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Abstract

Objectives: To develop a flexible software application that uses predictive analytics to en-
able emergency department (ED) decision-makers in virtually any environment to predict the
effects of operational interventions and enhance continual process improvement efforts. To
demonstrate the ability of the application’s core simulation model to recreate and predict site-
specific patient flow in two very different EDs: a large academic center and a freestanding ED.
To describe how the application was used by a freestanding ED medical director to match ED
resources to patient demand.

Methods: The application was developed through a public-private partnership between Uni-
versity of Florida Health and Roundtable Analytics, Inc., supported by a National Science
Foundation Small Business Technology Transfer (STTR) grant. The core simulation technol-
ogy was designed to be quickly adaptable to any ED using data routinely collected by most
electronic health record systems. To demonstrate model accuracy, Monte Carlo studies were
performed to predict the effects of management interventions in two distinct ED settings. At
one ED, the medical director conducted simulation studies to evaluate the sustainability of the
current staffing strategy and inform his decision to implement specific interventions that better
match ED resources to patient demand. After implementation of one intervention, the fidelity
of the model’s predictions was evaluated.

Results: A flexible, cloud-based software application enabling ED decision-makers to predict
the effects of operational decisions was developed and deployed at two qualitatively distinct
EDs. The application accurately recreated each ED’s throughput and faithfully predicted the
effects of specific management interventions. At one site, the application was used to identify
when increasing arrivals will dictate that the current staffing strategy will be less effective than
an alternative strategy. As actual arrivals approached this point, decision-makers used the
application to simulate a variety different interventions; this directly informed their decision to
implement a new strategy. The observed outcomes resulting from this intervention fell within
the range of predictions from the model.

Conclusion: This application overcomes technical barriers that have made simulation model-
ing inaccessible to key decision-makers in emergency departments. Using this technology, ED
managers with no programming experience can conduct customized simulation studies regard-
less of their ED’s volume and complexity. In two very different case studies, the fidelity of the
application was established and the application was shown to have a direct positive effect on
patient flow. The effective use of simulation modeling promises to replace inefficient trial-and-
error approaches and become a useful and accessible tool for healthcare managers challenged
to make operational decisions in environments of increasingly scarce resources.
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Introduction

Background

In 1989, Charles Saunders, et al., published a paper in Annals of Emergency Medicine entitled
Modeling Emergency Department Operations Using Advanced Computer Simulation Systems [1]. In
it, he presented a novel software application to quantify and predict patient flow in an emergency
care setting. His model incorporated treatment spaces, providers, nurses, and even blood tests to
demonstrate how the deployment of these resources drives emergency department (ED) efficiency.
Dr. Saunders rightly concluded that the application of simulation-based tools had tremendous
potential to improve ED operational performance. In fact, for decades, simulation tools and other
systems-engineering techniques have been fully adopted by a wide variety of industries. Healthcare
has lagged significantly in this effort.

Decades later, emergency department crowding is a rapidly growing problem affecting thousands
of hospitals and millions of patients across the United States [2]. Long wait times are associated
with a myriad of negative outcomes, including longer lengths of stay [1, 3–10], adverse clinical
events [11–13], and decreased revenue [14–16]. As the demand for emergency care continues to rise
[17], health systems are increasingly challenged to provide timely and cost-efficient care. However,
despite advances in data and analytics since the work of [1], no readily available technology exists
to enable EDs of all types to regularly benefit from systems engineering principles and simulation
modeling.

The call to action to equip ED decision-makers with engineering tools and analytics is clear. The
2006 Institute of Medicine report, Hospital-based emergency care: at the breaking point, called for
the application of systems engineering tools to improve patient flow [18], and there is a growing con-
sensus that understanding the dynamics of ED care delivery demands an analytical approach [19].
The 2014 report of the President’s Council of Advisors on Science and Technology, Better Health
Care at Lower Costs: Accelerating Improvement Through Systems Engineering, recommended in-
creasing technical assistance to help health systems adopt systems-engineering techniques [20]. Most
recently, Janke et al. conclude that, “predictive analytics has the potential to improve the oper-
ational flexibility and throughput quality of ED services” [21]. In addition to the impact of ED
crowding on patient care, the financial losses associated with crowding can easily reach millions
of dollars annually for an ED [15], further justifying the need for new technologies that improve
patient flow.

