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 20 

Abstract 21 

Single-cell RNA-Sequencing (scRNA-Seq) is a cutting edge technology that enables the 22 

understanding of biological processes at an unprecedentedly high resolution. However, 23 

well suited bioinformatics tools to analyze the data generated from this new technology 24 

are still lacking. Here we have investigated the performance of non-negative matrix 25 

factorization (NMF) method to analyze a wide variety of scRNA-Seq data sets, ranging 26 

from mouse hematopoietic stem cells to human glioblastoma data. In comparison to other 27 

unsupervised clustering methods including K-means and hierarchical clustering, NMF 28 

has higher accuracy even when the clustering results of K-means and hierarchical 29 

clustering are enhanced by t-SNE. Moreover, NMF successfully detect the 30 

subpopulations, such as those in a single glioblastoma patient. Furthermore, in 31 

conjugation with the modularity detection method FEM, it reveals unique modules that 32 

are indicative of clinical subtypes. In summary, we propose that NMF is a desirable 33 

method to analyze heterogeneous single-cell RNA-Seq data, and the NMFEM pipeline is 34 

suitable for modularity detection among single-cell RNA-Seq data.  35 
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Introduction 36 

The advancement of technologies has enabled researchers to separate individual cells 37 

from a bulk and sequence their transcriptomes at the single cell level, known as single-38 

cell RNA-Sequencing (scRNA-Seq). This technology has reached an unprecedented fine 39 

resolution to reveal the program of gene expression within cells(Kumar et al., 2014). It 40 

was used to detect heterogeneity within the cell population, and it has greatly enhanced 41 

our understanding of the regulatory programs involved in systems such as 42 

glioblastoma(Patel et al., 2014), neuronal cells(Usoskin et al., 2014), or pluripotent stem 43 

cells (PSCs)(Kumar et al., 2014). It was also used to delineate cell types and 44 

subpopulations in differentiating embryonic cells(Treutlein et al., 2014). Other 45 

applications include uncovering multilineage priming processes involved in the initial 46 

organogenesis(Brunskill et al., 2014), and substantiating the hypothesis of inter-47 

blastomere differences in 2- and 4-cell mouse embryos(Biase, Cao & Zhong, 2014). 48 

Indeed, ScRNA-Seq has already made profound impacts on our understanding of the 49 

diversity, complexity, and irregularity of biological activities in cells. It will continue to 50 

provide more transformative insights in the near future(Pan, 2014). 51 

However, relative to the experimental technology, the bioinformatics tools to analyze 52 

scRNA-Seq data are still lagging behind. Given the large amount of noise in the scRNA-53 

Seq data, it is unclear if the tools developed for population-level RNA-Seq differential 54 

expression analysis, such as DESeq2(Love, Huber & Anders, 2014) and 55 

EdgeR(Robinson, McCarthy & Smyth, 2010), are desirable to identify subpopulations in 56 

scRNA-Seq data. Recently, a couple of methods have been reported in the scRNA-Seq 57 

analysis domain (Brennecke et al., 2013; McDavid et al., 2013; Kharchenko, Silberstein 58 
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& Scadden, 2014). For example, a statistical variance model based on gamma distribution 59 

was developed to account for the high technical noise occurring in scRNA-seq 60 

experiments, such that genes with high squared correlation of variations (CV2) relative to 61 

mean expression are identified as <significantly differentially expressed= between two 62 

conditions(Brennecke et al., 2013). Another Bayesian approach was proposed for 63 

scRNA-Seq differential expression analysis, by utilizing a probabilistic model of 64 

expression-magnitude distortions that commonly observed in noisy single-cell 65 

experiments(Kharchenko, Silberstein & Scadden, 2014). This method later was used for 66 

classification of sensory neurons using scRNA-Seq(Usoskin et al., 2014). On the other 67 

hand, an R package Monocle was developed recently for single-cell lineage 68 

construction(Trapnell et al., 2014). However, it is not clear if all these new methods are 69 

suitable for detecting subpopulations in single cells. Moreover, none of the packages 70 

mentioned above offers functionalities for modularity identification. For the purpose of 71 

network module detection, one has to either use the RNA-Seq transcriptome data as the 72 

input for packages such as Module Networks in Genomica(Segal et al., 2003), or use the 73 

discovered important genes as seeds to combine with other downstream module detection 74 

packages. The fast accumulation of scRNA-Seq data requires new tools to study single-75 

cell transcriptome more efficiently. 76 

Previously, NMF has been applied to other areas in computational biology, such as 77 

molecular pattern discovery(Brunet et al., 2004), class comparison and prediction(Gao & 78 

Church, 2005), cross-platform and cross-species analysis(Tamayo et al., 2007),  and 79 

identify subpopulations of cancer patients with mutations in similar network regions. 80 

Moreover, NMF has been applied to gene expression profiling studies, in both array(Qi et 81 
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al., 2009) and population-level RNA-Seq platforms(Brunet et al., 2004). Compared to 82 

other methods, it showed multiple advantages, such as less sensitivity to a priori selection 83 

of genes or initial conditions and the ability to detect context-dependent patterns of gene 84 

expression(Rajapakse, Tan & Rajapakse, 2004). Based on these properties, we 85 

hypothesize that NMF is less prone to the influence of noise in the scRNA-Seq data, and 86 

thus it can detect a group of genes that robustly differentiate single cells from different 87 

conditions. In this report, we demonstrate the capabilities of NMF in scRNA-Seq data 88 

analysis in these following aspects: (1) accurate clustering of single cells from different 89 

conditions in an unsupervised manner; (2) stratification of subpopulations within the 90 

same pool of single cells; (3) detection of meaningful genes, pathways and modules 91 

associated with differences among populations and subpopulations. We also combine 92 

