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Incorporation of an invasive plant into a native insect

herbivore food web
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Duijn, Marjolein M Meulblok, Nils Sosef, Robin van de Ven, Ralf Werring, Kevin K Beentjes, Kim Meijer, Rutger A Vos, Klaas

Vrieling, Barbara Gravendeel, Young Choi, Robert Verpoorte, Chris Smit, Leo W Beukeboom

The integration of invasive species into native food webs represent multifarious dynamics

of ecological and evolutionary processes. We document incorporation of Prunus serotina

(black cherry) into native insect food webs. We find that P. serotina harbours a herbivore

community less dense but more diverse than its native relative, P. padus (bird cherry),

with similar proportions of specialists and generalists. While herbivory on P. padus

remained stable over the past century, that on P. serotina gradually doubled. We show

that P. serotina may have evolved changes in investment in cyanogenic glycosides

compared with its native range. In the leaf beetle Gonioctena quinquepunctata, recently

shifted from native Sorbus aucuparia to P. serotina, we find divergent host preferences on

Sorbus- versus Prunus-derived populations, and weak host-specific differentiation among

380 individuals genotyped for 119 SNP loci. We conclude that evolutionary processes may

generate a specialized herbivore community on an invasive plant, allowing prognoses of

reduced invasiveness over time. On the basis of the results presented here, we would like

to caution that manual control might have the adverse effect of a slowing down of

processes of adaptation, and a delay in the decline of the invasive character of P. serotina.
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22 Abstract

23 The integration of invasive species into native food webs represent multifarious dynamics 

24 of ecological and evolutionary processes. We document incorporation of Prunus serotina 

25 (black cherry) into native insect food webs. We find that P. serotina harbours a herbivore 

26 community less dense but more diverse than its native relative, P. padus (bird cherry), with 

27 similar proportions of specialists and generalists. While herbivory on P. padus remained 

28 stable over the past century, that on P. serotina gradually doubled. We show that P. serotina 

29 may have evolved changes in investment in cyanogenic glycosides compared with its native 

30 range. In the leaf beetle Gonioctena quinquepunctata, recently shifted from native Sorbus 

31 aucuparia to P. serotina, we find divergent host preferences on Sorbus- versus Prunus-

32 derived populations, and weak host-specific differentiation among 380 individuals 

33 genotyped for 119 SNP loci. We conclude that evolutionary processes may generate a 

34 specialized herbivore community on an invasive plant, allowing prognoses of reduced 

35 invasiveness over time. On the basis of the results presented here, we would like to caution 

36 that manual control might have the adverse effect of a slowing down of processes of 

37 adaptation, and a delay in the decline of the invasive character of P. serotina.
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38 Introduction

39 The introduction and subsequent explosive spread of non-native species is seen as one of 

40 the main environmental disturbances threatening ecosystems globally (Glowka et al., 1994; 

41 Gurevitch & Padilla, 2004; Simberloff, 2011). Not all introduced species will eventually 

42 successfully establish themselves and spread invasively (Williamson & Fitter, 1996). For 

43 example, populations of colonists may die out due to disease or adverse environmental 

44 conditions (Rodriguez-Cabal et al., 2013). Nonetheless, the numbers of environmentally 

45 problematic exotics are increasing worldwide (Butchart et al., 2010). This even holds for 

46 parts of the world that are traditionally seen as sources, rather than recipients of exotic 

47 species, such as Europe (Hulme et al., 2009; van Kleunen et al., 2015).

48 One potential explanation for the invasiveness of an introduced species is the so-called 

49 enemy release hypothesis, ERH (Keane & Crawley, 2002; Liu & Stiling, 2006), which states 

50 that, because the introduced species has not coevolved with the native biota, release from 

51 specialized parasites and predators causes explosive population growth.

52 Enemy release may cause the initial spread, but the subsequent population dynamics are 

53 more complex, and influenced by evolutionary processes. Reduced selection pressure for 

54 defences against specialist herbivores may result in the evolution of changed energy 

55 investment. For example, the plant may evolve stronger allocation of resources towards 

56 growth and reproduction and/or towards defence against generalists (Blossey & Nötzold, 

57 1995; Joshi & Vrieling, 2005; Zangerl & Berenbaum, 2005; Prentis et al., 2008; Whitney & 

58 Gabler, 2008). However, at the same time, native herbivores may evolve the ability to 

59 locate and feed on introduced species (Vellend et al., 2007; Pearse & Hipp, 2014). 
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60 Therefore, the course of the establishment of an introduced species is complex, with 

61 population dynamics modified by evolution: over time, the community of natural enemies 

62 attacking an introduced species tends to expand (Brändle et al., 2008) and the adverse 

63 impact of invasive species tends to wane (Williamson, 1996; Simberloff & Gibbons, 2004; 

64 Blackburn et al., 2009; Dostál et al., 2013). This may be due to evolution in both the invader 

65 and the species it interacts with (Vellend et al., 2007). However, a species� invasive 

66 character is often considered static, and management policies rarely consider the 

67 possibility that it may change due to evolutionary adaptation (Whitney & Gabler, 2008).

