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Abstract 
 
Partial least squares (PLS) have gained wide applications especially in chemometrics, 
metabolomics/metabonomics as well as bioinformatics. To our knowledge, an integrated 
PLS library that include not only basic PLS modeling algorithms but also advanced 
and/or recently developed methods on model assessment, outlier detection and variable 
selection is in lack. Here we present libPLS which provides an integrated platform for 
developing PLS regression and/or discriminant analysis (PLS-DA) models. This library is 
written in MATLAB and freely available at www.libpls.net. 
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Introduction 
 
    Partial least squares (PLS) are the cornerstone method in chemometrics [1-3] and 
have been widely used in other fields such as metabolomics/metabonomics [4,5], 
bioinformatics [6]. Software for developing PLS regression or discriminant analysis (PLS-
DA) models are available, such as SIMCA-P, the PLS toolbox and the PLS R-package. 
Building a PLS model usually involves several steps such data pretreatment, cross 
validation, model development and validation. If a model performs poor, outlier detection 
and variable selection might help a lot. Outlier detection/removal can help improve the 
quality of data [7-12]. With variable selection, we are able to single out a sub-set of 
informative variables which may lessen overfitting, greatly improve a modelʼs 
performance and allows for an easy-to-explain model especially in the situation of “large 
p, small n” setting where a large number of irrelevant or interfering variables may exist 
[13-23]. To our knowledge, many developed especially recently developed methods for 
outlier detection and variable selection scatter in different individually owned in-house 
codes or software. And there is a lack of software that integrates data pretreatment, 
outlier detection, variable selection, model assessment and PLS modeling together so as 
to facilitate the modeling procedure.  
 
   In the present work, we presented libPLS which provides an integrated environment for 
PLS regression [3] or discriminant analysis [24,25]. Except for PLS algorithms, it 
contains a set of useful modeling-related methods including data pretreatment, the 
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Kennard-Stone method for sample partition [26], the Monte Carlo method for outlier 
detection [12], uninformative variable elimination (UVE) [15,21,27] and Competitive 
Adaptive Reweighted Sampling (CARS) for variable selection [18], and Monte Carlo 
cross validation [28] for model assessment [29] and so on. Specifically, this library is 
featured in a set of model population analysis (MPA)-based methods [16,19,20,30], 
which are a new type of data analysis algorithms developed based on the statistical 
analysis of user-interested outputs of a large number of sub-models built with the help of 
resampling. MPA approaches are expected to give more reliable results than those 
methods based on a single model [30]. With this library, it is expected that users can 
develop their PLS or PLS-DA models easily. 
 
  The algorithms provided in this library are not aimed to be comprehensive, but are 
expected to be helpful. We provided detailed document on how to build and assess PLS 
models at www.libpls.net. And we will update this library when necessary. 
 
Methods 
 
   There are different algorithms for implementing PLS, including the SIMPLS [2], the 
Nonlinear Iterative Partial Least Squares (NIPALS) algorithm [31] and the eigenvector 
decomposition based method. The NIPALS algorithm is used in this library.  
   In the current version (ver1.6) of libPLS, we implemented a series of algorithms 
covering different aspects of PLS modeling, which are categorized and listed in Table 1. 
We will not detail each method here but with references provided. To guide the use of  
these methods, reader are recommended to refer to the two demo scripts named 
demo_PLS_Regression.m and demo_PLS_Discriminant_Analysis.m. Simply by running 
these domos, you will know how to run a PLS modeling procedure. Alternatively, the 
online documentation would be also helpful. 
 
Table 1. Implemented algorithms in the current version (ver1.6) of libPLS. 
Category Algorithms 
Model building Partial least squares (PLS) 

Linear discriminant analysis (LDA) 
Data pretreatment Mean-centering 

autoscaling 
Sample partition Kennard-Stone algorithm [26] 
Model assessment leave-one-out cross validation(LOOCV) 

K-fold cross validation 
double cross validation (DCV) 
Monte Carlo cross validation (MCCV) [28] 
repeated double cross validation (RDCV) [32] 
Using an independent test set 

Outlier detection The Monte Carlo method [12] 
Variable selection Variable importance in projection(VIP) 

Target Projection (TP) [33,34] 
Uninformative Variable Elimination (UVE, also MC-UVE) [15,21,27] 
Competitive Adaptive Reweighted Sampling (CARS-PLS, CARS-PLSDA) [18] 
Random Frog (coupled with PLS or PLS-DA) [35] 
Subwindow Permutation Analysis (coupled with PLS-DA) [19] 
Moving Window Partial Least Squares(MWPLS) [22] 
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Conclusions 
 
   We have developed the libPLS library which is aimed to facilitate the procedure of 
building PLS or PLS-DA models as well as performing related data analysis such as 
outlier detection and variable selection. It contains a set of algorithms covering different 
aspects of PLS modeling. This library is open source and freely available. 
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