NMF with the modified, seed based module detection tool Functional Epigenetic 93 

Modules (FEM)(Jiao, Widschwendter & Teschendorff, 2014), and provide the scientific 94 

community with a streamlined modularity detection R package called NMFEM.  95 

Results 96 

The workflow for a typical single-cell analysis using NMF is shown in Fig. 1. Briefly, the 97 

pipeline can take raw reads in FastQ files, align and count them to the RefSeq 98 

transcriptome, or use raw count data directly as the input matrix. The input data matrix is 99 

then subject to quality control and normalization steps. The normalized matrix is operated 100 

on by NMF, which clusters the samples into sub-populations and enlists the feature genes 101 

that separate the sub-populations. In order to display the insightful biological modules, 102 

the feature genes are then used as the seeds for a functional modularity detection 103 

algorithm FEM(Jiao, Widschwendter & Teschendorff, 2014), which identifies hotspots in 104 
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the interactome with the scRNA-Seq profiling. We applied this workflow to four scRNA-105 

Seq data sets, varying from mouse hematopoietic stem cells to human glioblastoma 106 

primary cancer cells.   107 

NMF accurately clusters RNA-Seq data from hematopoietic stem cell 108 

differentiation  109 

We first compared the accuracies of NMF in unsupervised clustering, compared to two 110 

other commonly used methods: K-means and hierarchical clustering (Hclust) algorithms. 111 

We tested these clustering methods on a data set composed of mouse hematopoietic stem 112 

cells (HSCs) and stage 1 multipotent progenitor cells (MPP1). These cells were classified 113 

using the combined CD62L and CD97 cell surface markers. In order to evaluate the 114 

performance of the clustering methods, we removed the cell surface marker based labels. 115 

As shown in the PCA plots in Fig. 2A, NMF is the most accurate method, while K-means 116 

and hierarchical clustering are much worse. These observations can be quantitatively 117 

supported by the results of pairwise Rand measure, a metric that describes the percentage 118 

of agreement on a pair of samples belonging to the same group (Fig. 2C). Even though 119 

the two cell types are closely related on cell lineage, NMF achieves an overall impressive 120 

Rand measure of 83.6% to classify RNA-Seq data by patient ID. In contrast, K-means 121 

and hierarchical clustering have much lower Rand measures of 50.6% and 49.7%, 122 

respectively (Fig. 2C). Additionally, we plotted the consensus heatmaps of two of the 123 

methods 4 NMF and K-means, which clearly shows the higher accuracy of NMF over 124 

K-means (S1 Fig.). 125 

Next we investigated the effect of t-SNE modification on NMF, K-means and 126 

hierarchical clustering (Fig. 2B). t-SNE is a dimension reduction method that works by 127 
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minimizing the KL-divergence between the distribution of original distances and the 128 

distances in the lower-dimensional space. Methods such as K-means are usually 129 

conjugated with t-SNE(Van der Maaten & Hinton, 2008) to improve the accuracy of 130 

clustering and to be used as a method of visualization in 2-dimensional space(Van der 131 

Maaten & Hinton, 2008; Bushati et al., 2011; Junker et al., 2014). However, since NMF 132 

is not a distance-based method, applying t-SNE does not improve rather worsen the 133 

clustering results of NMF (Fig. 2B and 2C). With the two features extracted by t-SNE, 134 

NMF loses its ability to extract meta-genes and to conduct component decomposition, as 135 

demonstrated by the clustering accuracy (measured by Rand measure) before and after 136 

using t-SNE. On the contrary, K-means and hierarchical clustering have improved 137 

accuracies after the application of t-SNE (Fig. 2B and 2C). However, since the 138 

differences between HSC vs. MPP1 are very subtle, the ability of t-SNE to improve the 139 

clustering accuracy is limited (Fig. 2C).   140 

We repeated the same analytical comparisons with another set of dendritic cell 141 

differentiation data(Schlitzer et al., 2015), and obtained similar conclusion. That is, NMF 142 

has better accuracy than distance-based methods such as K-means and hierarchical 143 

clustering, even when the other two methods are boosted by t-SNE (S2 Fig.). 144 

NMF discovers uniquely important genes in mouse embryonic lung 145 

distal epithelium development 146 

Unlike other conventional differential expression test methods that explicitly model the 147 

relationships between the variance and mean in the RNA-Seq data, NMF selects the 148 

important genes by Kullback3Leibler divergence (KL-divergence)(Yang et al., 2011). 149 

Note, these <important genes= are by no means <differentially expressed (DE) genes=, as 150 
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defined by the differential gene expression (DGE) statistical tests. For comparison, we 151 

include the recently developed methods for single-cell transcriptome analysis, including 152 

Monocle(Trapnell et al., 2014), MAST(McDavid et al., 2013) as well as 153 

SCDE(Kharchenko, Silberstein & Scadden, 2014), as well as DESeq2 and EdgeR, two 154 

commonly used differential gene selection methods for the bulky RNA-Seq data. We 155 

chose another set of mouse embryonic lung distal epithelial cells reported by Treutlein et 156 

al.(Treutlein et al., 2014), and focus on the single cells from E14.5 and E16.5 stages, 157 

where the RNA-Seq data are so similar that even PCA analysis cannot separate clearly 158 

(S3 Fig.). Given that rich experiential knowledge has been accumulated on their 159 

developmental process, this dataset allows us to empirically evaluate the results obtained 160 

from different RNA-Seq analysis tools.  161 

We present the characteristics of <important genes= detected by each method in the MA-162 

plots (Fig. 3). The uniquely identified genes from these methods vary greatly (Fig. 3 and 163 

S4 Fig. A). In contrast with all other compared methods, NMF selects genes that are 164 

sufficiently expressed in many samples, with a strong preference to select genes around a 165 

specific expression level (FPKM 2.740) and but not genes expressed too lowly or too 166 

highly (S4 Fig. A). On the other hand, a fair amount of genes selected by MAST, SCDE, 167 

and Monocle have very little numerical differences between E14.5 and E16.5 stages. A 168 

considerable amount of genes selected by DESeq2 and EdgeR have average low 169 

expressions but large variance (Fig. 3). Many of them have zero count in all samples of 170 