68 One prominent invasive plant species in Europe is the black cherry, Prunus serotina Ehrh, 

69 native of eastern North America and considered a �forest pest� in Europe after widespread 

70 planting as auxiliary tree in pine plantations throughout the 20th century (Schütz, 1988; 

71 Bakker, 1963; Starfinger et al., 2003). Being bird-dispersed, it has been rapidly invading 

72 forested and open habitats (Deckers et al., 2005). In many European countries (Starfinger 

73 et al., 2003), it is now considered one of the most important threats to habitat quality of 

74 vegetation on dry, acidic, and/or poor soil, such as dunes and moorland (Fig. 1; Godefroid 

75 et al., 2005). In the Netherlands, for example, P. serotina has increased in distribution and 

76 abundance by at least two orders of magnitude during the second half of the 20th century 

77 (Tamis et al., 2005). Current control measures (chemical and mechanical eradication) are 

78 temporary and cosmetic (Starfinger et al., 2003). Nonetheless, they are costly: Reinhardt et 

79 al. (2003) conservatively calculated the annual cost of P. serotina control in Germany to be 

80 ca. 25 million euros.

81 Possibly the initial spread of P. serotina was facilitated by an absence of natural enemies; 
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82 for example, Reinhart et al. (2003) found that, in the native range, soil pathogens inhibit the 

83 establishment of P. serotina seedlings near conspecifics, whereas in the invaded range, the 

84 species-specific soil community facilitates establishment. However, it is to be expected that 

85 the rich resource which P. serotina constitutes will provide adaptive opportunities for 

86 phytophagous insects to exploit. Such an evolutionary process will be even more likely if P. 

87 serotina represents an enemy-free space for herbivores (see Feder [1995] and Karolewski 

88 et al. [2014] for examples in other plants), and if it has been evolving reduced herbivore 

89 defences (Blossey & Nötzold, 1995). The changes in chemical defences may be complex. 

90 Joshi & Vrieling (2005) found that invasive plants may increase energetically cheap 

91 defences aimed at generalist herbivores, while reducing costly defences aimed at 

92 specialists when these specialists are no longer present.

93 Reports of native insects exploiting introduced P. serotina in Europe have been scarce 

94 throughout much of the 20th century, and have mostly concerned accidental feeding (by, 

95 e.g., moths, aphids, weevils, and leaf beetles; Korringa, 1947; Hille Ris Lambers, 1971; 

96 Moraal, 1988; Klaiber, 1999; Fotopoulos, 2000). Simultaneously, at least among nature 

97 management workers, a widespread belief has been maintained that the strong cyanogenic 

98 properties of the species, stronger than in P. padus (Poulton, 1990; Swain et al., 1991; 

99 Santamour, 1998; Hu & Poulton, 1999; Fitzgerald, 2008; Pimenta et al., 2014), have 

100 prevented native insect herbivores from colonizing it (Nyssen et al., 2013; Anonymous, 

101 2014). More recently, however, studies from France, Germany, the Netherlands, and Poland 

102 are beginning to suggest that a community of native herbivores may in fact be 

103 accumulating on P. serotina (Karolewski et al., 2014; Wimmer & Winkel, 2000; Winkelman, 

104 2005; Nowakowska & Halarewicz, 2006;  et al., 2008; Boucault, 2009; Halarewicz & 
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105 Jackowski, 2011; Meijer et al., 2012; Karolewski et al., 2013).

106 In this paper, we investigate the composition of the insect herbivore community feeding on 

107 P. serotina in the Netherlands. Because congenerics are likely to have been an important 

108 source of colonists, we compare the P. serotina herbivore community with the one 

109 occurring locally on P. padus, its closest native relative in the Netherlands (Bortiri et al., 

110 2001). To obtain an impression of the accumulation of herbivory in P. serotina, herbivore 

111 damage in both Prunus species is quantified on the basis of herbarium records. We then 

112 investigate the impact that two conditions may have had on herbivore presence: 

113 cyanogenic defence compounds and parasitoid attack, in both Prunus species. Finally, as an 

114 example of the adaptive evolution that specialist P. serotina herbivores may have 

115 undergone, we studied host preference and genomics in one particular P. serotina 

116 herbivore, the leaf beetle Gonioctena quinquepunctata.

117
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118 Materials and Methods

119

120 Sampling herbivore communities on P. serotina and P. padus

121

122 The insect community feeding on both Prunus species was sampled in Nationaal Park Zuid-

123 Kennemerland (52°  N, 4°  E), a partly forested area of coastal sand dunes near 

124 Haarlem, the Netherlands. Sampling was done by traversing a 2 x 2 km area in the old, 

125 forested dunes, and haphazardly selecting 300 individuals (150 of each species). We took 

126 care that on each day, roughly equal numbers of P. padus and P. serotina were investigated. 