In recent years, these technologies have been applied to emergency care settings to forecast
crowding [22–26], quantify the effects of patients who leave without being seen (LWBS) [27–31],
assess triage and patient streaming mechanisms [4, 5, 32–34], optimize staffing [1, 35–39], examine
the impact of reducing boarding times [33,40], and analyze the financial consequences of crowding
[14–16]. However, resources that provide this support in a single toolkit are not typically available to
ED managers, and due to high technical barriers to entry, systems methods and tools remain broadly
underutilized by decision-makers in emergency care settings [20, 41]. In particular, simulation
modeling in the ED today is accomplished on a project basis; typically a research group, engineering
and process support personnel, or external consultants use generic software that requires months of
analysis and customization to simulate only a handful of operational scenarios. This approach has
proven impractical for ongoing management and process improvement. The application described
here represents a fundamental shift in how simulation can be leveraged by ED decision-makers.
Namely, any ED decision-maker can design, execute, and analyze the results of a study simulating
hundreds of operational scenarios within one hour, making simulation methods available for routine
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operations management and continual process improvement.

Importance

We describe a novel, scalable software application that enables ED decision-makers to routinely
leverage systems engineering methods to manage their ED and improve performance. By lever-
aging easy-to-use interfaces, customizable simulation technology that can be adapted to any ED
setting, and parallel cloud computing, this application enables decision-makers with no program-
ming experience to quickly and accurately test the performance of operational changes in their
ED without any clinical or financial risk. This information allows ED managers to make informed
decisions that directly improve their patient flow.

Goals of This Investigation

The first goal of this investigation was to develop a scalable software application that can predict
the effects of operational interventions in a variety of different ED settings. The second goal was to
adapt the application to a large academic center and a freestanding ED to demonstrate its ability to
accurately recreate and predict site-specific patient flow in two diverse ED settings. The third goal
was to validate the ability of ED decision-makers to conduct simulation studies and incorporate the
model’s predictions in implementing operational changes.

Methods

The Application

Developed through a public-private partnership between University of Florida Health and Roundtable
Analytics, Inc., supported by a National Science Foundation Small Business Technology Transfer
(STTR) grant [42], the application integrates several key technologies, including: a web-based in-
terface that enables users with no programming experience to design and launch simulation studies,
a flexible simulation model that can be customized to any ED setting, on-demand cloud computa-
tional infrastructure that can rapidly simulate strategies within minutes, and a web-based interface
that allows users to explore their results and identify top-performing strategies.

The core simulation code is written in R and utilizes stochastic, event-driven programming to
model individual ED patient encounters. Adapted from Hurwitz, et. al. [33], this code incorporates:
time- and acuity-dependent arrival rates, provider in triage and split-flow models, multiple levels of
patient prioritization, multiple provider types such as physicians, residents, and advanced practice
providers (APPs), a variety of labs and imaging, and variable boarding or discharge delays. Within
the simulation model, the entirety of the ED patient experience is recreated: patients arrive, are
triaged, placed in an available bed, receive care from nurses and providers, undergo lab tests and
radiological imaging, are dispositioned and ultimately exit the ED after being boarded or experi-
encing a discharge delay. These processes have been modularized, that is, any ED can be simulated
by appropriately coupling these processes in a manner that reflects actual ED workflows. The level
of modeling detail enables specific “what if” questions to be asked of any particular ED-specific
process to determine whether that component of the ED is a bottleneck of patient flow.

For customization to a new ED, the application requires only retrospective information that
is already reported by the ED or captured within most electronic health record (EHR) systems.
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Specifically, summary financials (e.g. hourly cost of different types of staff, collections, and payor
mix) address all financial modeling requirements. Interviews of ED managers provide information
regarding workflows, patient care processes and the ED’s layout. Schedules of clinical personnel
inform the staffing components of the simulation model. Finally, a retrospective data set is used
to recreate the patient experience within the simulation model, from care delivery by simulated
clinicians to the need for ancillary services such as labs and radiology imaging.

