32

33

34

35

36

37

38

39

40

41

42

43

44

45

Results from an Ethnographically-informed
Study in the Context of Test Driven
Development

Simone Romano!, Davide Fucci?, Giuseppe Scanniello®, Burak Turhan®,
and Natalia Juristo’

'University of Basilicata, Potenza (ltaly)
2University of Oulu, M-Group, Oulu (Finland)
3University of Basilicata, Potenza (ltaly)
“University of Oulu, M-Group, Oulu (Finland)
>University of Oulu, M-Group, Oulu (Finland)
>Polytechnic University of Madrid, Madrid (Spain)

ABSTRACT

Background: Test-driven development (TDD) is an iterative software development technique where
unit-tests are defined before production code. Previous studies fail to analyze the values, beliefs, and
assumptions that inform and shape TDD.

Aim: We designed and conducted a qualitative study to understand the values, beliefs, and assumptions
of TDD. In particular, we sought to understand how novice and professional software developers, arranged
in pairs (a driver and a pointer), perceive and apply TDD.

Method: 14 novice software developers, i.e., graduate students in Computer Science at the University
of Basilicata, and six professional software developers with work one to 10 years work experience
participated in our ethnographically-informed study. We asked the participants to implement a new feature
for an existing software written in Java. We immersed ourselves in the context of the study, and collected
data by means of contemporaneous field notes, audio recordings, and other artifacts.

Results: A number of insights emerge from our analysis of the collected data, the main ones being:
(i) refactoring (one of the phases of TDD) is not performed as often as the process requires and it is
considered less important than other phases, (i) the most important phase is implementation, (iii) unit
tests for unimplemented functionalities or behaviors are almost never up-to-date, (iv) participants first
build a sort of mental model of the source code to be implemented and only then write test cases on the
basis of this model; and (v) apart from minor differences, professional developers and students applied
TDD in a similar fashion.

Conclusions: Developers write quick-and-dirty production code to pass the tests and ignore refactoring.

Keywords: Ethnographically-informed Study, Qualitative Study, Test Driven Development

1 INTRODUCTION

Test-driven development (TDD) is an iterative software development practice within agile methodolo-
gies (Beck, 2002). Some software organizations have been quick to adopt TDD, while others are still
evaluating its benefits in terms of cost, quality, and productivity (Causevic et al., 2011; Rafique and Misic,
2013a). A number of primary (e.g., controlled and quasi-experiments) and secondary (e.g., systematic
literature reviews) empirical studies have been published. The primary studies—e.g., Fucci and Turhan
(2014); Salman et al. (2015)—have been quantitative in nature, and have produced contrasting or inconclu-
sive results (Shull et al., 2010). The secondary studies summarize the empirical research results regarding
TDD by aggregating, to varying extent, the evidence from controlled experiments, quasi-experiments, and
case studies (Causevic et al., 2011; Rafique and Misic, 2013a; Shull et al., 2010; Turhan et al., 2010).
TDD has been marginally investigated from a qualitative point of view and from the perspective of the
developer (Marchenko et al., 2009; Siniaalto and Abrahamsson, 2007). Qualitative studies, unlike quanti-
tative ones, inquire into the underlyinge reasons and motivations behind a given phenomenon (Wohlin

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

et al., 2012). In this paper, we present the results of an ethnographically-informed study involving students
and professional software developers. Our goal is to gain insights into how they apply TDD and deal with
each of its phases. In particular, we sought to explore the values, beliefs, and assumptions that inform and
shape the application of TDD and its phases. Given this motivation, our methodological approach can be
characterized as ethnographic (Hammersley and Atkinson, 2007). We involved 14 graduate students in
Computer Science at the University of Basilicata and six professional developers with one to 10 years
work experience. We asked the participants, working in pairs, to add a new functionality to an existing
software implemented in Java. The software is a complex, industrial-like case of which participants had
some knowledge. We immersed ourselves in the study environment and participated in conversations, and
asked the participants how they were applying TDD to perform the assigned implementation task. We
collected data by means of contemporaneous field notes, audio recordings of discussions, and copies of
artifacts produced by the participants during the study. Information about participants’ conformance to
TDD was also gathered through an automated tool installed in the participants’ integrated development
environment (IDE). The remainder of the paper is organized as follows. In Section 2, we discuss related
work. In Section 3 we explain our method, while in Section 4 we present our findings. Section 5 contains
a discussion of our findings, and Section 6 a discussion of the ways in which our research might be limited.
Final remarks and future work conclude the paper in Section 7.

2 RELATED WORK

We first discuss ethnographically-informed studies in software engineering, and then papers reporting
investigations regarding TDD.

2.1 Ethnographically-informed Studies
Little ethnographic research exists in the field of software engineering. Beynon-Davies (1997) observed
that ethnographic research may be useful for capturing knowledge about intangible or unquantifiable
aspects of the software life cycle. Later, Beynon-Davies et al. (1999) used ethnographic methods
to investigate the negotiated order of work and the role of collective memory in rapid application
development. Button and Sharrock (1996) carried out an ethnographically-informed study in global
software development with the goal of explaining knowledge that is displayed in collaborative actions
and interactions of design and development. Sharp and Robinson (2004) used ethnographic methods in
their study of eXtreme Programming (XP) focusing on developers in a small company implementing
web-based intelligent advertisements. Their result suggested that XP developers were clearly “agile.”
Singer et al. (1997) studied the behavior of software engineers responsible for maintaining a large
telecommunications system at a particular company. The authors examined developers’ habits and tool
usage during software development. The authors discovered a discrepancy between what developers
claimed to do when performing maintenance operations, and what they actually did. In particular,
developers claimed to solve problems by “reading documentation”, while in fact Singer et al. found
that more often than not they resolved issues by looking up and copying source code. Later,Salviulo
and Scanniello (2014) conducted an ethnographically-informed study with students and professionals to
understand the role of comments and identifiers in source code comprehensibility and maintainability.
Outcomes can be summarized as follows: (i) professional developers (with respect to students) prefer
to deal with identifiers rather than comments, (i) all participants believed essential the use of naming
convention techniques for specifying identifiers, and (iii) all participants stated that the names of identifiers
are important and developers should properly choose them. Ethnography can thus be a useful tool for
detecting and explaining such a kind of discrepancies, and to make clearer un-remarked aspects of a
practice (Sharp et al., 2000). Indeed, this is the main motivation behind our use of ethnography in the
present study.