127 Where possible, individuals of the two species were sampled in alternation. Sampling was 

128 done manually (no tools like nets, beating trays, or exhausters were used) in spring and 

129 early summer of 2009 (3 days), 2010 (10 days), and 2012 (8 days), by a single person 

130 inspecting, for 5 min., leaves, twigs, flowers, and fruits up to c. 2.5 m above ground level. All 

131 insects feeding or ovipositing on the host plant were stored in 96% ethanol. To obtain 

132 measurements on the actual amount of foliage searched, we replicated the above sampling 

133 method in September 2015 on 10 and 8 trees, respectively, of P. serotina and P. padus, and 

134 counted the numbers of leaves and lengths of twigs searched. We also determined fresh 

135 weights of ten leaves of each of the two plant species. Insects were identified 

136 morphologically, with help from experts (see Acknowledgements). The 2009 and 2010 

137 Geometridae and Tortricidae were identified by sequencing of the Cytochrome Oxidase I 

138 DNA-barcode region (e.g., Van Nieukerken et al., 2011) and the �animal identification� 

139 module in BOLD (www.boldsystems.org). All 2009 and 2010 specimens were deposited in 

140 the collections of Naturalis Biodiversity Center (container codes BE90711-90716). Because 
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141 of improper curation, the specimens from the 2012 sampling were discarded after 

142 identification. We adopted Leather�s (Leather, 1985) host range indicators of G (generalist, 

143 feeding on multiple plant families), R (feeding on Rosaceae only), P (on Prunus only), and M 

144 (monophagous, feeding on P. padus only). In addition, we categorized species that are 

145 specialized on non-Rosaceae (e.g., Quercus-specialists) as O (�other�). Differences in species 

146 richness for each of these categories were compared between both host species and tested 

147 for significance with a chi-square test. Natuurmonumenten (Ruud Luntz) permitted us to 

148 work in Nationaal Park Zuid-Kennemerland under permit No. 19 of 2008. Dunea (Harrie 

149 van der Hagen) permitted us to work in Meijendel by permission 25/2/2013.

150

151 Herbivory history on Prunus padus and Prunus serotina

152

153 We used historical accessions of P. padus and P. serotina in the herbarium collection of 

154 Naturalis Biodiversity Center to produce time-series of insect herbivory in the Netherlands 

155 for both hosts. Herbivory was assessed by a method of our own design, as percentage of 

156 leaves on a herbarium specimen that showed pre-collection insect damage (post-collection 

157 damage by herbarium beetles was recognized and recorded, but not included in the 

158 herbivory data). We are aware of the fact that some botanists may preferentially have 

159 collected undamaged branches, so these estimates of herbivory are to be treated as 

160 conservative. We assessed changes of herbivory over time by Pearson tests on linear 

161 correlation coefficients. 

162

163
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164 Parasitization of caterpillars

165

166 Within the same 2 x 2 km area as mentioned above, we sampled 173 and 110 live 

167 caterpillars from 43 P. padus and 32 P. serotina trees, respectively, between May 18th and 

168 June 3rd, 2011. All caterpillars were reared in individual vials. If a caterpillar 

169 metamorphosed into an adult moth or butterfly, it was considered unparasitized. If a 

170 parasitoid wasp or fly emerged, the host was considered parasitized. Caterpillars or pupae 

171 from which no adult insect had emerged by June 19th, were dissected in ethanol or Ringer�s 

172 solution to determine the presence or absence of parasitoid eggs, larvae, pupae, or adults 

173 (Zchori-Fein et al., 2001). When found, these hosts were also considered as parasitized. 

174 Models describing the binominal response variable �parasitized� (Y/N) with combinations 

175 and interactions of the following explanatory variables: tree, method, xylosteana, and tree-

176 ID (which was added as a random effect) were created and analysed in R 2.12.1 (R 

177 Development Core Team, 2010). �Tree� was the caterpillar�s host plant species (P. padus / 

178 P. serotina). �Method� was the way a caterpillar was determined to have been parasitized 

179 or not (dissected in ethanol, dissected in Ringer�s solution, or reared to adult or parasitoid 

180 emergence). �Xylosteana� indicated if the caterpillars belonged to the most commonly 

181 encountered species, Archips xylosteana (TRUE) or another species (FALSE). Of the 

182 identified caterpillars, all other species were not present in sufficient numbers (<8) for 

183 species-level analysis.

184

185
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186 Determination of cyanogenic glycosides

187

188 We analysed secondary plant compounds for 57 of the P. padus and 56 of the P. serotina 

189 plants for which we sampled herbivores in 2012 (see above). Immediately after each 

190 herbivore sampling, we harvested five young leaves and five old leaves from each tree, and 

191 kept these in separately labelled bags in a Dewar flask with solid CO2 in the field. All 

192 samples were ground under liquid nitrogen and freeze-dried. We carried out NMR-analysis 

193 as described previously (Pimenta et al., 2014; Kim et al., 2003; Kim et al., 2010). Briefly, 

194 extracts in CH3OH-d4 and KH2PO4 buffer in D2O (1:1) were quantitatively analysed for 

195 prunasin and amygdalin, using 1H-NMR spectroscopy on a 500MHz Bruker DMX-500 

196 spectrometer (Bruker, Karlsruhe, Germany). Purity of quantitated 1H-NMR signals was 

197 evaluated using several two-dimensional NMR experiments. Correlations were investigated 

198 between concentrations of each of the cyanogenic glycosides and herbivore load. We 

199 treated generalists (category G, see above) and specialists (categories R, P, M, and O) 

200 separately. In view of the high numbers of Yponomeuta evonymellus and Rhopalosiphum 

201 padi on some P. padus trees, we log-transformed the specialist herbivore load for P. padus. 