We note that both the features and usability of the software application result from more than
50 interviews of stakeholders representing EDs with widely varying patient volumes, workflows and
geographies. A detailed description of the core simulation model is available in Appendix I.

Case Studies

We demonstrate the flexibility of the application by adapting it to two very different ED environ-
ments: a large academic center and a freestanding ED. By many metrics, most EDs fall somewhere
between these two environments.

Academic Center

The first validation was performed at a 62-bed academic center in Gainesville, FL. Beginning August
3, 2015, decision-makers instituted a provider in triage between 9am-5pm on Monday, Tuesday, and
Wednesday. To validate the core simulation model’s ability to predict the effects of operational
interventions in this ED, we selected two months of study: July-2015 (the last month without
provider in triage) and August-2015 (the first month of provider in triage). We equipped the model
with parameters that reflected July-2015 operations and conducted 100 one-week Monte Carlo
simulations. We then compared the following model outputs to the actual observed outcomes from
the academic center: LWBS rate (defined as the percentage of patients who left the ED before
consulting a provider), median arrival-to-provider, median arrival-to-decision, and median arrival-
to-departure. Next, we attempted to predict the outcomes from August-2015 by updating model
parameters to reflect the addition of a provider in triage between 9am-5pm on Monday, Tuesday,
and Wednesday. This process was consistent with how one would apply simulation modeling to
prospectively make operational decisions. We then compared the actual observed August-2015
outcomes to those simulated from 100 Monte Carlo runs of the predictive model.

Freestanding ED

The second validation was performed at a 10-bed freestanding ED in Gainesville, FL, which opened
in August, 2013. Between January 1, 2014 and January 1, 2015 the freestanding ED experienced
an 84% increase in patient arrivals (Figure 1). Responding to this demand, decision-makers phased
in secondary provider coverage.

To validate the core simulation model’s ability to predict the effects of freestanding ED op-
erational interventions, we selected two months of study: January-2014 (the last month without
secondary provider coverage) and January-2015 (the first full month of secondary provider cover-
age). Similar to the academic model, we equipped the freestanding ED model with parameters that
reflected January-2014 operations and conducted 100 Monte Carlo simulations. We then compared
the model outputs to the actual observed outcomes from the freestanding ED. Next, we attempted
to predict the outcomes from January-2015 by first updating model parameters to reflect increased
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arrivals and acuity, the addition of an 11am-11pm APP shift, increased nursing coverage, and re-
duced boarding times due to more efficient transportation to the main hospital. We then compared
the actual observed January-2015 outcomes to those simulated from 100 Monte Carlo runs of the
predictive model.

To evaluate the sustainability of the current staffing strategy, we steadily increased simulated
arrivals in the January-2015 model to prospectively evaluate the operational and financial effec-
tiveness of replacing the APP with a physician. We also considered a triple-coverage strategy that
changed the APP shift to 9am-5pm and added a 12pm-12am physician shift (the APP operated as
a provider in triage between 12pm-5pm). We then compared the three staffing regimes to identify
a “tipping point” when it becomes more cost-effective to switch to a new staffing strategy.

In September, 2015, we deployed the application for on-going use by freestanding ED decision-
makers. At the time the application was deployed, arrivals to the freestanding ED were approaching
the previously identified tipping point, and management decided to increase provider staffing. The
freestanding ED medical director identified several different schedules he was willing to implement
in his ED. After designing and running a simulation study around these ideas, he identified a
top-performing strategy that would also maintain high provider satisfaction. Beginning in October,
2015, this new staffing strategy was implemented. We evaluated the application’s role in the medical
director’s decision-making process, and compared the model’s predictions to observed outcomes in
October, 2015 to determine the accuracy of the model.

Data Sources

This study was approved by the Institutional Review Board as exempt.
ED characteristics such as treatment areas, bed counts, and provider schedules were obtained

from the Department of Emergency Medicine. Operational data from the electronic medical record
(EMR) was provided by the University of Florida Integrated Data Repository (IDR) and the Office
of the Chief Data Officer; financial data was obtained from the UF Health Faculty Practice Decision
Support (FPDS) and the UF IDR. Model inputs were derived from these data.

