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Abstract

Background. Semantic Web technologies are increasingly used in biological database
systems. The improved expressiveness show advantages in tracking provenance and al-
lowing knowledge to be more explicitly annotated. The list of semantic web standards
needs a complementary set of tools to handle data in those formats to use them in
bioinformatics workflows.
Methods. The approach proposed in this paper uses the Apache Jena library to create
an environment where semantic web technologies can be use in the statistical environ-
ment R. The code is exposed as two R packages available from the Comprehensive R
Archive Network (CRAN). The RJava library and a custom convenience class is used
to bridge between R and the Jena library.
Results. We here present three examples showing how the Resource Description
Framework (RDF) and SPARQL query standards can be employed in R. The first
example takes input on BRCA1 SNPs from a BioMart and converts this into a RDF
data set. The second example runs a query on an experimental remote SPARQL end
point provided by Uniprot, and searches textual annotations of proteins encoded by
the BRCA1 gene. The third example shows how the package can be used to handle
RDF returned by OpenTox web services.
Discussion. The two provided library bring basic semantic web technologies to R.
While only a subset of Apache Jena is currently exposed, it provides key methods to
deal with RDF data and resources. The libraries are freely available from the CRAN
under the Affero GNU Public License version 3: http://cran.r-project.org/web/

packages/rrdf/.

1 Introduction

Semantic Web technologies are finding their way into biological databases [1, 2, 3, 4, 5].
The recent launch of the Resource Description Framework (RDF) services at the European
Bioinformatics Institute is a good example of the impact it has on the field, despite the
adoption taking place for longer already [6]. At the same time, most new databases do not
yet use semantic web technologies, which may be partly caused by the lack of availability of
tools to handle RDF data.

RDF allows the combination of a machine readable framework with the use of ontologies
that allow sharing data and the meaning in the some data exchange format. This is enabled
by a set of open specifications, such as the underlying RDF, RDF Schema, the Web Ontology
Language, and serialization formats such as RDF/XML, N-TRIPLES, Notation3 (N3), and
Turtle. Crucial, however, seems the specification of the SPARQL query language that allow
extracting data from local or remote RDF triple stores [7]. In fact, federated SPARQL
queries allow extracting data from multiple triple stores at the same time.

At the same time, R has established itself as a key tool for statistics, particularly in the
biological sciences. Many packages have been developed for this domain and are available
from CRAN and Bioconductor, allowing to combine various bioinformatics and data analysis
approaches. These packages include, for example, biomaRt, which have the purpose of
extracting information from a remote database.
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We here introduce two packages, rrdflibs and rrdf, for the statistics environment R, based
on the Apache Jena library and the RJava interface to Java [8, 9, 10]. Compared to the
existing SPARQL package, this package adds general RDF data handling [11]. Using this
package we show how data aggregation can be performed from remote SPARQL end points,
and how local data in other formats can be converted into RDF to querying with SPARQL.

2 Materials & Methods

The rrdf packages provides RDF and SPARQL functionality by exposing that functionality
from the Apache Jena library [9]. The rrdflibs package contains the Apache Jena libraries and
nothing more. This package is close to 7 MiB large but does not change frequently. The rrdf
package contains the R functions that wrap around the Jena functionality and convert data
structures where needed. This package is about 112 kiB but changes more frequently. Using
this approach, the Comprehensive R Archive Network (CRAN) server has the least amount
of download throughput. The Jena functionality is accessible using the rJava library [10]
which handles loading of the Java archives and provides methods to instantiate classes and
call methods.

The source code of the package is available from GitHub at http://github.com/egonw/
rrdf/ and binary packages are available from CRAN at http://cran.r-project.org/web/
packages/rrdf/. The first patch is from March 2011 while the most recent patches are from
late 2013 when the rrdflibs package was updated for Apache Jena 2.11.