202 The relative amounts of cyanogenic glycosides were calculated per sample by taking the 

203 integrals in buckets  5.92 (for prunasin) and  5. 88 +  5.84 (for amygdalin). Correlations 

204 were tested with parametric Pearson�s tests for the data on generalists and (in view of the 

205 large numbers of samples devoid of specialists) with non-parametric Spearman�s tests for 

206 the data on specialists.

207

208
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209 A specialist herbivore�s food preference for the original Sorbus vs. the novel 

210 Prunus serotina

211

212 We selected the oligophagous leaf beetle G. quinquepunctata for a case study of host 

213 preference. We chose this species because (i) it has very recently (probably in the early 

214 1990s) colonized P. serotina in north-central Europe (Klaiber, 1999; Halarewicz & 

215 Jackowski, 2011; Meijer et al., 2012; Mazderek et al., 2015); (ii) it is a specialized species, 

216 originally feeding chiefly on rowan, Sorbus aucuparia (Wimmer & Winkel, 2000; Koch, 

217 1992). Within a circle with 6-km radius around Eelde (53°  N, 6°  E), this beetle only 

218 feeds on the original native host S. aucuparia and the novel introduced P. serotina (not on 

219 any other hosts), and is equally abundant on both (Meijer, 2013). In May 2011, 83 adults 

220 and 138 larvae were collected from S. aucuparia and 63 adults and 57 larvae were collected 

221 from P. serotina, and kept separate by collection locality and host plant. These were used in 

222 host choice experiments: one S. aucuparia and one P. serotina branch (with 3-5 leaves each) 

223 was placed in a bottle filled with water, which was then placed in the centre of a 0.25 m3 

224 cage. Between one and five adults or between two and 10 larvae were selected from one of 

225 the live, host-specific collections and placed on the plug in the neck of the bottle. Each 

226 experiment was conducted with individuals from only one of the two hosts, and each 

227 individual was tested only once. Adults and larvae were not mixed within an experiment. 

228 After 21 h, the position for each individual was recorded and the animals were returned to 

229 their respective live collections. The test was performed 107 times. Tests were carried out 

230 on animals collected within a two-week period and were begun on the date that they were 

231 collected. We then tested for host preference using a GLM with binomial distribution. The 
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232 model included the fixed factors of original host plant, life stage (larva or adult), interaction 

233 between original host plant and life stage, collection date, locality of origin, and cage 

234 (multiple cages were used). The effect of each factor was tested by removing one factor and 

235 comparing the complete model with the reduced model, and to do this successively with 

236 each of the factors, using ANOVA. Host preference in G. quinquepunctata was tested with a 

237 proportion test, by comparing the host choices for all animals, depending on their host of 

238 origin. All analyses were done in R (R Development Core Team, 2010). 

239

240

241 Genomic differentiation in host-specific subpopulations of a specialist 

242 herbivore

243

244 Using the same G. quinquepunctata specimens from Eelde as above, after finishing the host 

245 choice tests, we chose one adult individual from each host plant and obtained full genome 

246 sequences from these using paired-end forward-reverse sequencing on an Illumina HiSeq 

247 2000. We pooled the data from both G. quinquepunctata sequencing runs and used this for 

248 a single de novo assembly. We assembled the data using Abyss (Simpson et al., 2009) with a 

249 k-mer length of 23 and a k-mer coverage of 3, values which we optimized using KmerGenie 

250 (Chikhi & Medvedev, 2013). We saved all produced contigs longer than 200bp. We then 

251 mapped the data from both samples separately against these contigs using BWA (Li & 

252 Durbin, 2009) at default settings and used Samtools (Li et al., 2009) to call the SNPs in the 

253 BWA alignments. We looked up the SNP positions in the alignments for both samples and 
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254 filtered based on the following criteria: the positions were both homozygous for different 

255 alleles between the samples, had a coverage of at least 10x in each sample, had flanking 

256 regions that were at least 100bp long with a minimum combined coverage of at least 15x 

257 with a maximum of 2 heterozygous positions. We identified the contigs containing valid 

258 SNP positions by BLASTing them against the GenBank nucleotide database and removing 

259 all non-arthropod contigs. Based on the remaining SNPs, we made a random selection of 

260 128 SNPs (Table S5), all from different contigs, for which we designed primers using the 

261 Kraken software (LGCgenomics). Subsequently, in June 2014, again within the same 6-km 

262 radius around Eelde, we collected a new set of individuals from both hosts at five localities 

263 (Norg-1, Norg-2, Kleibos, Appelbergen, and Noordlaarderbos); 206 from S. aucuparia, and 

264 173 from P. serotina. We performed DNA extractions on head+thorax using the NucleoMag 

265 96 Tissue kit (Macherey-Nagel Gmbh & Co., Düren, Germany) on the KingFisher Flex 

266 magnetic particle processor (Thermo Scientific). DNA was diluted to 1 ng/µl and analysed 

267 in uniplex on the LGC Genomics SNP-genotyping line according to manufacturer�s 

268 instructions. SNPs were detected using the KASP technique (Semagn et al., 2014). 