Outcome measures including LWBS rate and arrival-to-event times were calculated from op-
erational data provided by the UF IDR and used to validate each simulation model. A complete
description of the data elements can be found in Appendix II.

Results

Development

Our collaborative development efforts resulted in a scalable software application that enables ED
managers with no programming experience to use simulation modeling to inform operational de-
cisions in their ED. The simulation model can be adapted to any ED setting, and after a brief,
site-specific customization, the application can be ready for on-demand use by ED decision-makers.
Importantly, once the model is parameterized, no protected health information is required by the
application and no local installation of the application on hospital IT systems is necessary.

To begin a simulation study, ED decision-makers first access a web-based interface where they
can quickly select a variety of operational changes to test. Within a few minutes, users can submit a
batch of hundreds or thousands of different strategies without manipulating a single line of computer
code.
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Once a study is submitted, the application leverages on-demand cloud computation to simu-
late strategies in parallel. In less than an hour, the simulation results are processed and sum-
marized. Users access this information in a separate, web-based interface where they can filter,
rank, and compare strategies based on outcomes such as LWBS, arrival-to-event times, or even
financial metrics. This allows users to quickly identify top-performing strategies. An open, on-
line demonstration of this process is available at http://solutions.roundtableanalytics.com/

Emergency-Department-Simulation/.

Validation

Academic Center

When the model was equipped with parameters derived from July-2015 academic ED data, the
simulated distributions of key outcomes were narrow (Table 1): The model-derived 95% predic-
tion interval for LWBS rate was (8.29%, 11.38%); the intervals for median arrival-to-provider,
-disposition, and -exit were (53 mins, 65 mins), (288 mins, 313 mins), and (410 mins, 439 mins),
respectively. Moreover, the observed outcomes from the academic ED fell within the the model’s
prediction intervals: the observed LWBS rate was 9.14%, the observed median arrival-to-provider,
-disposition, and -exit were 56 mins, 304 mins, and 430 mins, respectively.

Similarly, when the model was equipped with parameters to reflect August-2015, simulated dis-
tributions of key outcomes were also narrow (Table 1): The model-derived 95% prediction intervals
for LWBS rate, median arrival-to-provider, -disposition, and -exit were (5.56%, 8.85%), (33 mins,
46 mins), (289 mins, 312 mins), (410 mins, 432 mins), respectively. These intervals again captured
the observed metrics: the observed LWBS rate, arrival-to-provider, -disposition, and -exit were
6.85%, 42 mins, 297 mins, and 425 mins, respectively.

Freestanding ED

When the model was equipped with parameters derived from January-2014 freestanding ED data,
the simulated distributions of key outcomes were narrow (Table 2): The model-derived 95% pre-
diction interval for LWBS rate was (0%, 1.27%); the intervals for median arrival-to-provider, -
disposition, and -exit were (14 mins, 18 mins), (94 mins, 110 mins), and (114 mins, 131 mins),
respectively. Moreover, the observed outcomes from the freestanding ED fell within the the model’s
prediction intervals: the observed LWBS rate was 0.30%, the observed median arrival-to-provider,
-disposition, and -exit were 14 mins, 105 mins, and 122 mins, respectively.

Similarly, when the model was equipped with parameters to reflect January-2015, simulated dis-
tributions of key outcomes were also narrow (Table 2): The model-derived 95% prediction intervals
for LWBS rate, median arrival-to-provider, -disposition, and -exit were (0%, 1.35%), (17 mins, 26
mins), (95 mins, 113 mins), (119 mins, 140 mins), respectively. These intervals again captured the
observed metrics: the observed LWBS rate, arrival-to-provider, -disposition, and -exit were 0.65%,
25 mins, 111 mins, and 132 mins, respectively.

When simulated arrivals grew beyond January-2015 levels, the model predicted increased crowd-
ing (Figure 2). Specifically, the model forecasted that the monthly LWBS rate would likely increase
beyond 3% if arrivals surpassed 2,800 visits per month. At that point, ED capacity would’ve been
unable to keep pace with demand.

