
Results from an Ethnographically-informed1

Study in the Context of Test Driven2

Development3

Simone Romano1, Davide Fucci2, Giuseppe Scanniello3, Burak Turhan4,4

and Natalia Juristo5
5

1University of Basilicata, Potenza (Italy)6

2University of Oulu, M-Group, Oulu (Finland)7

3University of Basilicata, Potenza (Italy)8

4University of Oulu, M-Group, Oulu (Finland)9

5University of Oulu, M-Group, Oulu (Finland)10

5Polytechnic University of Madrid, Madrid (Spain)11

ABSTRACT12

Background : Test-driven development (TDD) is an iterative software development technique where
unit-tests are defined before production code. Previous studies fail to analyze the values, beliefs, and
assumptions that inform and shape TDD.
Aim: We designed and conducted a qualitative study to understand the values, beliefs, and assumptions
of TDD. In particular, we sought to understand how novice and professional software developers, arranged
in pairs (a driver and a pointer), perceive and apply TDD.
Method : 14 novice software developers, i.e., graduate students in Computer Science at the University
of Basilicata, and six professional software developers with work one to 10 years work experience
participated in our ethnographically-informed study. We asked the participants to implement a new feature
for an existing software written in Java. We immersed ourselves in the context of the study, and collected
data by means of contemporaneous field notes, audio recordings, and other artifacts.
Results: A number of insights emerge from our analysis of the collected data, the main ones being:
(i) refactoring (one of the phases of TDD) is not performed as often as the process requires and it is
considered less important than other phases, (ii) the most important phase is implementation, (iii) unit
tests for unimplemented functionalities or behaviors are almost never up-to-date, (iv) participants first
build a sort of mental model of the source code to be implemented and only then write test cases on the
basis of this model; and (v) apart from minor differences, professional developers and students applied
TDD in a similar fashion.
Conclusions: Developers write quick-and-dirty production code to pass the tests and ignore refactoring.

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Keywords: Ethnographically-informed Study, Qualitative Study, Test Driven Development32

1 INTRODUCTION33

Test-driven development (TDD) is an iterative software development practice within agile methodolo-34

gies (Beck, 2002). Some software organizations have been quick to adopt TDD, while others are still35

evaluating its benefits in terms of cost, quality, and productivity (Causevic et al., 2011; Rafique and Misic,36

2013a). A number of primary (e.g., controlled and quasi-experiments) and secondary (e.g., systematic37

literature reviews) empirical studies have been published. The primary studies—e.g., Fucci and Turhan38

(2014); Salman et al. (2015)—have been quantitative in nature, and have produced contrasting or inconclu-39

sive results (Shull et al., 2010). The secondary studies summarize the empirical research results regarding40

TDD by aggregating, to varying extent, the evidence from controlled experiments, quasi-experiments, and41

case studies (Causevic et al., 2011; Rafique and Misic, 2013a; Shull et al., 2010; Turhan et al., 2010).42

TDD has been marginally investigated from a qualitative point of view and from the perspective of the43

developer (Marchenko et al., 2009; Siniaalto and Abrahamsson, 2007). Qualitative studies, unlike quanti-44

tative ones, inquire into the underlyinge reasons and motivations behind a given phenomenon (Wohlin45

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

et al., 2012). In this paper, we present the results of an ethnographically-informed study involving students46

and professional software developers. Our goal is to gain insights into how they apply TDD and deal with47

each of its phases. In particular, we sought to explore the values, beliefs, and assumptions that inform and48

shape the application of TDD and its phases. Given this motivation, our methodological approach can be49

characterized as ethnographic (Hammersley and Atkinson, 2007). We involved 14 graduate students in50

Computer Science at the University of Basilicata and six professional developers with one to 10 years51

work experience. We asked the participants, working in pairs, to add a new functionality to an existing52

software implemented in Java. The software is a complex, industrial-like case of which participants had53

some knowledge. We immersed ourselves in the study environment and participated in conversations, and54

asked the participants how they were applying TDD to perform the assigned implementation task. We55

collected data by means of contemporaneous field notes, audio recordings of discussions, and copies of56

artifacts produced by the participants during the study. Information about participants’ conformance to57

TDD was also gathered through an automated tool installed in the participants’ integrated development58

environment (IDE). The remainder of the paper is organized as follows. In Section 2, we discuss related59

work. In Section 3 we explain our method, while in Section 4 we present our findings. Section 5 contains60

a discussion of our findings, and Section 6 a discussion of the ways in which our research might be limited.61

Final remarks and future work conclude the paper in Section 7.62

2 RELATED WORK63

We first discuss ethnographically-informed studies in software engineering, and then papers reporting64

investigations regarding TDD.65

2.1 Ethnographically-informed Studies66

Little ethnographic research exists in the field of software engineering. Beynon-Davies (1997) observed67

that ethnographic research may be useful for capturing knowledge about intangible or unquantifiable68

aspects of the software life cycle. Later, Beynon-Davies et al. (1999) used ethnographic methods69

to investigate the negotiated order of work and the role of collective memory in rapid application70

development. Button and Sharrock (1996) carried out an ethnographically-informed study in global71

software development with the goal of explaining knowledge that is displayed in collaborative actions72

and interactions of design and development. Sharp and Robinson (2004) used ethnographic methods in73

their study of eXtreme Programming (XP) focusing on developers in a small company implementing74

web-based intelligent advertisements. Their result suggested that XP developers were clearly “agile.”75