E16.5 stage. Since lowly expressed genes usually have much higher levels of noise, this 171 

suggests that DESeq2 and EdgeR may have detected the expression patterns that are less 172 

reliable(Brennecke et al., 2013).  173 
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Such a group of intermediately expressed genes identified by NMF are robust and 174 

unlikely a random sample from all expressed genes, since the density distribution of the 175 

top 500 genes in NMF per drop-one-out resampling is clearly distinctive from that of 176 

random background gene expression (S4 Fig B). The reason that NMF tends to avoid the 177 

extremely lowly expressed genes is that KL-divergence intrinsically penalizes lowly 178 

expressed genes as ýÿĀ can be seen as the weight of (log ( �ÿĀ(��)ÿĀ)) in the formula (see 179 

Methods). The lower the original expression level, the weaker that gene can affect the 180 

clustering, and thus less likely to be selected as a feature gene by NMF. On the other 181 

hand, the highly expressed genes typically have extreme spikes among a few samples, 182 

and are also less likely to be selected as feature genes, as the signal linearity of NMF 183 

prefers to select genes with consistent expression levels in each cluster. 184 

Important genes selected by NMF yield biologically meaningful modules 185 

We next asked if the important genes detected by NMF convey unique and meaningful 186 

biological functions. Towards this, we examined the modularity potentials and used the 187 

same number of 500 top genes selected by the eight methods above as the initial seeds for 188 

the module detection software FEM(Jiao, Widschwendter & Teschendorff, 2014). FEM 189 

is a versatile method that can be adapted to identify hotspots in the interactome with the 190 

differential expression profiling, using the seed inputs from external programs including 191 

NMF, DESeq2, EdgeR, MAST, SCDE, or Monocle.  We present the results of the top 5 192 

most significant modules for each of the eight methods. Within each top module, we 193 

conducted Gene Ontology (GO) enrichment analysis and list the top two GO terms 194 

(Table 1).  195 
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In comparison, the methods that are established on similar assumptions have higher 196 

degrees of agreements on the detected top modules (Table 1) as well as genes in common 197 

(S5 Fig.), as expected. For examples, SCDE, MAST and Monocle have more similar 198 

results than others; whereas DESeq2 and EdgeR tend to agree to each other better since 199 

they were designed for bulky cell RNA-Seq.  Interestingly, all methods except EdgeR, 200 

detected that the transcription-related processes play important role from E14.5 to E16.5. 201 

NMF finds two unique modules for <mRNA destabilization= (seed gene Pnn) and <rRNA 202 

processing= (seed gene exosc4) (Table 1 and Fig. 4).  These results are very interesting as 203 

mRNA-destabilizing inflammatory RNA-binding proteins were previous reported to be 204 

important in the regulation of miR-155 biogenesis in lung epithelial cells with cystic 205 

fibrosis condition(Bhattacharyya et al., 2013). Exosc4 is part of the exosome complex, 206 

which has the function of degrading various types of RNA molecules. Since E14.5 cells 207 

are prior to sacculation and E16.5 cells are in the early stage of sacculation, the exosc4-208 

centered module may indicate the fast turnover of RNA material associated with the cell 209 

growth/apoptosis activities in the process of embryonic lung morphological changes.  210 

Additionally, NMF identifies a module related to <G-protein coupled receptor signaling 211 

pathway= (seed gene Gna13), which is also shared by DESeq2 and EdgeR methods 212 

(Table 1 and Fig. 4). This may indicate active intracellular signal changes during the 213 

early phase of embryonic lung epithelial cells. This observation is coherent with another 214 

unique module found by NMF, which is related to bone morphogenetic protein (BMP) 215 

pathway (seed gene Smad4). BMP pathway previously was verified to have important 216 

roles in signal transduction, transcription and adhesion in epithelial bud development, 217 
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including lung epithelial cells(Jamora et al., 2003).  Moreover, BMPs play important 218 

roles in different stem cell systems, including embryonic stem cells(Zhang & Li, 2005).  219 

In summary, due to the mechanism of identifying correlated genes rather than genes with 220 

numerical differences, NMF is able to extract very unique biological information from 221 

different classes of single cells.   222 

NMF identifies tumor sub-populations among a single glioblastoma 223 

patient  224 

Detecting the subpopulations of single cells within the same bulk is an even subtler 225 

problem, in comparison to the issue of accurate clustering of mixed populations. To 226 

examine the potential of NMF in this aspect, we next tested the scRNA-Seq data from the 227 

five individual glioblastoma patients as reported by Patel, AP et al.(Patel et al., 2014) 228 

Interestingly, the consensus clustering results generated from NMF show that among the 229 

five patients, only patient MGH28 (Fig. 5A-B) and MGH31 (S6 Fig. A-B) have two 230 

distinct subpopulations. 231 

To investigate further the characteristics of the two subpopulations in MGH28, we 232 

retrieved the top 500 ranked genes that differentiate these two subpopulations and 233 

conducted KEGG pathway enrichment analysis on them.  A pathway named <pathogenic 234 

Escherichia coli infection= stands out as the most significantly altered pathway between 235 

the two subpopulations (FDR < 1E-03) (Fig. 5C). Further examination of this pathway 236 

reveals that multiple genes involved in cell mobility are enriched, including ACTG1, 237 

ACTB, CTTN, YWHAZ, CDC42, TUBB, RHOA, ROCK, ARPC5, TUBA1A, NCL, 238 

TUBA1B, and TUBA1C (Fig. 5D). Glioblastoma is among the most heterogeneous 239 
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tumors in human, and mainly have pro-neuron and mesenchymal phenotypes. The latter 240 

is associated with more invasive and infiltrating phenotype. Our results indicate that 241 

some cells in patient MGH28 have mesenchymal phenotype. Coincidently, Patel, AP et al 242 

also concluded MGH28 as mesenchymal glioblastoma, by comparing the scRNA-Seq 243 

signatures to those from TCGA glioblastoma RNA-Seq data(Patel et al., 2014).  244 

Interestingly, we also found that patient MGH31 has the same enriched KEGG pathway 245 

term of <pathogenic Escherichia coli infection= (S6 Fig. C). Almost all of the important 246 

genes in this pathway from patient MGH31 (S6 Fig. D) overlap those from patient 247 