2.2 Empirical studies on TDD

Several quantitative studies have assessed the effectiveness of TDD, and the results of these studies
have in turn been examined in a number of systematic reviews and meta-analyses (Munir et al., 2014;
Rafique and Misic, 2013b; Turhan et al., 2010). The results of these analyses have been contradictory
regarding both software products (e.g., defects) and developers (e.g., productivity). Interestingly, one of
the secondary studies (Causevic et al., 2011) suggested that insufficient adherence to the TDD protocol
and insufficient testing skills are among the factors hampering industrial adoption of TDD. Only a few

214

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

98

99

100

101

102

103

104

105

106

107

108

109

110

11

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

studies have focused on the perception of developers regarding the TDD practice. For example, Muller
and Tichy (2001) examined several Agile methodologies, including TDD, within a university course and
found that TDD was one of the most difficult techniques to adopt because developers felt that it was
impractical to write test cases before coding. On the other hand, Gupta and Jalote (2007) reported that
students felt more confident that testing effort applied by using TDD would yield better results than a
traditional test-after-code setting (test-last approach), while feeling the need for some upfront design.
Pancur et al. (2003) reported that students perceived TDD as more difficult for professionals to adopt. In
particular, students perceived TDD as a practice that hindered their productivity, efficiency, and the quality
of their code. Both students and professionals agreed that TDD helped in devising a better design and
prevents bugs, but they also believed that this practice cannot replace a quality assurance engineer (Shull
et al., 2010). Even more interesting, participants also believed that the use of TDD improved confidence
by minimizing the fear that existing parts of well-functioning source code would be compromised by the
implementation of new features (Geras et al., 2004).

While quantitative studies provide objective frameworks for assessing TDD effectiveness, qualitative
studies may enable a deeper understanding of TDD and its use. Existing studies have relied upon non-
interactive research methods such as questionnaires. In quantitative studies, TDD is often compared to
a test-last approach (e.g., (Siniaalto and Abrahamsson, 2007)). In the present study we employed an
ethnographic approach in order to develop a better understanding of TDD, the underlying phenomena, and
developer perceptions thereof. We are not interested in comparing TDD to other development techniques
or practices. Furthermore, we included both students and professionals in our study, since previous work
has found that perceptions of TDD vary between these two groups—e.g., Salman et al. (2015).

3 ETHNOGRAPHIC STUDY

Qualitative studies are considered a necessary complement to quantitative investigations (Seaman, 1999),
essential for gaining an understanding of the reasons and motivations behind the problem under study.
Among qualitative methodological approaches, ethnographic studies are better suited to ask questions
such as how, why and what are the characteristics of (Robinson et al., 2007). Usually, such investigations
are conducted on a small number of subjects, while researchers conduct study by immersing themselves
in the study environment (Sharp and Robinson, 2004). In some fields of research, such as software
engineering, this practice is not always possible (e.g., because of time constraints). In such cases, it is
common to adapt ethnographic methods to the shorter timeframe (Robinson et al., 2007; Salviulo and
Scanniello, 2014).

3.1 Definition and Context
TDD is an iterative software development technique where unit-tests are defined before production code.
Developers repeat short cycles consisting of: (i) writing a unit test for an unimplemented functionality or
behavior, namely the red phase; (ii) supplying the minimal amount of production code to make unit tests
pass, namely the green phase; (iii) applying refactoring where necessary, and checking that all tests are
still passed after refactoring (Beck, 2002).

Often pair-programming is used together with TDD (George and Williams, 2004; Zieliriski and
Szmuc, 2006). For this reason, in the present study we focused on programmer pairs instead of teams or
organizations. In this setting, we were interested in exploring the following topics:

how practitioners and novice programmers perceive TDD

how they approach each phase of TDD

why they adhere (or do not adhere) to TDD

why they feel more comfortable with one or another of the TDD phases
how refactoring is carried out in TDD

what are the characteristics the developers believe an application must have so that they can success-
fully apply TDD

314

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

145 In order to mitigate subjective assumptions, we considered all the activities related to our study as
s “‘strange”, as Sharp et al. (2000) suggests.

147 The participants in the study were 14 graduate students in Computer Science at the University of
1#s Basilicata and six professional software developers taking a specialization course at the same university.
129 Both professionals and students were familiar with TLD (Test Last Development), a more traditional de-
150 velopment technique where unit tests are written after a feature (or a set of related features) is implemented
151 in a given software.

152 In the literature, graduate students are considered not far from novice software developers —e.g., Kitchen-
153 ham et al. (2002); Scanniello and Risi (2013). However, a comparison with professional developers would
15« help in better understanding whether and under which conditions this assumption can be considered
155 true (Carver et al., 2003; Host et al., 2000). This may not be considered as the main point here, but it
156 might represent an additional contribution of our study.