Singer et al. (1997) studied the behavior of software engineers responsible for maintaining a large76

telecommunications system at a particular company. The authors examined developers’ habits and tool77

usage during software development. The authors discovered a discrepancy between what developers78

claimed to do when performing maintenance operations, and what they actually did. In particular,79

developers claimed to solve problems by “reading documentation”, while in fact Singer et al. found80

that more often than not they resolved issues by looking up and copying source code. Later,Salviulo81

and Scanniello (2014) conducted an ethnographically-informed study with students and professionals to82

understand the role of comments and identifiers in source code comprehensibility and maintainability.83

Outcomes can be summarized as follows: (i) professional developers (with respect to students) prefer84

to deal with identifiers rather than comments, (ii) all participants believed essential the use of naming85

convention techniques for specifying identifiers, and (iii) all participants stated that the names of identifiers86

are important and developers should properly choose them. Ethnography can thus be a useful tool for87

detecting and explaining such a kind of discrepancies, and to make clearer un-remarked aspects of a88

practice (Sharp et al., 2000). Indeed, this is the main motivation behind our use of ethnography in the89

present study.90

2.2 Empirical studies on TDD91

Several quantitative studies have assessed the effectiveness of TDD, and the results of these studies92

have in turn been examined in a number of systematic reviews and meta-analyses (Munir et al., 2014;93

Rafique and Misic, 2013b; Turhan et al., 2010). The results of these analyses have been contradictory94

regarding both software products (e.g., defects) and developers (e.g., productivity). Interestingly, one of95

the secondary studies (Causevic et al., 2011) suggested that insufficient adherence to the TDD protocol96

and insufficient testing skills are among the factors hampering industrial adoption of TDD. Only a few97

2/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

studies have focused on the perception of developers regarding the TDD practice. For example, Muller98

and Tichy (2001) examined several Agile methodologies, including TDD, within a university course and99

found that TDD was one of the most difficult techniques to adopt because developers felt that it was100

impractical to write test cases before coding. On the other hand, Gupta and Jalote (2007) reported that101

students felt more confident that testing effort applied by using TDD would yield better results than a102

traditional test-after-code setting (test-last approach), while feeling the need for some upfront design.103

Pancur et al. (2003) reported that students perceived TDD as more difficult for professionals to adopt. In104

particular, students perceived TDD as a practice that hindered their productivity, efficiency, and the quality105

of their code. Both students and professionals agreed that TDD helped in devising a better design and106

prevents bugs, but they also believed that this practice cannot replace a quality assurance engineer (Shull107

et al., 2010). Even more interesting, participants also believed that the use of TDD improved confidence108

by minimizing the fear that existing parts of well-functioning source code would be compromised by the109

implementation of new features (Geras et al., 2004).110

While quantitative studies provide objective frameworks for assessing TDD effectiveness, qualitative111

studies may enable a deeper understanding of TDD and its use. Existing studies have relied upon non-112

interactive research methods such as questionnaires. In quantitative studies, TDD is often compared to113

a test-last approach (e.g., (Siniaalto and Abrahamsson, 2007)). In the present study we employed an114

ethnographic approach in order to develop a better understanding of TDD, the underlying phenomena, and115

developer perceptions thereof. We are not interested in comparing TDD to other development techniques116

or practices. Furthermore, we included both students and professionals in our study, since previous work117

has found that perceptions of TDD vary between these two groups—e.g., Salman et al. (2015).118

3 ETHNOGRAPHIC STUDY119

Qualitative studies are considered a necessary complement to quantitative investigations (Seaman, 1999),120

essential for gaining an understanding of the reasons and motivations behind the problem under study.121

Among qualitative methodological approaches, ethnographic studies are better suited to ask questions122

such as how, why and what are the characteristics of (Robinson et al., 2007). Usually, such investigations123

are conducted on a small number of subjects, while researchers conduct study by immersing themselves124

in the study environment (Sharp and Robinson, 2004). In some fields of research, such as software125

engineering, this practice is not always possible (e.g., because of time constraints). In such cases, it is126

common to adapt ethnographic methods to the shorter timeframe (Robinson et al., 2007; Salviulo and127

Scanniello, 2014).128

3.1 Definition and Context129

TDD is an iterative software development technique where unit-tests are defined before production code.130

Developers repeat short cycles consisting of: (i) writing a unit test for an unimplemented functionality or131

behavior, namely the red phase; (ii) supplying the minimal amount of production code to make unit tests132

pass, namely the green phase; (iii) applying refactoring where necessary, and checking that all tests are133

still passed after refactoring (Beck, 2002).134

Often pair-programming is used together with TDD (George and Williams, 2004; Zieliriski and135

Szmuc, 2006). For this reason, in the present study we focused on programmer pairs instead of teams or136

organizations. In this setting, we were interested in exploring the following topics:137

how practitioners and novice programmers perceive TDD138

how they approach each phase of TDD139

why they adhere (or do not adhere) to TDD140

why they feel more comfortable with one or another of the TDD phases141

how refactoring is carried out in TDD142

what are the characteristics the developers believe an application must have so that they can success-143

fully apply TDD144

3/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

In order to mitigate subjective assumptions, we considered all the activities related to our study as145

“strange”, as Sharp et al. (2000) suggests.146

The participants in the study were 14 graduate students in Computer Science at the University of147

Basilicata and six professional software developers taking a specialization course at the same university.148