3 Results and Discussion

The rrdf package provides basic and less basic functionality for aggregation and analysis of
RDF data. The package can be install and loaded with these commands:

install.packages(c("rrdf", "rrdflibs"))

library(rrdf)

3.1 Triple stores

To handle triples, we first need a triple store. At this moment only in-memory stores are
supported, though Jena’s TDB also provides on-disk triple stores; this puts limitations to
the amount of data you can analyze in one study. The package supports two kinds of stores,
one that has minimal ontology support, and one basically just handles triples. Both can be
created with the new.rdf command:

ontStore = new.rdf()

store = new.rdf(ontology=FALSE)

When data is not read from a file or downloaded, but created from data in another
format, such as an R matrix, individual triples can be added to a store. This works for
both object properties and data properties. The former option links a subject to an object
resource, while the latter links a subject to a literal value:
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add.triple(store,

subject="http://example.org/Subject",

predicate="http://example.org/Predicate",

object="http://example.org/Object"

)

add.data.triple(store,

subject="http://example.org/Subject",

predicate="http://example.org/Predicate",

data="Literal value"

)

We can also take advantage from the fact that R assigns values to method parameters
based on the order in which they are given. Therefore, we can simplify the above code to:

add.triple(store,

"http://example.org/Subject",

"http://example.org/Predicate",

"http://example.org/Object"

)

add.data.triple(store,

"http://example.org/Subject",

"http://example.org/Predicate",

"Literal value"

)

Data can be loaded from file by providing a file name and a format (”RDF/XML”,
”TURTLE”, ”N-TRIPLES”, and ”N3”):

store = load.rdf("file.n3", format="N3")

3.1.1 Example

As an example, we will here create RDF for a small data set with information on five single
nucleotide polymorphisms (SNPs) in the BRCA1 gene, extracted with biomaRt [12]:

library(biomaRt)

mart = biomaNoy2009Rt::useMart(biomart="snp", dataset="hsapiens_snp")

brca1 = c("rs16940","rs16941", "rs16942", "rs799916", "rs799917")

attribs = c(

"refsnp_id", "chr_name", "chrom_start",

"validated", "pmid_20137", "allele"

)

data = biomaRt::getBM(

attributes=attribs, filters=c("snp_filter"), values=brca1, mart=mart

)

Following the guidelines for generating RDF outlined by Open PHACTS [13, 4], we
identify concepts and matching ontology terms, using BioPortal [14]: SNP, gene, chromo-
some, article, and allele. Additionally, there are the following properties: a SNP identifier,
a PubMed identifier, a chromosome number, a chromosomal sequence position, and a list
of validations (e.g. HapMap, 1000Genomes). The latter will not be further semantically
specified, but just be converted into a RDF literal as it is provided by the BioMart.
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Table 1: A list of ontology terms for the concepts in the BRCA1 SNP example. Ontology
acronyms and the prefixes used are explained in the text.

concept ontology term URI
SNP SIO snp sio:SIO 010027
chromosome GO chromosome obo:GO 0005694
article BIBO article bibo:Article
allele SO allele obo:SO 0001023
SNP identifier TMO snp identifier tmo:TMO 0161
PubMed identifier CHEMINF PubMed identifier sio:CHEMINF 000302
chromosome number TMO chromosome number tmo:TMO 0157
chromosomal sequence position TMO chromosomal sequence position tmo:TMO 0122

Taking advantage of existing ontologies. The choice is somewhat arbitrary and no on-
tological analysis has been done, e.g. on specified domain and ranges of predicates and
implied properties of classes. The following ontologies are used: SIO is the Semanticscience
Integrated Ontology; TMO is the Translational Medicine Ontology [15]; GO is the Gene
Ontology; BIBO is the Bibliographic Ontology [16]; and, CiTO is the Citation Typing On-
tology [17].

Prefixes used in the term Uniform Resource Identifiers (URIs) include sio for http://

semanticscience.org/resource/, tmo for http://www.w3.org/2001/sw/hcls/ns/transmed/,
obo for http://purl.obolibrary.org/obo/, bibo for http://purl.org/ontology/bibo/,
and cito for http://purl.org/spar/cito/. We can add these prefixes to the store. The
following code examples shows the full syntax in the first addition, but leaves out the pa-
rameters names in the following additions:

snpStore = new.rdf(ontology=FALSE)

add.prefix(snpStore,

prefix="sio", namespace="http://semanticscience.org/resource/"

)

add.prefix(snpStore, "tmo", "http://www.w3.org/2001/sw/hcls/ns/transmed/")

add.prefix(snpStore, "obo", "http://purl.obolibrary.org/obo/")

add.prefix(snpStore, "bibo", "http://purl.org/ontology/bibo/")

add.prefix(snpStore, "cito", "http://purl.org/spar/cito/")

add.prefix(snpStore, "snp", "http://example.org/snp/")

add.prefix(snpStore, "art", "http://example.org/article/")

add.prefix(snpStore, "loc", "http://example.org/location/")

add.prefix(snpStore, "all", "http://example.org/allele/")

add.prefix(snpStore, "ex", "http://example.org/onto/")

add.prefix(snpStore, "pubmedid", "http://example.org/pubmed/")

add.prefix(snpStore, "snpid", "http://example.org/snpid/")