157 The Professional developers participating in this study worked in different small/medium sized
158 companies located in southern Italy. The most experienced among the professional held a Master degree
1se in Computer Science, while others held Bachelor degrees in Computer Science. All the professionals
10 had knowledge of testing approaches and techniques (e.g., unit testing, integration testing, and system
161 testing) before participating in our study. At the time of the study they were attending a refresher course
12 on agile software development. The lecturer devoted the greater part of the course to the introduction
s of TDD and to its application it to real-life cases. The course lasted for eight weeks (with four hours of
16+ frontal instructions per week) and included both homework and classwork.

165 The students participated in our study as part of a series of optional laboratory exercises conducted
1es within an Information System (IS) course. This course covered elements of software testing, software
1e7 development, software maintenance, agile development techniques with a focus on TDD, XP, regression
s testing, and refactoring. Homework and classwork provided students with opportunities to practice
s TDD, regression testing, and a testing framework (i.e., JUnit'). Java was the programming language of
170 reference used throughout the class, for both homework and the classwork. Before participating in the
171 study, the students had passed the following courses: Procedural Programming, Software Engineering
122 I, Object-Oriented Programming I and II, and Databases. The students had knowledge regarding the
173 development of object-oriented software systems and/or web-based applications. Their prior knowledge
174 can be considered rather homogeneous. The same lecturer held both the training course for professional
175 adjournment and IS.

176 Pairs worked on MusicPhone—an application written in Java which runs on GPS-enabled devices.
177 MusicPhone gives the user recommendations for artists he/she may like, and finds upcoming concerts
178 for such artists and bands. MusicPhone was primarily chosen for the availability of its source code and
179 because it was used in previous empirical studies on TDD (e.g., (Fucci et al., 2015; Salman et al., 2015)).
180 The total number of classes in the existing application was 30, while the non-commented lines of
181 source code were 1,225. The number of methods and constructors was 157 and 22, respectively. The
12 participants worked on a legacy system, i.e., an existing codebase that is not covered by tests (Feathers,
183 2004). We asked pairs to implement a new feature for MusicPhone. This feature, Compute an itinerary
8¢ for artists, can be described as follows:

185

186 An itinerary is a list of destinations, where each destination contains artist’s concert information and
187 distance to the concert’s location from the previous destination. The first destination’s distance in the list
188 s the distance from user’s current position. The itinerary must be chronologically ordered according to
189 the start date of the concerts in it.

190

191 This feature was described by means of a user card (or simply card, from here on) and its confirmations.
1.2 We chose this kind of representation because a traditional card is a very high-level definition of a
193 requirement that contains just enough information for the developers to reasonably estimate the effort
194 required to implement it. In other words, a card contains little information for the implementation of a
15 requirement. In agile methodologies, it is customary to flesh out a card (e.g., during the brainstorming
196 with stakeholders) when it has to be implemented. This was why we provided participants with a card
1e7 with confirmations. Confirmations summarize conversations among stakeholders, namely they revolve
1¢s around those they have been reached on a given aspect (e.g., constraints of a functionality for the software

Thttp://junit.org

4/14
Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

underdevelopment) (Jeffrie, 2001). In this sense, they are a sort of acceptance test for a story. The more
formal and unambiguous confirmations are, the better.

The story card used in our study is shown in Figure 1 (top). It contains four confirmations (on the
bottom) that allow the developer to better understand the feature to be implemented and constraints to be
tackled.

Figure 1. Story card used in the study

MusicPhone source code was scarcely commented (56 comment lines in total), as is often the case in
the context of agile software development, where the goal is to produce clean code and working software
is preferred over documentation Fowler and Highsmith (2001). We provided the participants with the
documentation of MusicPhone architecture. The use of such documentation in agile projects is common
in order to avoid big design upfront (Garlan et al., 2010). Both source code comments and documentation
were written in the English language.

All participants were familiar with the problem domain of MusicPhone because the lecturer pre-
viously used parts of the same system for homework and classwork when introducing TDD. Used
parts of MusicPhone did not contain the source code we asked the participants to implement in our
ethnographically-informed study.

3.2 The Setting

For the scope of this ethnography, we kept as close as possible to the natural settings in which the
developers, working in pairs, would carry on their everyday work activities. Describing the setting
is a good practice in ethnographically-informed studies, as the spatial organization could be relevant
insofar for developers working to accomplish a given task (Sharp and Robinson, 2004). Figure 2 shows a
pair of participants in the physical settings where they worked on the task. The participants worked on
MusicPhone following a fixed schedule. Only the observer and the pair were present each time. All the
pairs used the same laptop to carry out the task. These measures were taken to minimize any possible bias
arising from differences in physical settings.

3.3 The Study

The study was conducted by a single observer (the first author of this paper) between May and July 2015,
and was founded on one-to-one sessions between the observer and each pair. The use of one-to-one
sessions is almost customary in ethnographically-informed studies—e.g., Robinson et al. (2007). We
conducted our study in Italian to minimize any bias arising from participants’ varying levels of familiarity
with the spoken English language.

The observer spent more than three hours working with each pair. As mentioned before, all the pairs
had some familiarity with some parts of MusicPhone source code which were previously the object of
homework and classwork. This scenario is not unlike in industry; developers often do not exactly know
all the source code of a given application, but are familiar with certain parts of it.