We then simulated the operational and financial sustainability of three different staffing models
as arrivals increased. Specifically, we considered the current APP secondary coverage model, as well
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as two alternative strategies: physician secondary coverage, or physician and APP triple coverage.
The model predicted a consistently lower LWBS rate when physician and APP triple coverage was
simulated versus the APP model (Figure 2, left). The difference in LWBS rates grew as volumes
increased. As simulated demand surpassed 2,800 visits per month, the model predicted a tipping
point when the physician and APP triple coverage model became more cost-effective than either
of the secondary coverage models (Figure 2, right). Although physician and APP triple coverage
is more costly, the volume of patients at the point of inflection – along with increased efficiency
attributed to the physician and APP versus the APP or physician alone – resulted in increased
revenue that offset the additional staffing costs.

The identification of this tipping point assisted freestanding ED decision-makers in prospectively
determining when an intervention would be needed. As arrivals approached 2,800 patients per
month, the freestanding ED medical director decided to increase provider staffing. Using the
application (Figure 3), the medical director designed a simulation study to compare the effects
of 17 different physician and APP triple coverage staffing strategies and 3 different arrival rates
– a total of 51 scenarios. The staffing strategies differed based on the hours of day each provider
was scheduled; the arrival rates differed based on total volume. Less than an hour after submitting
the study, the medical director accessed the results (Figure 4) and identified two top-performing
strategies that were similarly sustainable as arrivals increased. He selected the one that would
result in higher provider satisfaction, and in October, 2015, this staffing strategy was implemented
in the freestanding ED.

We compared data collected from the freestanding ED in October, 2015 to the model’s predic-
tions (Table 3). Once again, the observed outcomes fell within the narrow, model-predicted ranges:
the model-derived 95% prediction intervals for LWBS, arrival-to-provider, -disposition, and -exit
were (0%, 2.07%), (8 mins, 17 mins), (96 mins, 119 mins), and (118 mins, 139 mins), respectively;
the observed LWBS rate, arrival-to-provider, -disposition, and -exit were 0.37%, 16 mins, 109 mins,
and 129 mins, respectively.

Limitations

Several assumptions were made in constructing the simulation model. Namely, the model assumes
that a patient’s tolerance before leaving without or during treatment is a function of acuity and
waiting time. The model also assumes that the ED is staffed to schedule every day – i.e. staff don’t
call-out. In addition, rather than simulate nursing care in discrete intervals, the model assumes that
patients occupy a fraction of a nurses time (corresponding to their acuity’s nurse-to-patient ratio)
at all times while the patient occupies a bed. Finally, parameters for which there was no data –
such as the median time to perform a physical exam, or the amount of time providers spend walking
from one room to the next – were estimated by academic ED and freestanding ED providers.

Discussion

Many emergency departments struggle to provide timely and cost-efficient care, and effective opera-
tional interventions demand the support of predictive analytics. Healthcare, however, has not fully
embraced this approach. While many other industries have applied analytical models to reduce
waste and increase efficiency, high technical barriers prevent many ED decision-makers from uti-
lizing simulation tools routinely. As a result, decision-makers seeking to improve ED performance
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are relegated to a trial-and-error approach that often results in costly and lengthy failures before a
workable solution is found.

The application described here represents the opportunity for a fundamental shift in ED opera-
tional decision support. By removing the barrier to entry to simulation modeling for nearly any ED
stakeholder, simulation modeling is finally available for continual, routine use; decision-makers can
accurately experiment with site-specific operational interventions without any clinical or financial
risk. Only the most effective strategies are then implemented in the ED, bypassing the need for
trial and error.

Two case studies demonstrate the practicality of the application for real-world ED management
and process improvement. After customizing the simulation code to two qualitatively distinct ED
settings, the application was shown to accurately recreate site-specific ED throughput in both
environments. Furthermore, the application was able to predict the effects of specific management
decisions as well as prospectively identify when additional interventions were needed – and which
would be most effective – to maintain efficient patient flow. When coupled with site-specific financial
data, this allowed for accurate marginal cost-effectiveness planning that is critical to healthcare
enterprises.