269 Genotypes were called using the Kraken software. We discarded five loci that did not yield 

270 scorable SNP-patterns and four loci that deviated from Hardy-Weinberg equilibrium, 

271 leaving 119 loci. Missing data were scattered over loci and samples and amounted to 2.9% 

272 of the total data set. We assessed population differentiation by Analysis of Molecular 

273 Variance (AMOVA), as well as by a Structure analysis (Pritchard et al., 2000; Excoffier & 

274 Lischer, 2010). For Structure, standard settings were used and 10 replicates were 

275 performed for K=2 to K=10. The results were uploaded to Structure Harvester and a delta K 

276 plot was used to determine the number of groups (Earl & vonHoldt, 2012). We used a 
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277 hierarchical AMOVA with host plants nested within localities, and we repeated the same 

278 AMOVA on a locus-by-locus basis.

279
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280 Results

281

282 Sampling herbivore communities on Prunus serotina and Prunus padus

283

284 Our sampling method covered on average, per tree, 258 (± 136 s.d.) and 141 (± 91 s.d.) 

285 leaves of P. serotina and P. padus, respectively. Given mean fresh weights of P. serotina and 

286 P. padus leaves of 0.44 and 0.91 g, respectively, the amounts of foliage searched in 5 

287 minutes were 113.5 g and 128.3 g for P. serotina and P. padus, respectively. After correction 

288 for the 1.13 x more foliage searched in P. padus, we found that P. serotina harbors a 4.15-

289 fold lower density but almost two-fold higher species diversity of herbivorous insects 

290 (Table 1; Table S1) than P. padus. The higher herbivore load on P. padus is, however, largely 

291 due to only two monophagous species, Y. evonymella (Lepidoptera: Yponomeutidae) and R. 

292 padi (Hemiptera: Aphididae), which usually occur in dense �nests� and �colonies�, 

293 respectively (Leather, 1985). These two species were found on P. serotina at much lower 

294 densities and usually only as single individuals. Almost half of the herbivore specimens 

295 found on P. padus belong to these two species. We did not find a difference in the 

296 proportions of specialists versus generalists on the native and the non-native host (Fig. 2): 

297 both species carried similar (chi-square = 4.13; P = 0.38) proportions of each of the four 

298 categories of host range (G, generalists; R, Rosaceae-specialists; P, Prunus-specialists; M, P. 

299 padus monophages; and O, other�mostly Quercus�specialists).

300

301
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302 History of herbivory on Prunus padus and Prunus serotina

303

304 Herbarium records (Table S2) for P. serotina (n = 96; 2817 leaves) showed a more than 

305 two-fold increase in herbivory (proportion damaged leaves) from 18.8% to 40.6% over the 

306 past 170 years (r = 0.262; P = 0.0099, df = 94; Pearson test; Fig. 3A). For P. padus (n = 222; 

307 6612 leaves), herbivory has remained stable at c. 35% over the past two centuries (r = -

308 0.020; P = 0.766, Pearson test; Fig. 3B). In the most recent year (2013) we found no 

309 significant difference between the herbivory in P. padus (40%) and P. serotina (41%) (T-

310 test; P = 0.53).

311

312

313 Parasitization of caterpillars

314

315 The percentages of parasitized caterpillars on both Prunus species were not significantly 

316 different (P. padus: 55/173, 32%; P. serotina: 43/110, 39%; chi-square = 1.58; P = 0.21). 

317 Tables of explanatory variables and response variables are presented in Table S8. A third of 

318 all collected specimens belonged to Archips xylosteana. A test of independence of the 

319 explanatory variable tree explaining the response variable �parasitized� was not significant 

320 (chi-square = 1.58, df = 1, P = 0.20). A full generalized linear model was used to described 

321 the response variable �parasitized� as a three-way interaction between �tree�, �method�, 

322 and �xylosteana�. The full model was not significant, and after simplifying the model by 

323 steps, the only explanatory variable to affect parasitization significantly was the method 
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324 used to determine if a specimen was infected by a parasitoid (P < 0.01). The identified 

325 parasitoids mostly belonged to Ichneumonidae, Braconidae, and Tachinidae.