The observer, if needed, engaged with the pairs—without conditioning their work habit—by focusing
on both the application and solution domains of MusicPhone. Such interaction is critical because: (i) the
ethnographic methodological approach encourages participation (Sharp et al., 2000); (ii) it provides the
observer with opportunities to appreciate the perspective of developers while carrying out assigned tasks;

514

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

237

238

239

240

241

242

243

244

245

246

247

248

249

251

252

253

254

256

257

258

259

260

261

262

263

264

265

266

267

268

269

Figure 2. A pair of professional developers

and (iii) it provides the observer with opportunities to gather information on how a method is applied
(TDD in our case). The observer in our study (as customary) avoided influencing pairs’ task execution.
Data were collected in a variety of forms, including contemporaneous field notes, audio recordings of
discussions, and copies of various artifacts (e.g., source code and notes). In addition, we also gathered
information on developer’s conformance to TDD. This was possible because pairs used Besouro,? an
Eclipse plug-in capable of tracing how developers applied TDD. This plug-in runs in the background and

does not interfere with the use of Eclipse.

3.4 Design
The study was organized in the following four steps:

1. Pre-questionnaire. Each participant was asked to fill out a pre-questionnaire to gather information
about their experience in the industry, grade point average, and knowledge. We used this information
to get further information on participants, namely the context of the study (see Section 3.1). Gathered
information was also used to select the IDE. We opted for Eclipse because participants had a good
level of familiarity with this IDE.

2. Introduction to the study. The observer introduced the study to each pair. A prearranged schema
was employed, namely a few sentences to describe what participants had to do. The observer did
not provide details on research topics of interest. At the end of this step, participants could ask
questions for clarification.

3. Inspecting confirmations. In this step, pairs were asked to carefully read the card and its confirma-
tions for Compute an itinerary for concerts. Pairs were working on a new feature divided into 4
confirmations (see Figure 1), presented in logical order. A pair had to tackle a confirmation before
passing to the subsequent one. Each confirmation required the implementation of one or more test
cases.

4. Tackling with a confirmation. The observer did not suggest any strategy to deal with this imple-
mentation task. For example, pairs could freely decide to inspect the entire source code before
or after having defined test cases. The observer appointed neither the driver® nor the pointer* (or
navigator) developers. Each pair freely choose who was the driver and who the pointer. During the
implementation the roles could be swapped.

In our study, the observer immersed himself and participated in step 4—joining in conversations and
reading the card and its confirmations (to clarify them, if necessary). He did not disturb or change the
natural setting of our study. An informal approach was used to probe possible issues in a naturalistic
manner Passos et al. (2012). The observer possibly provided support for steps 1, 2, and 3. He could clarify
concerns related to the study and/or to questions of used pre-questionnaires.

2Besouro - https://github.com/brunopedroso/besouro
3The developer in charge of writing code.
“4The developer in charge of reviewing each line of code as it is typed in.

6/14

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

4 FINDINGS

Our analysis followed a standard approach—i.e., Beynon-Davies et al. (1999)). We identified the main
themes emerging from our data.

4.1 Ethnographic Analysis

The goal of an ethnographic analysis is to find insights from recurrent themes. The meaning behind the
observed activities must be inferred from the details of the collected data (Sharp and Robinson, 2004).
In this process, the observer must first reflect upon the experience gained in the immersion and used all
of the data to recollect, revisit, and reconsider what was found, he then discussed them with the other
researchers. In this case, the discussion was based on audio recordings and source code written by the
participants, and other artifacts such as the data collected by the IDE plug-in.

When a theme appeared to be emerging in a group (i.e., students and/or professional developers), we
searched for data in the same group that could contradict this theme. If no contradictory evidence emerged
then the theme was pursued. This kind of analysis proceeded iteratively as themes were identified, dropped,
or validated and then confirmed. This approach required a considerable degree of effort, especially in the
validation of potential themes with respect to the collected data. Potential themes were identified during
and after conducting the study.

In the following subsections, we illustrate and detail the themes that emerged in our analysis.

4.1.1 Dealing with legacy code

Before tackling a confirmation, pairs took some time to comprehend the legacy source code. Both students
and professionals read a confirmation and then browsed source code to specify the tests needed for that
confirmation. In the following example, one pair of professionals, while reading a confirmation, inspected
the source code to re-use an existing method:

A: In order to find the starting point of the itinerary we should have a look at the Recommender
class, I spotted a method we must re-utilize.
B: Let’s find it!

This process of understanding source code was time consuming. However, with each successive confirma-
tion the pair became more familiar with the MusicPhone source code, and thus spent less time working
through it. Nevertheless, most of the pairs did not use unit tests to understand existing source code in an
explorative manner, but rather relied on visual inspections.

4.1.2 Discussion on the card

The pairs preferred to discuss an implementation plan for a given confirmation before passing to the
subsequent phase of development. The discussion regarded the implementation details rather than the
definition of test cases and identification of refactoring possibilities. For example, one pair of professionals
had the following discussion regarding confirmation 1:

A: We need to fetch each artist’s destinations list, that should be an ArrayList of Destination
objects... Do you know how to use an ArrayList?

B: Should we define a test first?

A: First let’s find out how to work with an ArrayList.

Often the mental model is built using information such as syntactical structure and the control and data
flow of existing source code (Littman et al., 1987). In our case, it seemed that participants first built a sort
of mental model of the source code to be implemented, and only then wrote test cases on the basis of this
model. This point is very interesting and deserves future research. In theory a developer should be able to
define a test only by imagining the interface of the code to be implemented rather than it entirely. Our
work sets the stage for further work in this direction.

4.1.3 TDD phases
Pairs preferred the green phase because it involved writing production code and the rewarding green bar.
However, production code was often not entirely covered by the test case defined in the red phase.