Both professionals and students were familiar with TLD (Test Last Development), a more traditional de-149

velopment technique where unit tests are written after a feature (or a set of related features) is implemented150

in a given software.151

In the literature, graduate students are considered not far from novice software developers —e.g., Kitchen-152

ham et al. (2002); Scanniello and Risi (2013). However, a comparison with professional developers would153

help in better understanding whether and under which conditions this assumption can be considered154

true (Carver et al., 2003; Höst et al., 2000). This may not be considered as the main point here, but it155

might represent an additional contribution of our study.156

The Professional developers participating in this study worked in different small/medium sized157

companies located in southern Italy. The most experienced among the professional held a Master degree158

in Computer Science, while others held Bachelor degrees in Computer Science. All the professionals159

had knowledge of testing approaches and techniques (e.g., unit testing, integration testing, and system160

testing) before participating in our study. At the time of the study they were attending a refresher course161

on agile software development. The lecturer devoted the greater part of the course to the introduction162

of TDD and to its application it to real-life cases. The course lasted for eight weeks (with four hours of163

frontal instructions per week) and included both homework and classwork.164

The students participated in our study as part of a series of optional laboratory exercises conducted165

within an Information System (IS) course. This course covered elements of software testing, software166

development, software maintenance, agile development techniques with a focus on TDD, XP, regression167

testing, and refactoring. Homework and classwork provided students with opportunities to practice168

TDD, regression testing, and a testing framework (i.e., JUnit1). Java was the programming language of169

reference used throughout the class, for both homework and the classwork. Before participating in the170

study, the students had passed the following courses: Procedural Programming, Software Engineering171

I, Object-Oriented Programming I and II, and Databases. The students had knowledge regarding the172

development of object-oriented software systems and/or web-based applications. Their prior knowledge173

can be considered rather homogeneous. The same lecturer held both the training course for professional174

adjournment and IS.175

Pairs worked on MusicPhone—an application written in Java which runs on GPS-enabled devices.176

MusicPhone gives the user recommendations for artists he/she may like, and finds upcoming concerts177

for such artists and bands. MusicPhone was primarily chosen for the availability of its source code and178

because it was used in previous empirical studies on TDD (e.g., (Fucci et al., 2015; Salman et al., 2015)).179

The total number of classes in the existing application was 30, while the non-commented lines of180

source code were 1,225. The number of methods and constructors was 157 and 22, respectively. The181

participants worked on a legacy system, i.e., an existing codebase that is not covered by tests (Feathers,182

2004). We asked pairs to implement a new feature for MusicPhone. This feature, Compute an itinerary183

for artists, can be described as follows:184

185

An itinerary is a list of destinations, where each destination contains artist’s concert information and186

distance to the concert’s location from the previous destination. The first destination’s distance in the list187

is the distance from user’s current position. The itinerary must be chronologically ordered according to188

the start date of the concerts in it.189

190

This feature was described by means of a user card (or simply card, from here on) and its confirmations.191

We chose this kind of representation because a traditional card is a very high-level definition of a192

requirement that contains just enough information for the developers to reasonably estimate the effort193

required to implement it. In other words, a card contains little information for the implementation of a194

requirement. In agile methodologies, it is customary to flesh out a card (e.g., during the brainstorming195

with stakeholders) when it has to be implemented. This was why we provided participants with a card196

with confirmations. Confirmations summarize conversations among stakeholders, namely they revolve197

around those they have been reached on a given aspect (e.g., constraints of a functionality for the software198

1http://junit.org

4/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

underdevelopment) (Jeffrie, 2001). In this sense, they are a sort of acceptance test for a story. The more199

formal and unambiguous confirmations are, the better.200

The story card used in our study is shown in Figure 1 (top). It contains four confirmations (on the201

bottom) that allow the developer to better understand the feature to be implemented and constraints to be202

tackled.203

Figure 1. Story card used in the study

MusicPhone source code was scarcely commented (56 comment lines in total), as is often the case in204

the context of agile software development, where the goal is to produce clean code and working software205

is preferred over documentation Fowler and Highsmith (2001). We provided the participants with the206

documentation of MusicPhone architecture. The use of such documentation in agile projects is common207

in order to avoid big design upfront (Garlan et al., 2010). Both source code comments and documentation208

were written in the English language.209

All participants were familiar with the problem domain of MusicPhone because the lecturer pre-210

viously used parts of the same system for homework and classwork when introducing TDD. Used211

parts of MusicPhone did not contain the source code we asked the participants to implement in our212

ethnographically-informed study.213

3.2 The Setting214

For the scope of this ethnography, we kept as close as possible to the natural settings in which the215

developers, working in pairs, would carry on their everyday work activities. Describing the setting216

is a good practice in ethnographically-informed studies, as the spatial organization could be relevant217

insofar for developers working to accomplish a given task (Sharp and Robinson, 2004). Figure 2 shows a218

pair of participants in the physical settings where they worked on the task. The participants worked on219

MusicPhone following a fixed schedule. Only the observer and the pair were present each time. All the220

pairs used the same laptop to carry out the task. These measures were taken to minimize any possible bias221

arising from differences in physical settings.222

3.3 The Study223

The study was conducted by a single observer (the first author of this paper) between May and July 2015,224

and was founded on one-to-one sessions between the observer and each pair. The use of one-to-one225

sessions is almost customary in ethnographically-informed studies—e.g., Robinson et al. (2007). We226

conducted our study in Italian to minimize any bias arising from participants’ varying levels of familiarity227

with the spoken English language.228

The observer spent more than three hours working with each pair. As mentioned before, all the pairs229

had some familiarity with some parts of MusicPhone source code which were previously the object of230

homework and classwork. This scenario is not unlike in industry; developers often do not exactly know231

all the source code of a given application, but are familiar with certain parts of it.232

The observer, if needed, engaged with the pairs—without conditioning their work habit—by focusing233

on both the application and solution domains of MusicPhone. Such interaction is critical because: (i) the234

ethnographic methodological approach encourages participation (Sharp et al., 2000); (ii) it provides the235

observer with opportunities to appreciate the perspective of developers while carrying out assigned tasks;236