326

327

328 Determination of cyanogenic glycosides

329

330 In the NMR-analyses (Table S3), we found that the concentration of cyanogenic glycosides 

331 (prunasin and amygdalin combined) per unit leaf dry weight is similar in both Prunus 

332 species. Mean concentrations in young and old leaves differed by < 5% in each plant 

333 species. In both plant species, the ratio prunasin : amygdalin was c. 3 : 1. Generalist and 

334 specialist herbivores showed different relations with cyanogenic glycoside concentrations, 

335 and the responses to prunasin differed from those to amygdalin. Specifically, we found that 

336 the generalist herbivore load was not correlated with prunasin (R = -0.08, P = 0.39, both in 

337 P. prunus and P. serotina), but increased with amygdalin concentration (R = 0.24 and 0.36; 

338 P = 0.01 and 0.0001, respectively, in P. padus and P. serotina), whereas the specialist 

339 herbivore load increased with prunasin concentration, and decreased with amygdalin 

340 concentration, but significantly so only in P. padus (of which the amygdalin relationship 

341 would lose significance after Bonferroni correction; see statistical test results given in Fig. 

342 4).

343

344
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345 A specialist herbivore�s food preference for the original Sorbus vs. the novel 

346 Prunus serotina

347

348 At the end of the host choice experiment, 52% of all experimental G. quinquepunctata were 

349 present on one of the host plants. Individuals collected on S. aucuparia showed a significant 

350 preference for S. aucuparia (69.7 ± 3.1%) over P. serotina (P < 0.0001). However, 

351 individuals collected on P. serotina showed no significant preference for either host. Similar 

352 patterns were found in both adults and larvae: Individuals from S. aucuparia preferred 

353 their original host (75.9 ±7.0 % for adults, P < 0.0001, and 65.9 ± 9.0 % for larvae, P = 

354 0.0003); individuals from P. serotina showed no preference (58.7 ± 9.1 % for adults, P = 

355 0.2077, and 57.9 ± 14.3 % for larvae, P = 0.2893). Full test results are available in Table S7.

356

357

358 Genomic differentiation in host-specific subpopulations of a specialist 

359 herbivore

360

361 Illumina sequencing  of a G. quinquepunctata larva from S. aucuparia gave 157,327,896 

362 reads, and 191,340,606 reads were obtained from an adult beetle found on P. serotina. The 

363 de-novo assembly with Abyss resulted in 438,237 contigs longer than 200 bp. The data 

364 were deposited in the NCBI short read archive under BioProject accession code: 

365 PRJNA277307. A total of 729 usable SNPs were obtained from the SNP discovery. To assess 

366 genetic differentiation in both host-specific subpopulations, we genotyped 379 individuals 
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367 from both hosts at each of five localities, for the selected 119 SNP loci (Table S4). Our 

368 Structure analysis (SI Text S1) failed to detect overall genetic differentiation between the 

369 populations on both host plants: the highest posterior probability was for K = 2, but these 

370 two groups did not correspond with host plant nor with locality. The hierarchical AMOVA 

371 with host plants nested within localities, showed significant (P < 0.01) differentiation 

372 between host plants in each locality. On a locus-by-locus basis, the AMOVA revealed 13 loci 

373 that were significantly differentiated between the two subpopulations from P. serotina and 

374 S. aucuparia, two of which remained significant after strict Bonferroni correction (Table 

375 S6). The distribution of per-locus pairwise (Prunus-Sorbus) FST values (Fig. 5) also shows 

376 that at least two loci are outliers. Homology searches in Genbank for these SNP loci yielded 

377 no matches with genes of known function.

378
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379 Discussion

380

381 Our inventories show that the invasive P. serotina in the Netherlands harbours a 

382 surprisingly rich community of herbivores. Although the densities were lower than on 

383 native P. padus, the species diversity was greater. Also, contrary to expectations, the P. 

384 serotina herbivore community contained similar proportions of specialists versus 

385 generalists as the one on P. padus. The only species strikingly absent from P. serotina were 

386 two abundant P. padus monophages, Y. evonymellus and R. padi. Consistent with Leather 

387 (1985), both species were responsible for more than two thirds of all insects found feeding 

388 on P. padus, whereas they occurred on P. serotina only in small numbers (we found only a 

389 single Y. evonymellus caterpillar and a single R. padi colony on P. serotina). Nonetheless, 

390 laboratory data (Kooi et al., 1991) and field data from Poland (Karolewski et al., 2014) 

391 suggest that at least Y. evonymellus has the potential to feed on P. serotina. Karolewski et al. 

392 (2014) state that in Poland, the latter species has progressed from avoiding P. serotina 

393 altogether to feeding and developing on it massively over the past decade. The near-

394 absence from P. serotina of this herbivore in our study area suggests that a similar 

395 colonization event may not yet have taken place, but this may change in the near future, 

396 possibly aided by long-distance gene flow from the populations in Poland. Another striking 

397 difference between both hosts is the relatively large numbers of non-Rosaceae specialists 

398 on P. serotina. While some of these may be accidental �tourists�, the high number of 

399 individuals for some of these species (e.g., the Quercus-specialist Harpocera thoracica) is 

400 noteworthy.
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401 These results add to a body of data on insect herbivory on native versus non-native plants 

402 (reviewed in, e.g., Liu & Stiling, 2006; Colautti et al., 2004; Meijer, 2013). Although these 

403 studies tend to show that introduced plant species, especially those with powerful chemical 

404 defences, are poor hosts for native herbivores, exceptions have also been found of 