Pairs were unmotivated during the red phase. They found it difficult to define tests before production
code for two reasons: (i) defining an oracle implied the difficulty of imagining a concrete scenario under
which to test system; (ii) arranging the data (e.g., instantiating objects and preparing them) necessary to
execute the JUnit asserts.

714

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

357

358

359

360

361

362

363

364

365

366

367

368

A: I am pretty sure we need to write a test to calculate the distances between points.
B: Any idea where to find the expected output distance between point A and B?
A: We could get such information by logging the execution.

This is in line with what was shown in Section 4.1.2. This difficulty was less clear for professional
developers. The students very often were not able to adequately define test cases of the right granularity. It
is possible that students were less capable than professionals to imagine the source code to be implemented.
This difference could be also due to the way students dealt with the card and its confirmations.

Refactoring was perceived as a risky undertaking; therefore the pairs performed refactoring only when
forced to.

A: Here I realize I should do something about this method. If I refactor it now it is going to
take forever.

B: If we were to touch anything here, I think it is gonna mess-up our code.

A: Yes, but we should do something about it later.

They performed refactoring only when it was needed and when all the confirmations were taken into
account. In this sense, refactoring was performed mostly when the previously written code was needed
for the implementation of the next confirmation. As for refactoring, it was very often skipped because the
pairs considered a development cycle (i.e., the sequence of phases in TDD) completed already when the
production code was written and all tests were passed (i.e., the green phase).

4.1.4 Trusting test cases

Test cases were considered a silver bullet: written test cases were never modified or updated. That is to
say, the pairs believed that the test cases they originally wrote were always correct even though passing a
single test case did not imply that the production code was correct.

A: All tests are passing! I guess we are done.
B: Yes, this confirmation seems completed to me.

In addition, tests were never modified in accordance with the evolution of the source code.

4.1.5 TDD conformance

We observed that TDD was not applied in two cases. In the first case, pairs wrote source code to deal
with a confirmation and then moved to the implementation of a new confirmation before concluding the
implementation of the former. In the second case, we observed that conformance degree to TDD gradually
decreased from the implementation of a confirmation to the next one. We also noted that pairs wrote more
production code than was strictly necessary for the implementation of a confirmation (see Section 4.1.3).
Pairs were often getting ahead of themselves by adding code to implement the next confirmation, before
finishing the current one.

4.1.6 Working in pairs

As is customary, driver developers were in charge of approaching problems and implementing solutions,
while pointer developers verified that drivers did not make any mistakes. We observed a slight difference
between professionals and students when working in pairs. Whereas professionals in the role of pointer
actively participated in problem solving activities related to the source code, and the implementation of
necessary test cases. Student pointers held aloof from such activities, focusing exclusively on their job of
verifying otthat the driver did not make any mistakes while dealing with the card and its confirmations.

A: There is an error because we have to implement Comparable to sort this list of objects.
B: Ok! Let me modify the code.

4.2 A Quantitative Look Inside the Study

To better understand the themes described in Section 4.1, we also analyzed quantitative data gathered by
Besouro. The Eclipse plug-in is able to identify different types of activities performed by the developers
(defined in Table 1) and their duration based on the heuristics defined in Kou et al. (2010). For example,
RG indicates that regression testing is performed without adding new code (test or production).

8/14

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

S

369

370

371

372

373

374
375

376

377

378

379

380

381

382

383

IS NOT PEER-REVIEWED

Table 1. Types of activities recognized within the IDE

Type Description

TF Test-first activity in which production code is written once a test passed.

TL Test-last activity in which production code is written before a test passed.

TA Test addition activity in which a new test is added to existing production code, and passed.

PR Production code activity in which production code is added without the accompanying test.
RG Regression testing activity in which tests are run but no new code (test or production) is added.
RF Refactoring activity in which production code is modified and then passes its associated test.

Table 2. Descriptive statistics for each type of development activity

TYPE n total mean median min max stddev
TF 22 663.82 30.17 18.73 4.12 136.03 30.42
TA 27 403.74 14.95 6.18 1.07 114.63 23.48

RG 6 4.36 0.73 0.41 0.23 1.58 0.61
RF 23 223.43 9.71 2.97 0.55 55.13 1452
PR 1 31.58 31.58 31.58 31.58 31.58 -

TL 5 92.00 18.4 13.18 8.27 44.07 14.86

Table 2 presents the descriptive statistics for the type of development activities recognized during the
study. In terms of total duration, the test first activity was predominant. When the activities are visualized
in temporal order (i.e., in Figure 3), the majority of the pairs had a cold start. The duration of the initial
activity was close to 50 minutes, indicating that pairs needed time to familiarize themselves with the
legacy code before being able to progress, as noted in Section 4.1.1 and 4.1.2. Two pairs (CC and ZP)
decided to start by writing tests for the existing code, in order to understand it.

PR
RF
RG
TA
TF
L

D

Figure 3. Development cycles for each pairs

Pairs tended to attempt to tackle more than they could handle, resulting in prolonged development
cycles. TDD advocates that a card should be divided into manageable sub-tasks which should not take
longer than 5 to 10 minutes to complete (Beck, 2003). Although TDD was followed most of the time,
the average duration of the test-first activities was 30 minutes. It appears that TDD was preceded by a
tacit design phase. Moreover, refactoring was performed in a manner inconsistent with the expected TDD
flow. In line with the what reported in Section 4.1.3, Table 2, and Figure 3, the refactoring activities were
executed in bulk.

Although we do not attempt statistical inference, it can be observed from Table 3 and Table 4, that the
professional pairs (DG, RB and ZP in Figure 3) had shorter, more granular activities than the students.