Further, it was demonstrated how this application can be used by ED managers to drive
operational decisions. The application’s web-based, point-and-click interfaces enabled decision-
makers with no programming experience to conduct their own simulation studies and identify
top-performing strategies. The speed of the application also enabled ED managers to continually
reevaluate the deployment of their resources in near-realtime. At the freestanding ED, this al-
lowed decision-makers to eliminate trial-and-error approaches and rapidly implement operational
interventions to improve patient flow. As a result, the freestanding ED’s performance has been
consistently and remarkably strong, even as patient demand surged to almost double the facility’s
planned capacity.

By many metrics, most EDs fall somewhere between a modestly-sized freestanding ED and
a high-volume, hospital-based academic ED. The application’s ability to accurately model both
environments demonstrates its scalability to a wide variety of EDs that struggle to manage patient
flow.

An extensively validated core simulation model, cloud computation, and accessible user inter-
faces have resulted in a predictive analytics application with the potential for use in nearly any
ED setting by any decision-maker. This technology promises to replace inefficient trial and error
approaches, enabling healthcare managers to make effective operational decisions in environments
of increasingly scarce resources.
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Appendix I

To understand patient flow through the academic center and freestanding ED, the authors con-
ducted in depth interviews with healthcare providers regarding work processes and operational
characteristics. As a result, the model incorporates multiple distinct ED treatment areas (triage,
main area, fast-track, trauma/resuscitation, etc.) with rooms and hallway beds, multiple types of
labs and imaging (complete blood count, basic metabolic panel, plain film, computerized tomog-
raphy, etc.), and four different types of providers: nurses, advanced practice providers, residents,
and attendings. These ED resources can be easily customized to any setting. For example, the
freestanding ED does not have residents or geographically separate treatment areas, while the aca-
demic center has five treatment areas staffed by a distinct combination of attendings, residents,
APPs, and nurses.

The simulation model also assumes the following patient flow structure: Upon arrival to the
ED, patients are triaged and streamed according to their Emergency Severity Index (ESI) score
[43]. The most acute patients are immediately triaged as ESI-1 and are taken directly to a
trauma/resuscitation bed where their treatment preempts that of lower acuity patients currently
being treated. A fraction of ESI-2 patients also bypass triage and go directly to a bed. All other
patients receive an ESI score between 2 and 5 in triage and move to the waiting room until a bed
becomes available. If there is a provider in triage, patients in the waiting room may have labs or
images ordered, or be dispositioned to discharge after a brief exam. Patients in the waiting room
are then selected for bed assignment based on acuity and time of arrival. Patients who stay too
long in the waiting room (i.e. who are not placed in a bed before their tolerance for waiting) leave
without being seen.

Patients who do not leave are assigned to a bed, and are briefly assessed by a nurse. A history
is taken and a physical exam is then performed by a physician; the physician might subsequently
order labs or radiological testing, perform procedures, or disposition the patient. Patients who have
labs or images ordered occupy a bed and receive intermittent nursing attention until the results are
ready and a physician returns to review them; the physician can then order more tests, perform
procedures, or disposition the patient. Patients who are dispositioned to discharge exit the ED
after a short delay to receive discharge instructions; patients dispositioned to admit remain in their
assigned bed and receive care until a hospital bed is available – a process known as boarding. In
the academic model, admitted patients are admitted to either an acute care unit, intermediate care
unit, or intensive care unit; there is a different, time-dependent distribution of boarding times for
each of these units.

This patient flow structure can also be customized to any ED setting. For example, the free-
standing ED streams ESI-5 patients to a 4-chair fast-track staffed by providers who also cover the
freestanding ED beds, while the academic center streams ESI-3, ESI-4, and ESI-5 patients to a
separate 17-bed fast track staffed by dedicated APPs and attendings.

The distribution of provider-patient interaction times, lab and imaging turnaround times, disposition-
to-exit delays, and other stochastic events was modeled using lognormal random variables. One
notable exception to the lognormal framework was patient arrival rates, which were modeled using
a non-homogenous (time-dependent) Poisson process [44].

While patient-provider interactions are modeled as discrete interactions, nursing care is modeled
continuously: the model assumes that patients occupy a fraction of a nurses time (corresponding
to their acuity’s nurse-to-patient ratio) at all times while the patient occupies a bed.