405 introduced species hosting a larger number of species than closely-related native plants 

406 (Novotny et al., 2003). The rich herbivore community on non-native P. serotina, and 

407 especially the high number of specialist species, fits with the observation that the food web 

408 supported by a non-native plant expands as time since initial introduction increases 

409 (Brändle et al., 2008). Although P. serotina was introduced into Europe earlier (Schütz, 

410 1988), it only became common in the 20th century (Starfinger et al., 2003). Its increasing 

411 abundance in Dutch ecosystems over the past 80 years may have been the phase during 

412 which most of the herbivore community has built up. Indeed, while our study of leaf 

413 damage in herbarium specimens cannot reveal the diversity of herbivores, it does show 

414 that herbivore damage, and therefore perhaps herbivore load, has gradually doubled over 

415 this period, while that on P. padus has not changed. Today, at least based on our herbarium 

416 records, herbivory levels in both plant species appear to be similar (despite the lower 

417 herbivore load that we found in our inventory for P. serotina�see above).

418 In theory, the rapid assembly of this community may have been aided by the presence of an 

419 enemy-free space for the insect herbivores. If local parasitoids, for example, are not 

420 adapted to using P. serotina volatiles as a cue for attraction to a possible patch in which to 

421 find hosts, this may have helped the establishment of herbivore populations on the 

422 introduced plant (Feder, 1995; Harvey & Fortuna, 2012). Indeed, Karolewski et al. (2014) 

423 found reduced parasitization of one species, Y. evonymella on P. serotina. However, we find 
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424 that current attack rates of caterpillars by parasitoids do not differ between P. padus and P. 

425 serotina.

426 After an initial period of reduced specialist herbivory in the non-native range, P. serotina 

427 may have shifted its investment in chemical defences in favour of those aimed at 

428 generalists (Joshi & Vrieling, 2005). Cyanogenic glycosides are generally considered to be 

429 systemic, non-inducible, and energetically cheap chemical defences aimed primarily at 

430 generalist herbivores (Gleadow & Møller, 2014). However, our phytochemical data suggest 

431 that, in P. padus (and, less clearly, in P. serotina), the Rosaceae-specific compound 

432 amygdalin has a positive relationship with generalist load but a negative one with specialist 

433 load, whereas the more widespread compound prunasin has a positive correlation with 

434 specialist herbivore load, while lacking any clear relation with generalist load. It would be 

435 tempting to compare the levels and ratios of prunasin and amygdalin in today�s P. serotina 

436 populations in the Netherlands with those reported for the native American population. 

437 However, we only have access to a single American study (Santamour, 1998), which, 

438 moreover, employed somewhat different methods (see below), so we do so with 

439 considerable hesitation. Santamour (1998) reported a summertime HCN production in 

440 native American P. serotina corresponding to 29.6 mg cyanogenic glycosides per g fresh 

441 leaf material (see SI Text S2). In an earlier study of 22 Dutch P. serotina trees (Pimenta et 

442 al., 2014), we found on average 30.4 mg cyanogenic glycosides per mg dry leaf material. As 

443 P. serotina dry leaf weight is 36% of fresh leaf weight (see SI Text S2), this might suggest 

444 that total cyanogenic glycoside content in the invaded range could be about two- to 

445 threefold lower than in North America. Also, Santamour found prunasin : amygdalin 

446 proportions of 22 : 1, whereas we found a ratio of 3 : 1. In the Dutch P. serotina, prunasin 
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447 investment might therefore have decreased, with amygdalin content remaining more or 

448 less constant. Since both the absolute and relative amounts of prunasin and amygdalin 

449 content have a genetic basis (Santamour, 1998), these results might indicate that 

450 cyanogenic glycoside defence has, after the introduction into Europe, adapted to the novel 

451 herbivore communities. With a mean age at first reproduction of only 5.2 years (Deckers et 

452 al., 2005) and evidence, in general, of rapid evolution of defence in invasive plants (Felker-

453 Quinn et al., 2013), such a quick evolutionary change is not implausible. However, since 

454 Santamour (1998), Pimenta et al. (2014) and the present study appear to be the only 

455 available quantifications of prunasin and amygdalin in P. serotina, and since the range of 

456 phenotypic plasticity in cyanogenic glycoside content is unknown, more data, with more 

457 comparable methods, are needed before this conclusion can be substantiated. Moreover, 

458 we stress that our results and their discussion refer only to the cyanogenic potential 

459 (HCNp), whereas the true defence potential is a combination of HCNp and HCNc, 

460 cyanogenic capacity, which is a function of glucosidase presence and activity. Since the 

461 latter is unknown in this study, we implicitly assume that HCNp is an indicator for 

462 cyanogenic defence, which may only be partly true and is known to differ between 

463 specialists and generalists (Ballhorn et al. 2010a).

464 The accumulation of the herbivore community on P. serotina may also have involved 

465 evolutionary processes within the insect community itself. One possibility is that all 

466 present-day herbivores were able to feed and reproduce on P. serotina from the moment 

467 the new host was introduced. However, this would not explain the slow increase in 

468 herbivory that our herbarium data show: highly mobile insects with short generation times 

469 would have established on the new host instantaneously, rather than gradually. It is 
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470 therefore likely that adaptive evolution in the herbivores played an important role in the 

471 assembly of this community over time.