9/14

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

406

407

408

409

410

411

412

413

414

415

Table 3. Descriptive statistics for each type of development episode (Professionals)

TYPE n total mean median min max stddev
TF 10 167.06 16.71 13.31 4.12 38.88 12.26
TA 13 123.73 9.52 5.08 1.07 51.77 1367

RG 4 265 066 042 023 158 0.6l
RF 9 7592 844 222 118 3212 11.86
PR - - - - - - -

TL 37012 2327 1778 827 4407 18.54

Table 4. Descriptive statistics for each type of development episode (Students)

TYPE n total mean median min max stddev
TF 12 496.76 41.4 34.34 7.77 136.03 36.62
TA 14 280.01 20 7.86 2.35 114.63 29.55

RG 2 1.71 0.86 0.86 0.28 1.43 0.81
RF 14 14751 10.54 4.24 0.55 55.13 16.37
PR 1 31.58 31.58 3158 3158 31.58 -

TL 2 21.88 10.94 10.94 8.70 13.18 3.17

The professionals had a more agile mindset, whereas the students might have been influenced by the
exposure to waterfall and big design upfront strategies in their academic curricula, maturated before this
course.

Although the professionals were able to apply TDD without the need of an upfront design, and able
to divide a card into a set of manageable tasks, they adopted the same approach as the students for the
refactoring.

5 DISCUSSION

The “So What?” factor is relevant in empirical software engineering and ethnography, in particular.
That is, what significance do the results have for software development? One of the main goals of
ethnographically-informed study is to uncover implicit features of practice (Sharp and Robinson, 2004).
What do the results presented in this study tell us about TDD in general? And what do the achieved results
tell us about TDD applicability to the execution of software evolution tasks

Pairs seemed not to be concerned about the internal quality,’ since they skipped refactoring and
focused on completing a user card. The lack of concern regarding refactoring had also manifested during
a focus group we had previously run in a similar setting (Scanniello et al., 2016). In the participants’ view,
the only goal of TDD was to prompt them to write unit tests. The pairs needed to plan how to develop
their solution in advance by building a mental model of the solution that would later be put in form of unit
tests. In other words, we believe that the pairs approached the problem in a white box rather than a black
box fashion, i.e., they conceived and developed unit tests according to the implementation details framed
in their minds rather than the intended interface behavior.

Although the main impediment in the adoption of TDD is often reported to be the switching from
test-last to test-first (Causevic et al., 2011), it seemed that the real problem was switching from a plan-
intensive mindset to a lightweight and flexible one. The issue of how to design in the context of TDD
is considered a limiting factor (Causevic et al., 2011), as well as the issue of losing sight of the big
picture due to the lack of design (Begel and Nagappan, 2007). The pairs tended to write unit tests that
were large and complex rather than relying on small iterations aided by simple unit tests. This tendency
was particularly marked for students, whereas professionals were more aware of the benefits of granular
iterations. The professionals in our study, although new to the practice, were more disciplined with respect
to the students. This was the main difference between students and professionals, and may be a deciding
factor in the adoption/non-adoption of TDD. (Melnik and Maurer, 2005; Salman et al., 2015). The TDD
process does not explicitly include a preliminary planning phase that focuses on dividing the task at hand
into sub-tasks of a suitable granularity. We believe that clearly adding such phase to the process, for

3In this context defined as the code-based properties for creating and maintaining the developed solution.

10/14

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

434

435

436

437

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

example by integrating it with another practice,® would be beneficial in this regard.

Refactoring was not perceived as a step worthy of effort. It was often performed at last, and postponed
for several iterations. This was observed for both student and professional pairs. In this regard, better
support from the tool could be beneficial. The IDE could inform the user when a code smell is detected
after the end of each development cycle, i.e., once the unit tests for that feature passed. As TDD becomes
more widespread, there is a need for ad hoc tools integrated in the IDE to support the process (Causevic
et al., 2011; Scanniello et al., 2016).

Pairs felt most comfortable with the green phase, i.e., when writing production code that would make
a failing test pass. This was to be expected, as this phase is where the software was actually developed,
and seemed to be the most rewarding for the pairs. Nevertheless, pairs wrote production code regardless
of the associated test’s boundaries. In other words, they wrote more code than necessary to just pass the
test, giving priority to the mental model of the solution they built at the beginning of the task. Hence, we
reiterate the idea that pairs gave more importance to the model of the solution they built in their heads,
than the tests. We suspect that applying TDD in such a way can be detrimental. What we observed is a
mismatch between the mental solution and its implementation in the form of unit tests. If that were the
case, the IDE could support the process by prompting the user to take action with respect to the parts of
the system with poor test coverage. Nevertheless, we could not collect evidence to substantiate such a
claim, and so this remains a subject which we will address in future investigations.

We observed another behavior regarding TDD in the red phase; pairs never changed or removed
existing unit tests. In this regards, we believe that refactoring should be enforced not only for production
code, but also (and most importantly so) for unit tests, as they represent the core of the TDD practice.
Although the process employed by pairs seemed to differ in several respects from the one proposed by
Beck (2003), a traditional test-last approach was deliberately followed only in few situations.

We previously described the shortcomings the pairs faced when applying TDD to a legacy system.
Given Figure 3 and our observations, the pair that best applied TDD was RB. They did not suffer from
a cold start, but rather started by applying TDD to smaller sub-tasks than the other pairs. They also
emphasized refactoring, although most of it was left until the end.