MGH28 mentioned above (Fig. 5D). The only exceptions are NCL unique to MGH28, 248 

and CDC42 and ROCK2 unique to MGH31. The almost identical genes found in the 249 

same pathway that differentiates the subpopulations of both MGH28 and MGH31 suggest 250 

that MGH31 may also be classified as mesenchymal glioblastoma, similar to MGH28.  251 

Discussion and conclusions 252 

Due to the high noise levels within scRNA-Seq data(Brennecke et al., 2013), the 253 

conventional approaches, which aim to detect numerical differences of gene expression in 254 

cell bulks under different conditions, may be limited. Previous applications of NMF to 255 

fields such as face reorganization(Rajapakse, Tan & Rajapakse, 2004), image 256 

compression(Yuan & Oja, 2005; Monga & Mıhçak, 2007) and sound 257 

decomposition(Smaragdis, 2004), have proven successful. Here we propose to utilize 258 

NMF as a desirable method for scRNA-Seq analysis. We believe that the pattern based 259 

feature extraction ability of NMF can meet the demands to identify genes that signify the 260 
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differences within the noisy scRNA-Seq data. The in-depth analyses on multiple public 261 

and private data sets in this study have provided supports from several aspects.  262 

We have demonstrated that NMF performs well relative to other popular clustering 263 

methods including K-means and hierarchical clustering, even when these methods in 264 

comparisons are boosted with t-SNE. Moreover, NMF is capable of identifying 265 

subpopulations within the same tumor sample, exemplified by the glioblastoma data here. 266 

Through NMF clustering, we found in that patients MGH28 and MGH31 both have a 267 

group of genes that can distinguish the single cells into two subpopulations. These genes 268 

include actins, tubulins and signaling molecules that can affect cell mobility. Thus we 269 

speculate that both MGH28 and MGH31 have mesenchymal phenotypes. The suspected 270 

mesenchymal phenotype of MGH28 from scRNA-Seq data alone is directly supported by 271 

Patel, AP et al.(Patel et al., 2014), where they used TCGA glioblastoma data and 272 

classified MGH28 as the mesenchymal type. On the other hand, the authors could not 273 

clearly classified MGH31 as the mesenchymal type, although they suspected two genetic 274 

clones from this patient. Here with NMF based subpopulation identification and 275 

comparisons of characteristic genes, our analysis confirms the existence of two 276 

subpopulations and further, the clinical subtype of MGH31.  277 

In summary, we have demonstrated that NMF is a desirable method capable of 278 

accomplishing various tasks in scRNA-Seq data analysis, from reclassifying populations 279 

of single cells, identifying subpopulations, to revealing meaningful genes, gene sets and 280 

modules of biological significance. We expect the new workflow named NMFEM to 281 

have wide applications in the field of scRNA-Seq bioinformatics analysis.    282 
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Methods 283 

Data sets 284 

Glioblastoma 285 

ScRNA-Seq data were retrieved from the original 875 samples of glioblastoma tumor 286 

cells in 5 patients, along with population and cell line controls (GSE57872)(Patel et al., 287 

2014).  For NMF, very minimal filtering was employed (filtering steps of other methods 288 

are detailed in a later section). First, genes with zero expression across all samples were 289 

removed so that 22704 out of 23710 genes (95.8%) remained. Next the smallest number 290 

of samples was removed so that at least one gene was expressed across all samples 291 

considered, as a quality requirement of DESeq2. As a result, 124 samples with the lowest 292 

amount of non-zero expression across all genes are removed, leaving 751 of 875 samples 293 

(85.8%). 294 

Mouse lung epithelial cells 295 

ScRNA-Seq data were retrieved from the original 201 samples of lung distal epithelial 296 

cells of embryonic mouse (GSE52583)(Treutlein et al., 2014). We filtered genes and 297 

samples following the sample procedure as in Glioblastoma data set, leaving 16168 out of 298 

23420 genes (69.0%) and 199 out of 201 samples (99.0%). 299 

Mouse HSCs and MPP1s 300 

ScRNA-Seq data were extracted from mouse hematopoietic stem cells (HSCs) and early 301 

multipotent progenitors (MPP1s). The data were pre-processed into the format of a 302 

FPKM expression profile, which include 59 HSCs and 53 MPP1 single cells. We filtered 303 
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genes and samples following the sample procedure as in Glioblastoma data set, leaving 304 

12719 out of 21664 genes (58.7%) and 112 out of 112 samples (100.0%).  305 

Mouse dendritic cells 306 

ScRNA-Seq data were extracted from mouse macrophage DC progenitors (MDPs), 307 

common DC progenitors (CDPs), and Pre-DCs (GSE60781)(Schlitzer et al., 2015). We 308 

used the RPKM table provided by the authors. We filtered genes and samples following 309 

the same procedure as in Glioblastoma data set, leaving 15722 out of 29779 genes 310 

(52.8%) and 251 out of 251 samples (100.0%). 311 

Single-cell RNA-Seq analysis 312 

Read alignment 313 

We downloaded the public datasets from NCBI The Gene Expression Omnibus (GEO) 314 

database(Edgar, Domrachev & Lash, 2002; Barrett et al., 2013), and retrieved the SRA 315 

files from The Sequence Read Archive (SRA)(Leinonen et al., 2011). We used the fastq-316 

dump tool from SRA Toolkit to convert the SRA files into two pair-end FastQ files. We 317 

applied FastQC for quality control and Tophat2(Kim et al., 2013) for alignment to the 318 

reference genomes. The ready-to-use genome sequences and annotation files were 319 

downloaded from Illumina iGenomes page 320 

(http://support.illumina.com/sequencing/sequencing_software/igenome.html). For human 321 

build hg19 was used, and for mouse genome build mm10 was used(Karolchik et al., 322 

2014). 323 
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Read Counting 324 

We used featureCounts(Liao, Smyth & Shi, 2014) to map and count the aligned BAM 325 

files to the RefSeq transcriptomes from the pre-built packages on Illumina iGenome 326 

website above. We used the options to count fragments instead of reads; paired-end 327 

distance was checked by featureCounts when assigning fragments to meta-features or 328 

features. We only took into account of fragments that have both ends aligned successfully 329 

and discarded chimeric fragments. Fragments mapped to multiple locations were counted. 330 

