7 degrees of freedom (df)/year Adjust for long-term trends and seasonality
Smooth functions of temperature with 6 df Control for the known effects of temperature
Smooth functions of dewpoint with 3 df Control for the known effects of humidity
Separate smooth function of time (2 df/yr) for each age group contrast Separately adjust for seasonality within each age group

FIG. 1. Plots of mortality over time to pollutant levels over time. Due to seasonal changes, seasonality and long-term trends
need to controlled using spline model

FIG. 2. Contour plot of the smoothed regression of CO, SO2, and NOx data. The local means is shown as 2D surface based
on the psan. The regression suggests there will be increased number of deaths over time and pollutant increases. Next step of
the analysis is fitting Gaussian distribution for a more robust analysis of the trend.
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FIG. 3. Cubic spline model with three knots for both studies from 2003 - 2010 and 2003 - 2011. The tables shows the relatiave
increase risk of mortality per unit increase of each pollutant, along with their 95% confidence interval. Our analysis found
positive results for four pollutants (CO, SO2, PM2.5, and NOx) and one negative result (ozone). An increase in 10 parts per
billion (ppb) of nitric oxides will leads to a 11% increase in the risk of mortality. 1 ppm increase is associated with 19.8%
increase of mortailty relative risks. For sulpfur dioxide, a unit increase (1 ppb) is associated with 10% increase in the rate or
mortality, while 10 ppb increase of ozone is associated with a 2% decrease in mortality risks. A 10 unit(mg/cubic cm) increase
in PM 2.5 levels is associated with a 12% increase in the risks of mortality. However, due to that only monthly mortality data
were available to us, the sample size is small and as a result, the study has fairly large confidence intervals. Another limitation
is that we lacked access to socioeocnomic data of the population to fruther control for the influences of confounding variables.
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