6 LIMITATIONS

In this section, we discuss possible limitations of our study. Regarding the timing of the study, the duration
was approximately 3 hours for each pair, roughly half of a normal working day. Although we were able
to observe how developers use TDD during the initial development phase of a new feature of a legacy
system, the study omits the remainder of the process up to completion and implementation of the feature.
Thus we may be excluding some important elements from our observations.

Regarding the pairs, neither students nor the professionals were experts in TDD. Therefore, our
findings represent a setting in which new developers join a brownfield project in which the use of
TDD and pair-programming is enforced (e.g., within an agile-certified company). Nevertheless, we
acknowledge a difference between such settings and the ones in our study, in that usually a pair consists
of one new developer, and one already experienced in TDD.

Finally, social factors should be taken into account when evaluating the findings (e.g., evaluation
apprehension). In order to address with this concern, one of the authors (the observer) immersed himself
in the study and used an informal approach to interact with pairs. To mitigate social factors, students were
not evaluated based on the results they achieved in our study. Participation in the study was done on a
voluntary. Although the observer did not work together with the pairs, his presence was comparable to
that of a project manager, and thus unlikely to have biased our results.

7 CONCLUSION

In this paper, we report the results of an ethnographically-informed study conducted to investigate how
students and professional developers apply TDD to software evolution tasks. We kept as close as possible
to the natural settings in which developers, working in pairs, would normally carry on their everyday work
activities. Based on collected data, we have identified and confirmed some themes that can be summarized
in the following results: (i) refactoring is not performed as often as TDD requires and is considered less
important than other phases, (ii) the most important phase is the implementation of production code,

Ohttp://alistair.cockburn.us/Elephant+carpaccio

1114

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

490

491

492

493

494

495

496

497

498

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

(iii) unit tests are not up-to-date, (iv) participants first imagine the source code to be implemented and
then write test cases; and (v) students and professionals slightly differed in how they worked together in
pairs and in their application of TDD.

More qualitative studies are necessary to understand how TDD is currently practiced, as well as its
shortcomings and strengths. We believe that ethnographically-informed studies are needed in companies
which have adopted and are adopting the practice. Nevertheless, our results already set the stage for a
number of future investigations. For example, future work should address how refactoring is performed
during a TDD cycle, and how tools can support such activity. The traditional TDD cycle can be improved
by adding an additional phase focused on splitting the task at hand into simpler and finer-grained sub-tasks,
more apt to be framed in a unit test during the red phase. The developers tended to write more code than
necessary to pass the unit test at hand; thus leaving part of the code uncovered by tests. It stands to reason
that better tool support for the green phase (e.g., coverage metrics for each TDD cycle) can be beneficial.
In conclusion, we observed a shallow application of TDD by both professionals and novices. This can be
problematic for researchers assessing the impact of TDD, since the practice they are observing may be
substantially different from the one proposed in Beck (2003). One should therefore be cautious about the
detrimental effects that may arise when TDD is exercised in such way.

REFERENCES

Beck (2002). Test Driven Development: By Example. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

Beck, K. (2003). Test Driven Development: By Example. Addison Wesley.

Begel, A. and Nagappan, N. (2007). Usage and perceptions of agile software development in an industrial
context: An exploratory study. In Empirical Software Engineering and Measurement, 2007. ESEM
2007. First International Symposium on, pages 255-264. IEEE.

Beynon-Davies, P. (1997). Ethnography and information systems development: Ethnography of, for and
within is development. Information & Software Technology, 39(8):531-540.

Beynon-Davies, P., Tudhope, D., and Mackay, H. (1999). Information systems prototyping in practice.
Journal of Information Technology, 14(1):107-120.

Button, G. and Sharrock, W. (1996). Project work: The organisation of collaborative design and
development in software engineering. Computer Supported Cooperative Work, 5(4):369-386.

Carver, J., Jaccheri, L., Morasca, S., and Shull, F. (2003). Issues in using students in empirical studies in
software engineering education. In Proceedings of the International Symposium on Software Metrics,
pages 239—. IEEE Computer Society.

Causevic, A., Sundmark, D., and Punnekkat, S. (2011). Factors limiting industrial adoption of test driven
development: A systematic review. In Proceedings of International Conference on Software Testing,
pages 337-346. IEEE Computer Society.

Feathers, M. (2004). Working Effectively with Legacy Code. Prentice Hall.

Fowler, M. and Highsmith, J. (2001). The agile manifesto. Software Development, 9(8):28-35.

Fucci, D. and Turhan, B. (2014). On the role of tests in test-driven development: a differentiated and
partial replication. Empirical Software Engineering, 19(2):277-302.

Fucci, D., Turhan, B., Juristo, N., Dieste, O., Tosun-Misirli, A., and Oivo, M. (2015). Towards an
operationalization of test-driven development skills: An industrial empirical study. Information and
Software Technology, 68:82-97.

Garlan, D., Bachmann, E,, Ivers, J., Stafford, J., Bass, L., Clements, P., and Merson, P. (2010). Document-
ing Software Architectures: Views and Beyond. Addison-Wesley Professional, 2nd edition.

George, B. and Williams, L. (2004). A structured experiment of test-driven development. Information
and Software Technology, 46(5):337-342.

Geras, A., Smith, M., and Miller, J. (2004). A prototype empirical evaluation of test driven development.
In Software Metrics, 2004. Proceedings. 10th International Symposium on, pages 405-416.

Gupta, A. and Jalote, P. (2007). An experimental evaluation of the effectiveness and efficiency of the test
driven development. In Empirical Software Engineering and Measurement, 2007. ESEM 2007. First
International Symposium on, pages 285-294.