The command is <featureCounts -pPBCM --primary -T 6 -a <gtf_file> -o <output_file> 331 

<bam_file>=. 332 

Normalization of Counts 333 

We used reads per kilo base per million (RPKM) to represent the gene expression level, 334 

where the length of each gene was calculated by UCSC RefSeq annotation table, by 335 

concatenating all the exons. We normalized the data using DESeq2. 336 

Non-negative Matrix Factorization (NMF) 337 

We used the R-package implementation of NMF(Gaujoux & Seoighe, 2010) to perform 338 

NMF analysis. NMF is mathematically approximated by: ý ≈ þ�, where ý (Ā by ÿ) is 339 

the matrix representing the scRNA-Seq profile in this report, W is a slim weight matrix 340 

(Ā by ā, where Ā ≫ ā), H is a wide matrix (ā by ÿ, where ÿ ≫ ā), and all three of them 341 

are non-negative(Brunet et al., 2004). The column vectors in þ are called meta-genes, 342 

which are higher-level abstraction of the original gene expression pattern. We used the 343 

method <brunet= to solve the approximation of ý, which employs the multiplicative 344 

iterative algorithm described by the following rules: 345 
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��ÿ ← ��ÿ ∑ þÿ�ýÿÿ(þ�)ÿÿÿ∑ þā�ā  346 

þÿ� ← þÿ� ∑ ��ÿýÿÿ(þ�)ÿÿÿ∑ ��ĀĀ . 347 

The initialization of ��ÿ and þÿ� was generated as random seed matrices drawn from a 348 

uniform distribution within the same range as the entries in the matrix ý. Since the 349 

starting matrices were randomized, we conducted an average of 30 simulations for each 350 

NMF run to obtain the consensus clustering results. We used Kullback3Leibler 351 

divergence (KL-divergence) as the distance function, as it has significantly better 352 

performance theorized in Yang et al.(Yang et al., 2011). The rank (ā) is chosen by listing 353 

the clustering results of all possible ā’s (usually ranging from 2 to 5, as higher ā values 354 

requires exponentially more time to run). ā is chosen when the best cophenetic 355 

correlation coefficient is achieved, as proposed in Brunet et al. 2004(Brunet et al., 2004). 356 

NMF package uses the feature score to measure the genes for different expression 357 

between sample groups, based on a method described in Kim et al.(Kim et al., 2013)  358 

FeatureScore(ÿ) = 1 + 1log2 ā ∑ ý(ÿ, þ) log2  ý(ÿ, þ)ā
�=1 , 359 

where 360 

ý(ÿ, Ω) = þ(ÿ, Ω)∑ þ(ÿ, þ)ā�=1 . 361 

The feature score lies between 0 and 1, and is positively related to its factor-specificity. 362 

That is, a higher feature score indicates that the gene has more different expression 363 
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patterns between sample groups (phenotypes)(Kim & Park, 2007). We select the top 500 364 

genes of NMF based on this feature score. 365 

Other packages used for detecting significant or important genes 366 

We compared a series of computational methods to call <significant genes= with NMF. 367 

These methods are divided into three categories. 368 

DE methods for bulky-level RNA-Seq:  we used two most popular bulky-level RNA-Seq 369 

methods: DESeq2 and EdgeR, to compare on the results of DE genes. 370 

DE methods for scRNA-Seq: three methods were investigated, with default settings of the 371 

packages. (1) Monocle: this is a versatile method (V. 1.0.0) that performs differential 372 

expression analysis between cell types or states, moreover places cells in order according 373 

to their progression through processes such as cell differentiation(Trapnell et al., 2014). 374 

(2) SCDE: this package (V 1.2.1) implemented in R is based on Bayesian method, where 375 

the individual genes were modeled explicitly as a mixture of the dropout and 376 

amplification events by the Poisson model and negative binomial model(Kharchenko, 377 

Silberstein & Scadden, 2014). (3) MAST: this method (V 1.0.1) implemented in R was 378 

originally used to detected DE genes in qPCR results of single cells. We selected the 500 379 

genes with the lowest likelihood ratio test p-value using Hurdle Model provided by the 380 

package, as recommended by the authors(McDavid et al., 2013). 381 

Data filtering for other scRNA-Seq methods:  SCDE model deals with high level noise 382 

automatically and requires no filtering as stated by authors. For Monocle and MAST, we 383 

first removed the genes of high technical variations using the method as described in 384 

Brennecke et al. 2013(Brennecke et al., 2013), then performed filtering steps as instructed 385 
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in each paper. Monocle filters out libraries that contained fewer than 1 million reads in its 386 

original report, in the case that reads in some data set do not meet this threshold (such as 387 

mouse embryonic lung epithelial cell data), we resorted to no sample filtering to be safe. 388 

Additionally, we experimented if introducing t-SNE, a dimension reduction method that 389 

was recently successfully applied to scRNA-Seq, would improve the results of NMF. We 390 

used the C++ accelerated R-package Rtsne (V 0.10), based on the original C++ 391 

implementation by van der Maaten et al.(van der Maaten, 2013)  392 

Module detection package 393 

We use Functional Epigenetic Modules (FEM) R package(Jiao, Widschwendter & 394 

Teschendorff, 2014) for module detection. FEM utilizes an expansion algorithm based on 395 

the z-score of the expression level, by using a list of seed genes as the starting points. It 396 

selects the top modules based on p-values calculated by a Monte Carlo method. 397 

We modified the source code of the FEM package and changed the process of the seed 398 

gene selection. Instead of selecting the seed genes based on the z-score of the expression 399 

level, we directly plugged in a list of genes as the seed genes, which were generated from 400 

each of the compared method for important gene detection. 401 

Measuring the performance of unsupervised clustering 402 

methods 403 

Label assignments for PCA/t-SNE plots 404 

Since multiple assignments of labeling to clusters are possible, for each clustering 405 

algorithm we iterated through all possible permutations of labeling and calculated the 406 
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accuracy for each. The one with the best accuracy rate is picked as the most favorable 407 

labeling for the clustering algorithm and is used in plotting its PCA/t-SNE scatter-plots. 408 