5/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

Figure 2. A pair of professional developers

and (iii) it provides the observer with opportunities to gather information on how a method is applied237

(TDD in our case). The observer in our study (as customary) avoided influencing pairs’ task execution.238

Data were collected in a variety of forms, including contemporaneous field notes, audio recordings of239

discussions, and copies of various artifacts (e.g., source code and notes). In addition, we also gathered240

information on developer’s conformance to TDD. This was possible because pairs used Besouro,2 an241

Eclipse plug-in capable of tracing how developers applied TDD. This plug-in runs in the background and242

does not interfere with the use of Eclipse.243

3.4 Design244

The study was organized in the following four steps:245

1. Pre-questionnaire. Each participant was asked to fill out a pre-questionnaire to gather information246

about their experience in the industry, grade point average, and knowledge. We used this information247

to get further information on participants, namely the context of the study (see Section 3.1). Gathered248

information was also used to select the IDE. We opted for Eclipse because participants had a good249

level of familiarity with this IDE.250

2. Introduction to the study. The observer introduced the study to each pair. A prearranged schema251

was employed, namely a few sentences to describe what participants had to do. The observer did252

not provide details on research topics of interest. At the end of this step, participants could ask253

questions for clarification.254

3. Inspecting confirmations. In this step, pairs were asked to carefully read the card and its confirma-255

tions for Compute an itinerary for concerts. Pairs were working on a new feature divided into 4256

confirmations (see Figure 1), presented in logical order. A pair had to tackle a confirmation before257

passing to the subsequent one. Each confirmation required the implementation of one or more test258

cases.259

4. Tackling with a confirmation. The observer did not suggest any strategy to deal with this imple-260

mentation task. For example, pairs could freely decide to inspect the entire source code before261

or after having defined test cases. The observer appointed neither the driver3 nor the pointer4 (or262

navigator) developers. Each pair freely choose who was the driver and who the pointer. During the263

implementation the roles could be swapped.264

In our study, the observer immersed himself and participated in step 4–joining in conversations and265

reading the card and its confirmations (to clarify them, if necessary). He did not disturb or change the266

natural setting of our study. An informal approach was used to probe possible issues in a naturalistic267

manner Passos et al. (2012). The observer possibly provided support for steps 1, 2, and 3. He could clarify268

concerns related to the study and/or to questions of used pre-questionnaires.269

2Besouro - https://github.com/brunopedroso/besouro
3The developer in charge of writing code.
4The developer in charge of reviewing each line of code as it is typed in.

6/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

4 FINDINGS270

Our analysis followed a standard approach—i.e., Beynon-Davies et al. (1999)). We identified the main271

themes emerging from our data.272

4.1 Ethnographic Analysis273

The goal of an ethnographic analysis is to find insights from recurrent themes. The meaning behind the274

observed activities must be inferred from the details of the collected data (Sharp and Robinson, 2004).275

In this process, the observer must first reflect upon the experience gained in the immersion and used all276

of the data to recollect, revisit, and reconsider what was found, he then discussed them with the other277

researchers. In this case, the discussion was based on audio recordings and source code written by the278

participants, and other artifacts such as the data collected by the IDE plug-in.279

When a theme appeared to be emerging in a group (i.e., students and/or professional developers), we280

searched for data in the same group that could contradict this theme. If no contradictory evidence emerged281

then the theme was pursued. This kind of analysis proceeded iteratively as themes were identified, dropped,282

or validated and then confirmed. This approach required a considerable degree of effort, especially in the283

validation of potential themes with respect to the collected data. Potential themes were identified during284

and after conducting the study.285

In the following subsections, we illustrate and detail the themes that emerged in our analysis.286

4.1.1 Dealing with legacy code287

Before tackling a confirmation, pairs took some time to comprehend the legacy source code. Both students288

and professionals read a confirmation and then browsed source code to specify the tests needed for that289

confirmation. In the following example, one pair of professionals, while reading a confirmation, inspected290

the source code to re-use an existing method:291

A: In order to find the starting point of the itinerary we should have a look at the Recommender292

class, I spotted a method we must re-utilize.293

B: Let’s find it!294

This process of understanding source code was time consuming. However, with each successive confirma-295

tion the pair became more familiar with the MusicPhone source code, and thus spent less time working296

through it. Nevertheless, most of the pairs did not use unit tests to understand existing source code in an297

explorative manner, but rather relied on visual inspections.298

4.1.2 Discussion on the card299

The pairs preferred to discuss an implementation plan for a given confirmation before passing to the300

subsequent phase of development. The discussion regarded the implementation details rather than the301

definition of test cases and identification of refactoring possibilities. For example, one pair of professionals302

had the following discussion regarding confirmation 1:303

A: We need to fetch each artist’s destinations list, that should be an ArrayList of Destination304

objects... Do you know how to use an ArrayList?305

B: Should we define a test first?306

A: First let’s find out how to work with an ArrayList.307

Often the mental model is built using information such as syntactical structure and the control and data308

flow of existing source code (Littman et al., 1987). In our case, it seemed that participants first built a sort309

of mental model of the source code to be implemented, and only then wrote test cases on the basis of this310

model. This point is very interesting and deserves future research. In theory a developer should be able to311

define a test only by imagining the interface of the code to be implemented rather than it entirely. Our312

work sets the stage for further work in this direction.313

4.1.3 TDD phases314

Pairs preferred the green phase because it involved writing production code and the rewarding green bar.315

However, production code was often not entirely covered by the test case defined in the red phase.316