Furthermore, we can define a number of classes and predicate, for reduced code:

snpClass = "http://semanticscience.org/resource/SIO_010027"

chromosomeClass = "http://purl.obolibrary.org/obo/GO_0005694"

pubmedIdClass = "http://semanticscience.org/resource/CHEMINF_000302"

snpIdClass = "http://www.w3.org/2001/sw/hcls/ns/transmed/TMO_0161"

articleClass = "http://purl.org/ontology/bibo/Article"
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alleleClass = "http://purl.obolibrary.org/obo/SO_0001023"

rdfTypePred = "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"

isDescribedBy = "http://purl.org/spar/cito/isDescribedBy"

onChromosome = "http://example.org/onto/onChromosome"

hasAttribute = "http://semanticscience.org/resource/CHEMINF_000200"

hasStart = "http://example.org/onto/hasStart"

hasValue = "http://semanticscience.org/resource/SIO_000300"

hasValidation = "http://example.org/onto/hasValidation"

hasAllele = "http://example.org/onto/hasAllele"

hasLocation = "http://example.org/onto/hasLocation"

Using these ontology terms we can define the translations of the BioMart-extracted data
into RDF:

createEntry <- function(row) {

snpID = row[1]

chr = row[2]

chrStart = row[3]

validation = row[4]

pubmedID = row[5]

allele = row[6]

snpSubject = paste("http://example.org/snp/", snpID, sep="")

pubmedObject = paste("http://example.org/article/a", pubmedID, sep="")

alleleObject = paste("http://example.org/allele/", snpID, sep="")

chrObject = paste("http://example.org/location/", snpID, sep="")

snpIDObject = paste("http://example.org/snpid/", snpID, sep="")

pubmedIDObject = paste("http://example.org/pubmed/a", pubmedID, sep="")

add.triple(snpStore, snpSubject, rdfTypePred, snpClass)

add.triple(snpStore, snpSubject, hasAttribute, snpIDObject)

add.triple(snpStore, snpIDObject, rdfTypePred, snpIdClass)

add.data.triple(snpStore, snpIDObject, hasValue, snpID)

# validation information

sapply(unlist(strsplit(validation, split=",")),

function(validationItem) {

if (!is.null(validationItem)) {

add.data.triple(snpStore,

snpSubject, hasValidation, validationItem

)

}

}

)

# allele information

add.triple(snpStore, snpSubject, hasAllele, alleleObject)

add.triple(snpStore, alleleObject, rdfTypePred, alleleClass)

add.data.triple(snpStore, alleleObject, hasValue, allele)

# chromosome location information

add.triple(snpStore, snpSubject, hasLocation, chrObject)

add.triple(snpStore, chrObject, rdfTypePred, chromosomeClass)

add.data.triple(snpStore, chrObject, onChromosome, chr)

add.data.triple(snpStore, chrObject, hasStart, chrStart)
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# pubmed information

add.triple(snpStore, snpSubject, isDescribedBy, pubmedObject)

add.triple(snpStore, pubmedObject, rdfTypePred, articleClass)

add.triple(snpStore, pubmedObject, hasAttribute, pubmedIDObject)

add.triple(snpStore, pubmedIDObject, rdfTypePred, pubmedIdClass)

add.data.triple(snpStore, pubmedIDObject, hasValue, pubmedID)

}

We can then just iterate over the actual data with and safe it to a file:

apply(data, MARGIN=1, FUN=createEntry)

save.rdf(snpStore, filename="test.n3", format="N3")

Or output it as a Notation3 string with:

cat(asString.rdf(snpStore))

3.2 SPARQL

Local (in-memory) triple stores can be queried with the sparql.rdf method by providing it
with the store to query and a string with the SPARQL query. For example, to get all resource
types, we can use this:

sparql.rdf(store,

paste(

"SELECT DISTINCT ?type WHERE {",

" [] a ?type ",

"}"

)

)

Remote SPARQL end point can be queried in a similar fashion: we replace the triple
store with the URL pointing to the SPARQL end point. For example, if we want to extract
all properties of the CHEMBL615603 assay from ChEMBL [18, 5] we can use the following
remote query:

results = sparql.remote(

"http://rdf.farmbio.uu.se/chembl/sparql",

paste(

"SELECT DISTINCT ?predicate ?object WHERE {",

" ?assay <http://www.w3.org/2000/01/rdf-schema#label> \"CHEMBL615603\" ;",

" ?predicate ?object .",

"}"