Confusion matrix 409 

Confusion matrix ÿ was calculated by the following formula: 410 

ÿÿ,Ā = |ýÿ ∩ þĀ|, 411 

Where ýÿ is the set of samples that are labeled as class ÿ according to the correct 412 

labelling, and þĀ is the set of samples that are labeled as class Ā in the tested 413 

method(Stehman, 1997). 414 

Chi-square test score 415 

Chi-square test score þ�2 was calculated from the chi-square test p-value ý�2, 416 

þ�2 = log0.05 ý�2 , 417 

which in turn was calculated by the chisq.test function in R(Aguirre & Nikulin, 418 

1994).The base of 0.05 was chosen so that a score larger than one indicates that the 419 

resulting p-value is significant.  420 

Pair-wise Rand measure 421 

Pair-wise Rand measure for clustering between the test and the reference is defined by 422 

ý = ÿ� + ÿ�ÿ� + �� + �� + ÿ�, 423 

in which the four quantities ÿ�, ��, ��, and ÿ� are cardinals of the four sets of pairs. 424 ÿ/� means true/false based on the reference, and �/� means positive/negative results 425 
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from the test. Specifically, a positive result (�) refers to a pair of samples clustered in the 426 

same group by the tested method; a true positive (ÿ�) or true negative (ÿ�) result 427 

represents the case where the agreements between the test and the reference clustering is 428 

reached(Rand, 1971). 429 

Modularity detection and pathway Analysis 430 

We used Functional Epigenetic Modules (FEM) package(Jiao, Widschwendter & 431 

Teschendorff, 2014) implemented in R for module detection. FEM utilizes SpinGlass 432 

algorithm(Reichardt & Bornholdt, 2006) based on the z-score of the expression level, by 433 

using a list of seed genes as the starting points. It selects the top modules based on p-434 

values calculated from a Monte Carlo method. We modified the source code of the 435 

package to allow seed genes generated from other methods (NMF, DESeq2, EdgeR, 436 

SCDE, MAST and Monocle) that detect significant or important genes. In each case, we 437 

used top 500 most important genes as the seeds for FEM. We next compared biological 438 

meanings of the resulting modules by Gene Ontology (GO) or Kyoto Encyclopedia of 439 

Genes and Genomes (KEGG) pathway enrichment analysis, implemented as DAVID 440 

Web Service in R(Huang, Sherman & Lempicki, 2008, 2009). 441 

Data and code availability 442 

The Glioblastoma, mouse lung distal epithelial and mouse dendritic cell data are 443 

downloaded from GSE57872, GSE52583, and GSE60781. The code used for this 444 

package can be found at https://github.com/lanagarmire/NMFEM, and 445 

https://github.com/lanagarmire/NMFEM_extra. 446 
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 594 

Tables 595 

Table 1. Comparison of the top 5 modules selected by FEM with seed genes 596 

generated by NMF and other differential expression detection methods. The other 597 

compared methods include MAST, SCDE, Monocle, DESeq2 and EdgeR. GO analysis 598 

was performed on each module, and the top 2 most enriched GO terms are listed along 599 

with their p-values. Connectivity is computed by taking the average of the degree number 600 

of all the nodes in the graph. The p-value for each module was calculated by FEM’s 601 

internal Monte Carlo procedure. 602 

  603 
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Figure legends 604 

Fig. 1: The workflow of NMFEM. The input can be either FastQ files or a raw counts 605 

table. If FastQ files are used, they are aligned using TopHat and counted using 606 

FeatureCounts (steps shown in brackets). The input or calculated raw counts table are 607 

filtered by samples and genes, converted into RPKMs using gene lengths, and normalized 608 

by samples. We then run NMF method on them to detect subpopulations, and find the 609 

feature genes separating the detected subpopulations. Finally, we feed the feature genes 610 

as seed genes in FEM, and generate PPI gene modules that contain highly differentially 611 

expressed genes. 612 

Fig. 2: Comparisons among clustering methods on the HSC vs. MPP1 scRNA-Seq 613 

data.  614 

(A) The PCA scatter-plots of the samples, based on their log normalized expression level. 615 

Colors indicate the most favorable labeling that can be assigned to the clustering result 616 

generated by each method. The correctly and incorrectly labeled samples are marked by 617 

dot (•) and cross (x), respectively. Confusion matrices of the methods in comparison are 618 

inserted on the top-right corner of each sub-panel. The closer the matrix is to a diagonal 619 

matrix, the more accurate the method is. (B) The scatter-plots of the samples for K-means 620 

and hierarchical clustering, after t-SNE based dimension reduction. (C) Rand measures of 621 

the methods in comparison, before and after t-SNE. Rand measure ranges from 0 to 1, 622 

where a higher value indicates a greater clustering accuracy. 623 

Fig. 3: MA-plots of significant or important genes defined by different methods.  624 

Shown are scRNA-Seq data in the mouse lung distal epithelial cell E14.5 vs. E16.5 625 
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samples. The blue color highlights the genes selected as <the most significant= by the 626 

corresponding methods. X-axis (A-value) is the mean of the gene expression, and y-axis 627 

(M-value) is the difference of the gene expression between E16.5 and E14.5 stages. 628 