472 As a possible example of this scenario, we performed a case study on one specialist 

473 herbivore, the leaf beetle G. quinquepunctata, which has recently colonized P. serotina from 

474 its original host, rowan (S. aucuparia). We find indications of weak differentiation in host 

475 preference and SNP-loci on Sorbus- versus Prunus-derived beetle individuals. We found 

476 that individuals collected on Sorbus retained a significant host preference for this host, 

477 whereas beetles collected from Prunus showed no preference for Prunus over Sorbus. We 

478 found the same host preference in adults and larvae, although presumably host choice is 

479 made mostly in the mobile, adult stage. While these results do not necessarily imply genetic 

480 differentiation, as learning may be involved as well (Salloum et al., 2011), our SNP-analysis 

481 does show indications of weak genetic differentiation, with several loci showing 

482 divergence, and potentially linked to regions that are under disruptive, host-imposed 

483 selection. In other words, the introduced P. serotina may have selected for weak, incipient 

484 divergence (Vellend et al., 2007; Nosil & Feder, 2011) in this particular herbivore. Whether 

485 such selection will allow further sympatric speciation, in this herbivore or others, depends 

486 not only on the different selection regimes imposed by the different host plants, but also on 

487 the mount of gene-flow between the populations feeding on the two hosts (Nosil & Feder, 

488 2011).

489 Overall, our results indicate that, since its introduction, a rich and diverse herbivore 

490 community has accumulated on P. serotina. It is possible that evolutionary adaptations in 

491 these herbivores as well as in the plant itself have played an important role in shaping this 
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492 community. Adaptation may have involved niche widening in generalist herbivores, 

493 incipient genetic divergence in specialists, as well as adjustments of chemical defences in 

494 the host plant.

495

496 These results may have implications for invasive species management. It may be expected 

497 that the gradual evolutionary integration of a novel plant species in a native herbivore food 

498 web may eventually reduce its invasive character to the point where it attains the status of 

499 non-harmful, naturalized neophyte. Whether this will happen in the case of P. serotina 

500 depends on a number of factors. In this paper, we dealt with herbivorous insects only, 

501 whereas plant demographics are affected by a much broader spectrum of natural enemies. 

502 Reinhart et al. (2003) and Van der Putten (2000) suggested that its invasiveness may be 

503 more due to an absence of belowground interactions (with the Prunus-pathogenic fungus 

504 Pythium, for example) than aboveground interactions. However, preliminary studies in the 

505 Netherlands indicate the presence of local Pythium populations that are powerful in 

506 attacking introduced P. serotina (Tamis & van der Klugt, pers. comm.). Furthermore, 

507 Ballhorn et al. (2010b) and Ballhorn (2011) found that in cyanogenic plants a trade-off 

508 exists between defence against herbivores and against fungal pathogens, which is an 

509 additional complication not yet considered. A final point of concern is the intensity of the 

510 regime of natural selection. Presently, manual control of mature P. serotina in many 

511 European habitats is reducing the continued exposure of the host to its potential 

512 herbivores. On the basis of the results presented here, we would like to caution that this 

513 might have the adverse effect of a consequent slowing down of processes of adaptation, 

514 and a delay in the decline of the invasive character of P. serotina.
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761 Figures

762

763

764 Figure 1. In open habitats, such as this moorland in the Netherlands, Prunus serotina may 

765 spread invasively, as this carpet of seedlings shows. (photo copyright: Kritisch Bosbeheer).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1899v1 | CC-BY 4.0 Open Access | rec: 26 Mar 2016, publ: 26 Mar 2016



766

767 Figure 2. Numbers of species from different categories of generalist and specialist insect 

768 herbivores sampled from Prunus padus and Prunus serotina. 
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770 Figure 3. Herbivory over time as derived from herbarium records; A, Prunus serotina; B, 

771 Prunus padus.
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773 Figure 4. Cyanogenic glycosides and herbivory. Prunus padus is shown in the left column, 

774 Prunus serotina in the right column. Data for generalist herbivores are shown in the top 

775 four graphs (separately for prunasin and amygdalin), and for specialist herbivores in the 

776 bottom four graphs (also separately for prunasin and amygdalin). Pearson correlation 

777 coefficients (for the data for generalists) and Spearman�s rho (for the data for specialists) 

778 and corresponding P-values are given, and regression lines are shown for significant 

779 relationships. Note that the P-value for amygdalin vs. specialists in P. padus does not 

780 remain significant after Bonferroni correction. Herbivore loads (on the y-axis) are given as 
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781 counts of individuals per tree, except in the case of specialists on P. padus, where the log 

782 was taken. Cyanogenic glycoside amounts (on the x-axis) are given as NMR signal integrals.

783

784

785 Figure 5. Frequency distribution of per-locus pairwise (Prunus-Sorbus) FST values for 

786 Gonioctena quinquepunctata.
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