)

)

Jena parses the SPARQL query too, which requires the query to be valid against both
Jena and the SPARQL end point. Because the SPARQL specification has tool specif exten-
sions and that not all tools support the full of SPARQL 1.1, it can sometimes be tricky to
find the mutually support SPARQL command subset. The rrdf package also allows to bypass
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Jena and query the end point directly by using sparql.remote(..., jena=FALSE), removing
the problem and allowing you to use extensions of the end point.

The results object is a matrix with the variable names from the SPARQL query as column
names. This allows us to get a predicates with:

results[,"predicate"]

3.2.1 Example

Remote SPARQLing can be used to get more information about biological entities of interest.
The following example retrieves information from the Uniprot database using the experimen-
tal SPARQL end point. In particular, it retrieves annotations for proteins encoded by the
BRCA1 gene:

findAnnotations = paste(

"prefix up: <http://purl.uniprot.org/core/>",

"prefix ens: <http://purl.uniprot.org/ensembl/>",

"prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>",

"SELECT DISTINCT ?protein ?mnemonic ?comment WHERE {",

" ?transcript up:transcribedFrom ens:ENSG00000012048 .",

" ?protein a up:Protein ;",

" rdfs:seeAlso ?transcript ;",

" up:mnemonic ?mnemonic ;",

" up:annotation ?annot .",

" ?annot rdfs:comment ?comment .",

"}"

)

annotations = sparql.remote(

endpoint="http://beta.sparql.uniprot.org/",

sparql=findAnnotations, jena=FALSE

)

3.2.2 Example

A second example combines regular REST or -like services that return RDF with a local
SPARQL query. For example, this is the approach used in Bioclipse to interact with many of
the OpenTox services [5], but can be used for the Open PHACTS Linked Data API too [4].
For example, we can get data from an OpenTox data set using RCurl [19, 20], in this example
data set 112 with 320 compounds, which originates from the ToxCast project [21]:

library(RCurl)

rdfContent = getURL(

paste(

"http://apps.ideaconsult.net:8080/ambit2/dataset/112/compounds",

"media=text/n3",

sep="?"

),

write=basicTextGatherer()

)

store = fromString.rdf(rdfContent, format="N3")

compounds = sparql.rdf(store,
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paste(

"PREFIX ot: <http://www.opentox.org/api/1.1#>",

"SELECT DISTINCT ?compound WHERE {",

" ?compound a ot:Compound",

"}"

)

)

In fact, we can continue getting further detail about these compound by repeating the
same approach on the compound URIs. Let’s assume we are further interested in the SMILES
string. This feature has the URI http://apps.ideaconsult.net:8080/ambit2/feature/
21753. We add this as the list of features to retrieve:

feature = "http://apps.ideaconsult.net:8080/ambit2/feature/21753"

getOptions = paste(

paste("feature_uris[]", curlEscape(feature), sep="="),

paste("media", curlEscape("application/rdf+xml"),sep="="),

sep="&"

)

We can then use the R apply() method to retrieve the SMILES for each structure with:

result = apply(compounds, MARGIN=1, function(x) {

compound = x["compound"];

compoundURI = paste(compound, getOptions, sep="?")

print(paste("Downloading",compoundURI))

cmpdContent = getURL(

compoundURI, write=basicTextGatherer()

)

fromString.rdf(cmpdContent, format="RDF/XML", appendTo=store)

})

Finally, we use SPARQL again to list all the SMILES strings for the compounds:

query = paste(

"PREFIX ot: <http://www.opentox.org/api/1.1#> ",

"SELECT DISTINCT ?compound ?value WHERE {",

" ?s ?o [ ot:feature <", feature, "> ;",

" ot:value ?value ",

" ] ;",

" ot:compound ?compound . ",

"}",

sep=""

)

compoundSMILESes = sparql.rdf(store, query)

This results in a matrix with compound URIs in one column and SMILES strings in
another, ready for use by other R packages.
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4 Conclusions

The rrdflibs and rrdf packages bring basic semantic web technologies to R statistical envi-
ronment. While only a subset of Apache Jena is currently exposed, it provides key methods
to deal with RDF data and resources. The examples shed some light on how it can find a
place on more advanced analyses workflows.
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