Fig. 4: Network of top 5 modules using the seed genes generated by NMF.  629 

Shown are module detection results in the FEM package, using the top 500 most 630 

important genes detected by NMF in Fig. 3. ScRNA-Seq data in the mouse lung distal 631 

epithelial cell E14.5 vs. E16.5 samples are compared, where the red and green colors 632 

indicate up- and down-regulation of genes in E16.5 relative to E14.5, respectively. The 633 

top 5 modules are selected by the p-values calculated from the internal Monte-Carlo 634 

method in the FEM package (Table 1).  635 

Fig. 5: Using NMF to identify subpopulations in a single glioblastoma tumor from 636 

patient MGH28.  637 

(A) The consensus heat map generated from NMF. The two subpopulation clusters are 638 

the evident 2 red squares, marked out by number 1 and 2. The brightness indicates the 639 

confidence level of two subpopulations. (B) The PCA plot of scRNA-Seq samples from 640 

patient MGH28, the discovered subpopulations are coded in red and blue colors. (C) The 641 

results of KEGG/BioCarta Pathway enrichment analysis. The line of significance (to the 642 

right of which meaning the FDR less than 0.05) is shown. (D) The protein interaction 643 

diagram of the KEGG pathway <Pathogenic E. Coli infection=. The proteins coded by the 644 

genes detected by NMF are highlighted yellow, with the gene names marked below. 645 

 646 

 647 
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Supporting Information  648 

S1 Fig. The consensus map of NMF and K-means methods run on the HSC vs. MPP1 649 

dataset. The columns and rows are samples. The brightness indicates the confidence of 650 

the method to assign the samples in the same group. 651 

S2 Fig. (A) comparison of t-SNE two-dimensional scatter-plots of the mouse dendritic 652 

cell scRNA-Seq data. Colors indicate the most favorable labeling that can be assigned to 653 

the clustering result generated by each method. The correctly and incorrectly labeled 654 

samples are marked by dot (•) and cross (x), respectively. (B) Rand measures of the 655 

methods in comparison, before and after t-SNE. Rand measure ranges from 0 to 1, where 656 

a higher value indicates a greater clustering accuracy. 657 

S3 Fig. PCA plot of the mouse epithelial cell data set. The groups that are most 658 

difficult to separate (E14.5 vs. E16.5) are circled out.  659 

S4 Fig. (A) The kernel density estimation (KDE) plot showing the frequency of log 660 

expression values of <important genes= that separate E14.5 vs. E16.5, as detected by the 661 

various methods in comparison. (B) KDE plot of frequency of genes appear in the 71 662 

Jackknife runs. For a certain x-value (frequency), a higher y-value (density) means that a 663 

higher percentage of genes appear around this frequency among the 71 runs. The blue 664 

block is the top 500 genes selected by NMF and the red block is all the genes in the 665 

filtered data used by NMF. 666 

S5 Fig. The heatmap of the characteristic genes (E14.5 vs. E16.5) found in common 667 

pair-wise by the various methods. The dendrogram at the bottom shows the hierarchical 668 
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clustering results using the distance measured by the inverse of the number of 669 

overlapping genes.  670 

S6 Fig. Using NMF to identify subpopulations in a single glioblastoma tumor from 671 

Patient MGH31  672 

(A) The consensus heat map generated from NMF. The two subpopulation clusters are 673 

the evident 2 red squares, marked out by number 1 and 2. The brightness indicates the 674 

confidence level of two subpopulations. (B) The PCA plot of scRNA-Seq samples from 675 

patient MGH31, the discovered subpopulations are coded in red and blue colors. (C) The 676 

results of KEGG/BioCarta Pathway enrichment analysis. The line of significance (to the 677 

right of which meaning the FDR less than 0.05) is shown. (D) The protein interaction 678 

diagram of the KEGG pathway <Pathogenic E. Coli infection=. The proteins coded by the 679 

genes detected by NMF are highlighted yellow, with the gene names marked below. 680 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1839v2 | CC-BY 4.0 Open Access | rec: 9 Mar 2016, publ: 9 Mar 2016



seed size connectivity p_values first_term first_fisher second_term second_fisher
NMF

Gna13 32 4.6875 0.004 G-protein coupled receptor signaling pathway 1.80E-13 semaphorin-plexin signaling pathway 2.50E-13
Med31 73 8.136986301 0.009 stem cell maintenance 1.40E-13 RNA metabolic process 1.90E-13
Smad4 52 4.230769231 0.017 BMP signaling pathway 0.00012 regulation of BMP signaling pathway 0.00031
Exosc4 42 7.857142857 0.022 rRNA catabolic process 1.10E-16 rRNA processing 4.70E-16

Pnn 14 3.857142857 0.023 mRNA destabilization 0.000028 RNA destabilization 0.000059
MAST

Hdac2 92 5.869565217 0 chromatin organization 6.10E-29 negative regulation of nucleic acid-templated transcription 1.50E-27
Dld 73 8.02739726 0.001 carboxylic acid metabolic process 1.80E-29 oxoacid metabolic process 9.00E-29

Sdhb 33 7.696969697 0.006 aerobic respiration 3.80E-17 tricarboxylic acid cycle 8.10E-17
Ndufv2 24 7.666666667 0.008 oxidation-reduction process 0.000000065 response to protozoan 0.00024
Twistnb 46 13.13043478 0.012 transcription from RNA polymerase III promoter 3.70E-14 nucleobase-containing compound biosynthetic process 6.10E-13

SCDE
Polr2l 75 12.88 0.002 nucleobase-containing compound biosynthetic process 2.50E-14 aromatic compound biosynthetic process 5.90E-14

Ndufv2 24 7.666666667 0.007 oxidation-reduction process 0.000000065 response to protozoan 0.00024
Sdhb 33 7.696969697 0.008 aerobic respiration 3.80E-17 tricarboxylic acid cycle 8.10E-17
Ldha 33 7.696969697 0.01 aerobic respiration 3.80E-17 tricarboxylic acid cycle 8.10E-17

Polr2b 79 10.75949367 0.014 nucleobase-containing compound biosynthetic process 2.60E-18 transcription, DNA-templated 4.50E-18
Monocle

Hdac2 92 5.869565217 0 chromatin organization 6.10E-29 negative regulation of nucleic acid-templated transcription 1.50E-27
Rabgap1 10 8 0.005 single-organism catabolic process 0.0014 cellular catabolic process 0.0017

Sdhb 33 7.696969697 0.006 aerobic respiration 3.80E-17 tricarboxylic acid cycle 8.10E-17
Twistnb 46 13.13043478 0.006 transcription from RNA polymerase III promoter 3.70E-14 nucleobase-containing compound biosynthetic process 6.10E-13
Ndufv2 24 7.666666667 0.013 oxidation-reduction process 0.000000065 response to protozoan 0.00024