Hammersley, M. and Atkinson, P. (2007). Ethnography: Principles in Practice. Taylor & Francis.

Host, M., Regnell, B., and Wohlin, C. (2000). Using students as subjects—a comparative study of students
and professionals in lead-time impact assessment. Empirical Software Engineering, 5(3):201-214.

12/14

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

Jeffrie, R. (2001). Essential XP: Card, Conversation, Confirmation.

Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., El Emam, K., and Rosenberg, J. (2002).
Preliminary guidelines for empirical research in software engineering. IEEE Trans. Softw. Eng.,
28(8):721-734.

Kou, H., Johnson, P. M., and Erdogmus, H. (2010). Operational definition and automated inference of
test-driven development with zorro. Automated Software Engineering, 17(1):57-85.

Littman, D. C., Pinto, J., Letovsky, S., and Soloway, E. (1987). Mental models and software maintenance.
Journal of Systems and Software, 7(4):341-355.

Marchenko, A., Abrahamsson, P., and Thme, T. (2009). Long-term effects of test-driven development A
case study. In Proceedings of Internation Confernce on Agile Processes in Software Engineering and
Extreme Programming, pages 13—22. Springer.

Melnik, G. and Maurer, F. (2005). A cross-program investigation of students’ perceptions of agile methods.
In Software Engineering, 2005. ICSE 2005. Proceedings. 27th International Conference on, pages
481-488. IEEE.

Muller, M. and Tichy, W. (2001). Case study: extreme programming in a university environment. In
Proceedings of the 23rd International Conference on Software Engineering, pages 537-544.

Munir, H., Moayyed, M., and Petersen, K. (2014). Considering rigor and relevance when evaluating test
driven development: A systematic review. Information and Software Technology.

Pancur, M., Ciglaric, M., Trampus, M., and Vidmar, T. (2003). Towards empirical evaluation of test-driven
development in a university environment. In EUROCON 2003. Computer as a Tool. The IEEE Region
8., pages 83-86.

Passos, C., Cruzes, D. S., Dyb4, T., and Mendonga, M. (2012). Challenges of applying ethnography to
study software practices. In Proceedings of the ACM-IEEE international symposium on Empirical
software engineering and measurement, ESEM ’12, pages 9-18. ACM.

Rafique, Y. and Misic, V. B. (2013a). The effects of test-driven development on external quality and
productivity: A meta-analysis. IEEE Trans. Softw. Eng., 39(6):835-856.

Rafique, Y. and Misic, V. B. (2013b). The Effects of Test-Driven Development on External Quality and
Productivity: A Meta-Analysis. IEEE Transactions on Software Engineering, 39(6):835-856.

Robinson, H., Segal, J., and Sharp, H. (2007). Ethnographically-informed empirical studies of software
practice. Inf. Softw. Technol., 49(6):540-551.

Salman, L., Misirli, A. T., and Juristo, N. (2015). Are Students Representatives of Professionals in Software
Engineering Experiments? In Procedings of International Conference on Software Engineering, pages
666-676.

Salviulo, F. and Scanniello, G. (2014). Dealing with identifiers and comments in source code com-
prehension and maintenance: Results from an ethnographically-informed study with students and
professionals. In Proceedings of International Conference on Evaluation and Assessment in Software
Engineering, pages 48:1-48:10. ACM.

Scanniello, G. and Risi, M. (2013). Dealing with faults in source code: Abbreviated vs. full-word identifier
names. In Proceedings of International Conference of Software Maintenance. IEEE Computer Society.

Scanniello, G., Romano, S., Fucci, D., Turhan, B., and Juristo, N. (2016). Students’ and Professionals’
Perceptions of Test-driven Development: A Focus Group Study. In Proceedings of the 31th Annual
ACM Symposium on Applied Computing, SAC *16, New York, NY, USA. ACM.

Seaman, C. B. (1999). Qualitative methods in empirical studies of software engineering. IEEE Trans.
Softw. Eng., 25(4):557-572.

Sharp, H. and Robinson, H. (2004). An ethnographic study of xp practice. Empirical Softw. Eng.,
9(4):353-375.

Sharp, H., Robinson, H., and Woodman, M. (2000). Software engineering: Community and culture. /EEE
Softw., 17(1):40-47.

Shull, E.,, Melnik, G., Turhan, B., Layman, L., Diep, M., and Erdogmus, H. (2010). What Do We Know
about Test-Driven Development? IEEE Software, 27(6):16—-19.

Singer, J., Lethbridge, T., Vinson, N., and Anquetil, N. (1997). An examination of software engineering
work practices. In Proceedings of the Conference of the Centre for Advanced Studies on Collaborative
research, pages 21—. IBM Press.

Siniaalto, M. and Abrahamsson, P. (2007). A comparative case study on the impact of test-driven
development on program design and test coverage. In Proceedings of the International Symposium on

13/14

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

576 Empirical Software Engineering and Measurement, pages 275-284. ACM/IEEE Computer Society.
s77 Turhan, B., Layman, L., Diep, M., Erdogmus, H., and Shull, F. (2010). How effective is test-Driven
578 Development. Making Software: What Really Works, and Why We Believe It, pages 207-217.

s79 Wohlin, C., Runeson, P., Host, M., Ohlsson, M., Regnell, B., and Wesslén, A. (2012). Experimentation in
580 Software Engineering. Springer.

ss1 Zieliriski, K. and Szmuc, T. (2006). Preliminary analysis of the effects of pair programming and test-driven
582 development on the external code quality. Software engineering: evolution and emerging technologies,
583 130:113.

14/14
Peer] Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