Pairs were unmotivated during the red phase. They found it difficult to define tests before production317

code for two reasons: (i) defining an oracle implied the difficulty of imagining a concrete scenario under318

which to test system; (ii) arranging the data (e.g., instantiating objects and preparing them) necessary to319

execute the JUnit asserts.320

7/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

A: I am pretty sure we need to write a test to calculate the distances between points.321

B: Any idea where to find the expected output distance between point A and B?322

A: We could get such information by logging the execution.323

This is in line with what was shown in Section 4.1.2. This difficulty was less clear for professional324

developers. The students very often were not able to adequately define test cases of the right granularity. It325

is possible that students were less capable than professionals to imagine the source code to be implemented.326

This difference could be also due to the way students dealt with the card and its confirmations.327

Refactoring was perceived as a risky undertaking; therefore the pairs performed refactoring only when328

forced to.329

A: Here I realize I should do something about this method. If I refactor it now it is going to330

take forever.331

B: If we were to touch anything here, I think it is gonna mess-up our code.332

A: Yes, but we should do something about it later.333

They performed refactoring only when it was needed and when all the confirmations were taken into334

account. In this sense, refactoring was performed mostly when the previously written code was needed335

for the implementation of the next confirmation. As for refactoring, it was very often skipped because the336

pairs considered a development cycle (i.e., the sequence of phases in TDD) completed already when the337

production code was written and all tests were passed (i.e., the green phase).338

4.1.4 Trusting test cases339

Test cases were considered a silver bullet: written test cases were never modified or updated. That is to340

say, the pairs believed that the test cases they originally wrote were always correct even though passing a341

single test case did not imply that the production code was correct.342

A: All tests are passing! I guess we are done.343

B: Yes, this confirmation seems completed to me.344

In addition, tests were never modified in accordance with the evolution of the source code.345

4.1.5 TDD conformance346

We observed that TDD was not applied in two cases. In the first case, pairs wrote source code to deal347

with a confirmation and then moved to the implementation of a new confirmation before concluding the348

implementation of the former. In the second case, we observed that conformance degree to TDD gradually349

decreased from the implementation of a confirmation to the next one. We also noted that pairs wrote more350

production code than was strictly necessary for the implementation of a confirmation (see Section 4.1.3).351

Pairs were often getting ahead of themselves by adding code to implement the next confirmation, before352

finishing the current one.353

354

4.1.6 Working in pairs355

As is customary, driver developers were in charge of approaching problems and implementing solutions,356

while pointer developers verified that drivers did not make any mistakes. We observed a slight difference357

between professionals and students when working in pairs. Whereas professionals in the role of pointer358

actively participated in problem solving activities related to the source code, and the implementation of359

necessary test cases. Student pointers held aloof from such activities, focusing exclusively on their job of360

verifying otthat the driver did not make any mistakes while dealing with the card and its confirmations.361

A: There is an error because we have to implement Comparable to sort this list of objects.362

B: Ok! Let me modify the code.363

4.2 A Quantitative Look Inside the Study364

To better understand the themes described in Section 4.1, we also analyzed quantitative data gathered by365

Besouro. The Eclipse plug-in is able to identify different types of activities performed by the developers366

(defined in Table 1) and their duration based on the heuristics defined in Kou et al. (2010). For example,367

RG indicates that regression testing is performed without adding new code (test or production).368

8/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

Table 1. Types of activities recognized within the IDE

Type Description
TF Test-first activity in which production code is written once a test passed.
TL Test-last activity in which production code is written before a test passed.
TA Test addition activity in which a new test is added to existing production code, and passed.
PR Production code activity in which production code is added without the accompanying test.
RG Regression testing activity in which tests are run but no new code (test or production) is added.
RF Refactoring activity in which production code is modified and then passes its associated test.

Table 2. Descriptive statistics for each type of development activity

TYPE n total mean median min max stddev
TF 22 663.82 30.17 18.73 4.12 136.03 30.42
TA 27 403.74 14.95 6.18 1.07 114.63 23.48
RG 6 4.36 0.73 0.41 0.23 1.58 0.61
RF 23 223.43 9.71 2.97 0.55 55.13 14.52
PR 1 31.58 31.58 31.58 31.58 31.58 -
TL 5 92.00 18.4 13.18 8.27 44.07 14.86

Table 2 presents the descriptive statistics for the type of development activities recognized during the369

study. In terms of total duration, the test first activity was predominant. When the activities are visualized370

in temporal order (i.e., in Figure 3), the majority of the pairs had a cold start. The duration of the initial371

activity was close to 50 minutes, indicating that pairs needed time to familiarize themselves with the372

legacy code before being able to progress, as noted in Section 4.1.1 and 4.1.2. Two pairs (CC and ZP)373

decided to start by writing tests for the existing code, in order to understand it.

Figure 3. Development cycles for each pairs

374

Pairs tended to attempt to tackle more than they could handle, resulting in prolonged development375

cycles. TDD advocates that a card should be divided into manageable sub-tasks which should not take376

longer than 5 to 10 minutes to complete (Beck, 2003). Although TDD was followed most of the time,377

the average duration of the test-first activities was 30 minutes. It appears that TDD was preceded by a378

tacit design phase. Moreover, refactoring was performed in a manner inconsistent with the expected TDD379

flow. In line with the what reported in Section 4.1.3, Table 2, and Figure 3, the refactoring activities were380

executed in bulk.381

Although we do not attempt statistical inference, it can be observed from Table 3 and Table 4, that the382

professional pairs (DG, RB and ZP in Figure 3) had shorter, more granular activities than the students.383

9/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

Table 3. Descriptive statistics for each type of development episode (Professionals)