DESeq2
Aldh6a1 36 8.111111111 0.003 aerobic respiration 1.00E-16 tricarboxylic acid cycle 2.00E-16

Gfm2 10 8 0.005 single-organism catabolic process 0.0014 cellular catabolic process 0.0017
Polr2l 75 12.88 0.006 nucleobase-containing compound biosynthetic process 2.50E-14 aromatic compound biosynthetic process 5.90E-14

Twistnb 46 13.13043478 0.006 transcription from RNA polymerase III promoter 3.70E-14 nucleobase-containing compound biosynthetic process 6.10E-13
Gna13 32 4.6875 0.008 G-protein coupled receptor signaling pathway 1.80E-13 semaphorin-plexin signaling pathway 2.50E-13

EdgeR
Aldh6a1 36 8.111111111 0.004 aerobic respiration 1.00E-16 tricarboxylic acid cycle 2.00E-16
Gna13 32 4.6875 0.012 G-protein coupled receptor signaling pathway 1.80E-13 semaphorin-plexin signaling pathway 2.50E-13

Tpr 58 12.24137931 0.016 proteolysis involved in cellular protein catabolic process 5.00E-18 cellular protein catabolic process 1.30E-17
Thbs1 16 3.875 0.017 cell adhesion 0.00001 biological adhesion 0.00001

Por 12 7.333333333 0.018 single-organism catabolic process 0.000018 cellular catabolic process 0.000058

Table 1.Comparison of the top 5 modules selectedby FEM with seed genes 1

generated by NMF and other differential expression detection methods.The other 2

compared methods include MAST, SCDE, Monocle, DESeq2 and EdgeR. GO analysis 3

was performed on each module, and the top 2 most enriched GO terms are listed along 4

with their p-values. Connectivity is computed by taking the average of the degree number 5

of all the nodes in the graph. The p-value for each module was calculated by FEM’s 6

internal Monte Carlo procedure.7
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Fig. 1: The workflow of NMFEM.The input can be either FastQ files or a raw counts 1

table. If FastQ files are used, they are aligned using TopHat and counted using 2

FeatureCounts (steps shown in brackets). The input or calculated rawcounts table are 3

filtered by samples and genes, converted into RPKMs using gene lengths, and normalized 4

by samples. We then run NMF method on them to detect subpopulations, and find the 5

feature genes separating the detected subpopulations. Finally,we feed the feature genes 6

as seed genes in FEM, and generate PPI gene modules that contain highly differentially 7
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Fig. 2: Comparisons among clustering methods on the HSC vs. MPP1 scRNA-Seq 1

data.2

(A) The PCA scatter-plots of the samples, based on their log normalized expression level. 3

Colors indicate the most favorable labeling that can be assigned to the clustering result 4

generated by each method. The correctly and incorrectly labeled samples are marked by 5

dot (•) and cross (x), respectively.Confusion matrices of the methods in comparison are 6

inserted on thetop-right corner of each sub-panel. The closer the matrix is to a diagonal 7

matrix, the more accurate the method is. (B) The scatter-plots of the samples for K-means 8

and hierarchical clustering, after t-SNE based dimension reduction. (C) Rand measures of 9

the methods in comparison, before and after t-SNE. Rand measure ranges from 0 to 1, 10

where a higher value indicates a greater clustering accuracy.11
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Fig. 3: MA-plots of significant or important genes defined by different methods.

1

Shown are scRNA-Seq data in the mouse lung distal epithelial cell E14.5 vs. E16.5 

2

samples. The blue color highlights the genes selected as “the most significant” by the 

3
corresponding methods. X-axis (A-value) is the mean of the gene expression, and y-axis 

4

(M-value) is the difference of the gene expression between E16.5 and E14.5 stages.
5
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Fig. 4: Network of top 5 modules using the seed genes generated by NMF. 1

Shown are module detection results in the FEM package, using the top 500 most 2

important genes detected by NMF in Fig. 3. ScRNA-Seq data in the mouse lung distal 3

epithelial cell E14.5 vs. E16.5 samples are compared, where the red and green colors 4

indicate up-and down-regulation of genes in E16.5 relative to E14.5, respectively. The 5

top 5 modules are selected by the p-values calculated from the internal Monte-Carlo 6

method in the FEM package (Table 1). 7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1839v2 | CC-BY 4.0 Open Access | rec: 9 Mar 2016, publ: 9 Mar 2016



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

−50

−25

0

25

50

−40 0 40

PC1

P
C

2

Subpopulation

●

●

1

2

0

0.2

0.4

0.6

0.8

1

c
o

n
fin

d
e

n
c
e

Consensus Map

consensus 1 2

PCA plotA

Enriched Pathways

B

C

D

L
in

e
 o

f S
ig

n
ific

a
n

c
eAntigen Processing and Presentation

Regulation of actin cytoskeleton

Spliceosome

Vibrio cholerae infection

Viral myocarditis

Lysosome

Glycolysis / Gluconeogenesis

Glycolysis Pathway

Antigen processing and presentation

Pathogenic Escherichia coli infection

0.000980.00780.0630.50

FDR on log scale

T
e
rm

1

2

3

4

5

6

7

Fig. 5: Using NMF to identify subpopulations in a single glioblastoma tumor from 1

patient MGH28. 2

(A) The consensusheat map generated from NMF. The two subpopulation clusters are 3

the evident 2 red squares, marked out by number 1 and 2. The brightness indicates the 4

confidence level of two subpopulations. (B) The PCA plot of scRNA-Seq samples from 5

patient MGH28, the discovered subpopulations are coded in red and blue colors. (C) The 6

results of KEGG/BioCarta Pathway enrichment analysis. The line of significance (to the 7

right of which meaning the FDR less than 0.05) is shown. (D) The protein interaction 8

diagram of the KEGGpathway “Pathogenic E. Coli infection”. The proteins coded by the 9

genes detected by NMF are highlighted yellow, with the gene names marked below.10
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