The simulation code is written in a functionalized, modular structure. This enabled the authors
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to rapidly build models that can accurately recreate site-specific workflow processes. The result is
a flexible, detailed simulation model that can be quickly adapted to any ED setting.
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Appendix II

The following information was used to parameterize and validate the simulation models. Note: the
data required to derive these statistics is routinely collected and stored by EHRs.

Name Description

Arrival volume Average patient arrivals by hour and day of week

LWBS rate Average percent of patients who LWBS per week

LDT rate Average percent of patients who LDT per week

Time to complete registration Median time from patient arrival to registered

Time to complete triage Median time from triage start to triage complete

Time to complete nurse assessment Median time for a nurse to take a history and vitals*

Time to complete provider assessment Median time for a physician/resident/APP to con-
duct a physical exam and order tests*

Order rate Percent of patients who had certain
labs/images/procedures ordered†

Lab turnaround time Median time from order to results†

Imaging turnaround time Median time from order to read†

Procedure turnaround time Median time from order to procedure complete†

Arrival-to-triage Median time from patient arrival to begin triage as-
sessment

Arrival-to-bed Median time from patient arrival to placed in bed*

Arrival-to-provider Median time from patient arrival to begin evaluation
by physician/resident/APP*

Arrival-to-decision Median time from patient arrival to clinical decision
(admit, discharge, LWBS, etc.)*

Arrival-to-departure Median time from patient arrival to exit from the ED*

Professional fee charges Median total charges billed for professional services‡

Facility fee charges Median total charges billed for facility services‡

Professional fee collections Median total net collections for professional services‡

Facility fee collections Median total net collections for facility services‡

*Grouped by ESI level
†Grouped by specific lab/image/procedure

‡Grouped by evaluation and management code (or visit level) and payor class
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This material is based upon work supported by the National Science Foundation under Award
Number 1448898. Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the views of the National Science
Foundation.
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Figure 1: Freestanding ED Arrivals, Staffing, and Outcomes. Decision-makers have responded
to growing demand by increasing staffing. As a result, the freestanding ED’s performance has
been consistently strong. *Arrival-to-provider reported as median over all patients treated in the
timeframe.
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Table 1: Validating the Academic ED Model

Outcome
July-2015 August-2015

Simulated* Observed Simulated* Observed
LWBS rate (%) (8.29, 11.38) 9.14 (5.56, 8.85) 6.85
Median arrival-to-provider (mins) (53, 65) 56 (33, 46) 42
Median arrival-to-decision (mins) (288, 313) 304 (289, 312) 297
Median arrival-to-departure (mins) (410, 439) 430 (410, 432) 425

*Simulated values reported as 95% prediction intervals.
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Table 2: Validating the Freestanding ED Model

Outcome
January-2014 January-2015

Simulated* Observed Simulated* Observed
LWBS rate (%) (0, 1.27) 0.30 (0, 1.35) 0.65
Median arrival-to-provider (mins) (14, 18) 14 (17, 26) 25
Median arrival-to-decision (mins) (94, 110) 105 (95, 113) 111
Median arrival-to-departure (mins) (114, 131) 122 (119, 140) 132

*Simulated values reported as 95% prediction intervals.
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Figure 2: The simulated Physician + APP staffing model always outperforms the APP model
with respect to LWBS rate. However, the added cost of triple coverage is not offset by increased
throughput until arrivals surpass 2,800 per month.
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Figure 3: Screenshot of the freestanding ED study design interface. In this study, the freestanding
ED medical director designed simulations to test how different provider staffing would perform
under increasing arrivals.
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Figure 4: Screenshots of the freestanding ED results-interface. Less than an hour after submitting
the simulation study, the freestanding ED medical director was able to filter and sort strategies
(top) and compare top-performers (bottom).
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Table 3: Predicting the Effects of Staffing Changes in the Freestanding ED

Outcome
October-2015

Simulated* Observed
LWBS rate (%) (0, 2.07) 0.37
Median arrival-to-provider (mins) (8, 17) 16
Median arrival-to-decision (mins) (96, 119) 109
Median arrival-to-departure (mins) (118, 139) 129

*Simulated values reported as 95% prediction intervals.
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