TYPE n total mean median min max stddev
TF 10 167.06 16.71 13.31 4.12 38.88 12.26
TA 13 123.73 9.52 5.08 1.07 51.77 1367
RG 4 2.65 0.66 0.42 0.23 1.58 0.61
RF 9 75.92 8.44 2.22 1.18 32.12 11.86
PR - - - - - - -
TL 3 70.12 23.27 17.78 8.27 44.07 18.54

Table 4. Descriptive statistics for each type of development episode (Students)

TYPE n total mean median min max stddev
TF 12 496.76 41.4 34.34 7.77 136.03 36.62
TA 14 280.01 20 7.86 2.35 114.63 29.55
RG 2 1.71 0.86 0.86 0.28 1.43 0.81
RF 14 147.51 10.54 4.24 0.55 55.13 16.37
PR 1 31.58 31.58 31.58 31.58 31.58 -
TL 2 21.88 10.94 10.94 8.70 13.18 3.17

The professionals had a more agile mindset, whereas the students might have been influenced by the384

exposure to waterfall and big design upfront strategies in their academic curricula, maturated before this385

course.386

Although the professionals were able to apply TDD without the need of an upfront design, and able387

to divide a card into a set of manageable tasks, they adopted the same approach as the students for the388

refactoring.389

5 DISCUSSION390

The “So What?” factor is relevant in empirical software engineering and ethnography, in particular.391

That is, what significance do the results have for software development? One of the main goals of392

ethnographically-informed study is to uncover implicit features of practice (Sharp and Robinson, 2004).393

What do the results presented in this study tell us about TDD in general? And what do the achieved results394

tell us about TDD applicability to the execution of software evolution tasks395

Pairs seemed not to be concerned about the internal quality,5 since they skipped refactoring and396

focused on completing a user card. The lack of concern regarding refactoring had also manifested during397

a focus group we had previously run in a similar setting (Scanniello et al., 2016). In the participants’ view,398

the only goal of TDD was to prompt them to write unit tests. The pairs needed to plan how to develop399

their solution in advance by building a mental model of the solution that would later be put in form of unit400

tests. In other words, we believe that the pairs approached the problem in a white box rather than a black401

box fashion, i.e., they conceived and developed unit tests according to the implementation details framed402

in their minds rather than the intended interface behavior.403

Although the main impediment in the adoption of TDD is often reported to be the switching from404

test-last to test-first (Causevic et al., 2011), it seemed that the real problem was switching from a plan-405

intensive mindset to a lightweight and flexible one. The issue of how to design in the context of TDD406

is considered a limiting factor (Causevic et al., 2011), as well as the issue of losing sight of the big407

picture due to the lack of design (Begel and Nagappan, 2007). The pairs tended to write unit tests that408

were large and complex rather than relying on small iterations aided by simple unit tests. This tendency409

was particularly marked for students, whereas professionals were more aware of the benefits of granular410

iterations. The professionals in our study, although new to the practice, were more disciplined with respect411

to the students. This was the main difference between students and professionals, and may be a deciding412

factor in the adoption/non-adoption of TDD. (Melnik and Maurer, 2005; Salman et al., 2015). The TDD413

process does not explicitly include a preliminary planning phase that focuses on dividing the task at hand414

into sub-tasks of a suitable granularity. We believe that clearly adding such phase to the process, for415

5In this context defined as the code-based properties for creating and maintaining the developed solution.

10/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

example by integrating it with another practice,6 would be beneficial in this regard.416

Refactoring was not perceived as a step worthy of effort. It was often performed at last, and postponed417

for several iterations. This was observed for both student and professional pairs. In this regard, better418

support from the tool could be beneficial. The IDE could inform the user when a code smell is detected419

after the end of each development cycle, i.e., once the unit tests for that feature passed. As TDD becomes420

more widespread, there is a need for ad hoc tools integrated in the IDE to support the process (Causevic421

et al., 2011; Scanniello et al., 2016).422

Pairs felt most comfortable with the green phase, i.e., when writing production code that would make423

a failing test pass. This was to be expected, as this phase is where the software was actually developed,424

and seemed to be the most rewarding for the pairs. Nevertheless, pairs wrote production code regardless425

of the associated test’s boundaries. In other words, they wrote more code than necessary to just pass the426

test, giving priority to the mental model of the solution they built at the beginning of the task. Hence, we427

reiterate the idea that pairs gave more importance to the model of the solution they built in their heads,428

than the tests. We suspect that applying TDD in such a way can be detrimental. What we observed is a429

mismatch between the mental solution and its implementation in the form of unit tests. If that were the430

case, the IDE could support the process by prompting the user to take action with respect to the parts of431

the system with poor test coverage. Nevertheless, we could not collect evidence to substantiate such a432

claim, and so this remains a subject which we will address in future investigations.433

We observed another behavior regarding TDD in the red phase; pairs never changed or removed434

existing unit tests. In this regards, we believe that refactoring should be enforced not only for production435

code, but also (and most importantly so) for unit tests, as they represent the core of the TDD practice.436

Although the process employed by pairs seemed to differ in several respects from the one proposed by437

Beck (2003), a traditional test-last approach was deliberately followed only in few situations.438

We previously described the shortcomings the pairs faced when applying TDD to a legacy system.439

Given Figure 3 and our observations, the pair that best applied TDD was RB. They did not suffer from440

a cold start, but rather started by applying TDD to smaller sub-tasks than the other pairs. They also441

emphasized refactoring, although most of it was left until the end.442

6 LIMITATIONS443

In this section, we discuss possible limitations of our study. Regarding the timing of the study, the duration444

was approximately 3 hours for each pair, roughly half of a normal working day. Although we were able445

to observe how developers use TDD during the initial development phase of a new feature of a legacy446

system, the study omits the remainder of the process up to completion and implementation of the feature.447

Thus we may be excluding some important elements from our observations.448

Regarding the pairs, neither students nor the professionals were experts in TDD. Therefore, our449

findings represent a setting in which new developers join a brownfield project in which the use of450

TDD and pair-programming is enforced (e.g., within an agile-certified company). Nevertheless, we451

acknowledge a difference between such settings and the ones in our study, in that usually a pair consists452

of one new developer, and one already experienced in TDD.453

Finally, social factors should be taken into account when evaluating the findings (e.g., evaluation454

apprehension). In order to address with this concern, one of the authors (the observer) immersed himself455

in the study and used an informal approach to interact with pairs. To mitigate social factors, students were456

not evaluated based on the results they achieved in our study. Participation in the study was done on a457

voluntary. Although the observer did not work together with the pairs, his presence was comparable to458

that of a project manager, and thus unlikely to have biased our results.459

7 CONCLUSION460

In this paper, we report the results of an ethnographically-informed study conducted to investigate how461

students and professional developers apply TDD to software evolution tasks. We kept as close as possible462

to the natural settings in which developers, working in pairs, would normally carry on their everyday work463

activities. Based on collected data, we have identified and confirmed some themes that can be summarized464

in the following results: (i) refactoring is not performed as often as TDD requires and is considered less465

important than other phases, (ii) the most important phase is the implementation of production code,466

6http://alistair.cockburn.us/Elephant+carpaccio

11/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

(iii) unit tests are not up-to-date, (iv) participants first imagine the source code to be implemented and467

then write test cases; and (v) students and professionals slightly differed in how they worked together in468

pairs and in their application of TDD.469

More qualitative studies are necessary to understand how TDD is currently practiced, as well as its470

shortcomings and strengths. We believe that ethnographically-informed studies are needed in companies471

which have adopted and are adopting the practice. Nevertheless, our results already set the stage for a472

number of future investigations. For example, future work should address how refactoring is performed473

during a TDD cycle, and how tools can support such activity. The traditional TDD cycle can be improved474

by adding an additional phase focused on splitting the task at hand into simpler and finer-grained sub-tasks,475

more apt to be framed in a unit test during the red phase. The developers tended to write more code than476

necessary to pass the unit test at hand; thus leaving part of the code uncovered by tests. It stands to reason477

that better tool support for the green phase (e.g., coverage metrics for each TDD cycle) can be beneficial.478

In conclusion, we observed a shallow application of TDD by both professionals and novices. This can be479

problematic for researchers assessing the impact of TDD, since the practice they are observing may be480

substantially different from the one proposed in Beck (2003). One should therefore be cautious about the481

detrimental effects that may arise when TDD is exercised in such way.482

REFERENCES483

Beck (2002). Test Driven Development: By Example. Addison-Wesley Longman Publishing Co., Inc.,484

Boston, MA, USA.485

Beck, K. (2003). Test Driven Development: By Example. Addison Wesley.486

Begel, A. and Nagappan, N. (2007). Usage and perceptions of agile software development in an industrial487

context: An exploratory study. In Empirical Software Engineering and Measurement, 2007. ESEM488

2007. First International Symposium on, pages 255–264. IEEE.489

Beynon-Davies, P. (1997). Ethnography and information systems development: Ethnography of, for and490

within is development. Information & Software Technology, 39(8):531–540.491

Beynon-Davies, P., Tudhope, D., and Mackay, H. (1999). Information systems prototyping in practice.492

Journal of Information Technology, 14(1):107–120.493

Button, G. and Sharrock, W. (1996). Project work: The organisation of collaborative design and494

development in software engineering. Computer Supported Cooperative Work, 5(4):369–386.495

Carver, J., Jaccheri, L., Morasca, S., and Shull, F. (2003). Issues in using students in empirical studies in496

software engineering education. In Proceedings of the International Symposium on Software Metrics,497

pages 239–. IEEE Computer Society.498

Causevic, A., Sundmark, D., and Punnekkat, S. (2011). Factors limiting industrial adoption of test driven499

development: A systematic review. In Proceedings of International Conference on Software Testing,500

pages 337–346. IEEE Computer Society.501

Feathers, M. (2004). Working Effectively with Legacy Code. Prentice Hall.502

Fowler, M. and Highsmith, J. (2001). The agile manifesto. Software Development, 9(8):28–35.503

Fucci, D. and Turhan, B. (2014). On the role of tests in test-driven development: a differentiated and504

partial replication. Empirical Software Engineering, 19(2):277–302.505

Fucci, D., Turhan, B., Juristo, N., Dieste, O., Tosun-Misirli, A., and Oivo, M. (2015). Towards an506

operationalization of test-driven development skills: An industrial empirical study. Information and507

Software Technology, 68:82–97.508

Garlan, D., Bachmann, F., Ivers, J., Stafford, J., Bass, L., Clements, P., and Merson, P. (2010). Document-509

ing Software Architectures: Views and Beyond. Addison-Wesley Professional, 2nd edition.510

George, B. and Williams, L. (2004). A structured experiment of test-driven development. Information511

and Software Technology, 46(5):337–342.512

Geras, A., Smith, M., and Miller, J. (2004). A prototype empirical evaluation of test driven development.513

In Software Metrics, 2004. Proceedings. 10th International Symposium on, pages 405–416.514

Gupta, A. and Jalote, P. (2007). An experimental evaluation of the effectiveness and efficiency of the test515

driven development. In Empirical Software Engineering and Measurement, 2007. ESEM 2007. First516

International Symposium on, pages 285–294.517

Hammersley, M. and Atkinson, P. (2007). Ethnography: Principles in Practice. Taylor & Francis.518

Höst, M., Regnell, B., and Wohlin, C. (2000). Using students as subjects—a comparative study of students519

and professionals in lead-time impact assessment. Empirical Software Engineering, 5(3):201–214.520

12/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

Jeffrie, R. (2001). Essential XP: Card, Conversation, Confirmation.521

Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., El Emam, K., and Rosenberg, J. (2002).522

Preliminary guidelines for empirical research in software engineering. IEEE Trans. Softw. Eng.,523

28(8):721–734.524

Kou, H., Johnson, P. M., and Erdogmus, H. (2010). Operational definition and automated inference of525

test-driven development with zorro. Automated Software Engineering, 17(1):57–85.526

Littman, D. C., Pinto, J., Letovsky, S., and Soloway, E. (1987). Mental models and software maintenance.527

Journal of Systems and Software, 7(4):341–355.528

Marchenko, A., Abrahamsson, P., and Ihme, T. (2009). Long-term effects of test-driven development A529

case study. In Proceedings of Internation Confernce on Agile Processes in Software Engineering and530

Extreme Programming, pages 13–22. Springer.531

Melnik, G. and Maurer, F. (2005). A cross-program investigation of students’ perceptions of agile methods.532

In Software Engineering, 2005. ICSE 2005. Proceedings. 27th International Conference on, pages533

481–488. IEEE.534

Muller, M. and Tichy, W. (2001). Case study: extreme programming in a university environment. In535

Proceedings of the 23rd International Conference on Software Engineering, pages 537–544.536

Munir, H., Moayyed, M., and Petersen, K. (2014). Considering rigor and relevance when evaluating test537

driven development: A systematic review. Information and Software Technology.538

Pancur, M., Ciglaric, M., Trampus, M., and Vidmar, T. (2003). Towards empirical evaluation of test-driven539

development in a university environment. In EUROCON 2003. Computer as a Tool. The IEEE Region540

8., pages 83–86.541

Passos, C., Cruzes, D. S., Dybå, T., and Mendonça, M. (2012). Challenges of applying ethnography to542

study software practices. In Proceedings of the ACM-IEEE international symposium on Empirical543

software engineering and measurement, ESEM ’12, pages 9–18. ACM.544

Rafique, Y. and Misic, V. B. (2013a). The effects of test-driven development on external quality and545

productivity: A meta-analysis. IEEE Trans. Softw. Eng., 39(6):835–856.546

Rafique, Y. and Misic, V. B. (2013b). The Effects of Test-Driven Development on External Quality and547

Productivity: A Meta-Analysis. IEEE Transactions on Software Engineering, 39(6):835–856.548

Robinson, H., Segal, J., and Sharp, H. (2007). Ethnographically-informed empirical studies of software549

practice. Inf. Softw. Technol., 49(6):540–551.550

Salman, I., Misirli, A. T., and Juristo, N. (2015). Are Students Representatives of Professionals in Software551

Engineering Experiments? In Procedings of International Conference on Software Engineering, pages552

666–676.553

Salviulo, F. and Scanniello, G. (2014). Dealing with identifiers and comments in source code com-554

prehension and maintenance: Results from an ethnographically-informed study with students and555

professionals. In Proceedings of International Conference on Evaluation and Assessment in Software556

Engineering, pages 48:1–48:10. ACM.557

Scanniello, G. and Risi, M. (2013). Dealing with faults in source code: Abbreviated vs. full-word identifier558

names. In Proceedings of International Conference of Software Maintenance. IEEE Computer Society.559

Scanniello, G., Romano, S., Fucci, D., Turhan, B., and Juristo, N. (2016). Students’ and Professionals’560

Perceptions of Test-driven Development: A Focus Group Study. In Proceedings of the 31th Annual561

ACM Symposium on Applied Computing, SAC ’16, New York, NY, USA. ACM.562

Seaman, C. B. (1999). Qualitative methods in empirical studies of software engineering. IEEE Trans.563

Softw. Eng., 25(4):557–572.564

Sharp, H. and Robinson, H. (2004). An ethnographic study of xp practice. Empirical Softw. Eng.,565

9(4):353–375.566

Sharp, H., Robinson, H., and Woodman, M. (2000). Software engineering: Community and culture. IEEE567

Softw., 17(1):40–47.568

Shull, F., Melnik, G., Turhan, B., Layman, L., Diep, M., and Erdogmus, H. (2010). What Do We Know569

about Test-Driven Development? IEEE Software, 27(6):16–19.570

Singer, J., Lethbridge, T., Vinson, N., and Anquetil, N. (1997). An examination of software engineering571

work practices. In Proceedings of the Conference of the Centre for Advanced Studies on Collaborative572

research, pages 21–. IBM Press.573

Siniaalto, M. and Abrahamsson, P. (2007). A comparative case study on the impact of test-driven574

development on program design and test coverage. In Proceedings of the International Symposium on575

13/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

Empirical Software Engineering and Measurement, pages 275–284. ACM/IEEE Computer Society.576

Turhan, B., Layman, L., Diep, M., Erdogmus, H., and Shull, F. (2010). How effective is test-Driven577

Development. Making Software: What Really Works, and Why We Believe It, pages 207–217.578

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., and Wesslén, A. (2012). Experimentation in579

Software Engineering. Springer.580

Zieliriski, K. and Szmuc, T. (2006). Preliminary analysis of the effects of pair programming and test-driven581

development on the external code quality. Software engineering: evolution and emerging technologies,582

130:113.583

14/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1864v1 | CC-BY 4.0 Open Access | rec: 16 Mar 2016, publ: 16 Mar 2016

