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Abstract1

Clawpack is a software package designed to solve nonlinear hyperbolic partial differential equa-2

tions using high-resolution finite volume methods based on Riemann solvers and limiters. The pack-3

age includes a number of variants aimed at different applications and user communities. Clawpack4

has been actively developed as an open source project for over 20 years. The latest major release,5

Clawpack 5, introduces a number of new features and changes to the code base and a new devel-6

opment model based on GitHub and Git submodules. This article provides a summary of the most7

significant changes, the rationale behind some of these changes, and a description of our current8

development model.9

1 Introduction10

The Clawpack software suite [12] is designed for the solution of nonlinear conservation laws, balance11

laws, and other first-order hyperbolic partial differential equations not necessarily in conservation form.12

The underlying solvers are based on the wave propagation algorithms described by LeVeque in [34], and13

are designed for logically Cartesian uniform or mapped grids or an adaptive hierarchy of such grids.14

The original Clawpack was first released as a software package in 1994 and since then has made major15

strides in both capability and interface. More recently a major refactoring of the code and a move to16

GitHub for development has resulted in the release of Clawpack 5.0 in January, 2014. A significant17

number of additional improvements have been made since then.18

Because scientific software has become central to many advances made in science, engineering,19

resource management, natural hazards modeling and other fields, it is increasingly important to describe20

and document changes made to widely used packages. Such documentation efforts serve to orient new21

and existing users to the strategies taken by developers of the software, place the software package in22

the context of other packages, document major code changes, and provide a concrete, citable reference23

for users of the software.24
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With this in mind, the goals of this paper are to:25

• Summarize the development history of Clawpack,26

• Summarize some of the major changes made between the early Clawpack 4.x versions and the27

most recent version, Clawpack 5.3,28

• Summarize the development model we have adopted, for managing open source scientific software29

projects with many contributors, and30

• Identify how users can contribute to the Clawpack suite of tools.31

This paper provides a brief history of Clawpack in Section 1.1, a background of the mathematical32

concerns in Section 1.2, the modern development approach now being used in Section 2, the major33

feature additions in the Clawpack 5.x major release up until Version 5.3 in Section 3. Some concluding34

thoughts and future plans for Clawpack are mentioned in Section 4.35

1.1 History of Clawpack36

The first version of Clawpack was released by LeVeque in 1994 [32] and consisted of Fortran code37

for solving problems on a single, uniform Cartesian grid in one or two space dimensions, together with38

some Matlab [40] scripts for plotting solutions. The wave-propagation method implemented in this39

code provided a general way to apply recently developed high-resolution shock capturing methods to40

general hyperbolic systems and required only that the user provide a “Riemann solver” to specify a41

new hyperbolic problem. Collaboration with Berger [7] soon led to the incorporation of adaptive mesh42

refinement (AMR) in two space dimensions, and work with Langseth [31, 30] led to three-dimensional43

versions of the wave-propagation algorithm and the software, with three-dimensional AMR then added44

by Berger.45

Version 4.3 of Clawpack contained a number of other improvements to the code and formed the46

basis for the examples presented in a textbook [34] published in 2003. That text not only provided a47

complete description of the wave propagation algorithm, developed by LeVeque, but also is notable in48

that the codes used to produce virtually all of figures in the text were made available online [34]. These49

examples are available at http://depts.washington.edu/clawpack/clawpack-4.3/book.html.50

In 2009, Clawpack Version 4.4 was released with a major change from Matlab to Python as the51

recommended visualization tool, and the development of a Python user interface for specifying the input52

data.53

Since then, a number of other features were added to handle new applications, to provide a better54

user interface and visualization tools, to incorporate higher-order accurate algorithms, to parallelize55

through MPI and OpenMP, and other enhancements. The Clawpack 4.x line of code ended with56

Version 4.6.3 (released in January 2013) with many of the changes from 4.3 to 4.61.57

Version 5 of Clawpack introduces a number of modern approaches to code development, interfacing58

with other codes, and adding new capabilities. These changes are the subject of the rest of this paper.59

1.2 Hyperbolic problems60

In one space dimension, the hyperbolic systems solved with Clawpack typically take the form of61

conservation laws62

qt(x, t) + f(q(x, t))x = 0 (1)63

or non-conservative linear systems64

qt(x, t) +A(x)q(x, t)x = 0, (2)65

1http://depts.washington.edu/clawpack/users-4.6/changes.html
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where subscripts denote partial derivatives and q(x, t) is a vector with m ≥ 1 components. The coef-66

ficient matrix A in (2) or the Jacobian matrix f ′(q) in (1) is assumed to be diagonalizable with real67

eigenvalues for all relevant values of q, x, and t. This condition guarantees that the system is hyperbolic,68

with solutions that are wave-like. The eigenvectors of the system determine the relation between the69

different components of the system, or waves, and the eigenvalues determine the speeds at which these70

waves travel. The right hand side of these equations could be replaced by a “source term” ψ(q, x, t) to71

give a non-homogeneous equation that is sometimes called a “balance law” rather than a conservation72

law. Spatially-varying flux functions f(q, x) in (1) can also be handled using the f-wave approach [3].73

Examples of equations solved by Clawpack include:74

• Advection equation(s) for one or more tracers. The velocity field is typically prescribed from the75

solution to another fluid flow problem, such as wind. Typical applications include transport of76

heat, energy, pollution, smoke or another species that does not influence the velocity field.77

• The Euler equations of compressible, inviscid fluid dynamics, consist of conservation laws for mass,78

momentum, and energy. The wave speeds depend on the local fluid velocity and the acoustic wave79

velocity (sound speed). Source terms can be added to include the effect of gravity, viscosity or80

heat transfer. These systems have important applications in aerodynamics, climate and weather81

modeling, and astrophysics.82

• The shallow water equations, describing the velocity and surface height of a liquid whose depth is83

small relative to typical wavelengths. In this case source terms may include the effect of varying84

bathymetry and of bottom friction. These equations are used, for instance, to model inundation85

caused tsunamis and dam breaks, as well as atmospheric flows.86

• Elastic wave equations, used to model waves in solid materials. Here even a linear problem can87

be complex due to varying material properties on multiple scales that then effect the wave speeds.88

Discontinuities (shock waves) can arise in the solution of nonlinear hyperbolic equations, causing89

difficulties for traditional numerical methods based on discretizing derivatives directly. Modern shock90

capturing methods are often based on solutions to the Riemann problem that consists of equations (1)91

or (2) together with piecewise constant initial data with a single jump discontinuity. The solution to92

the Riemann problem is a similarity solution (a function of x/t only), typically consisting of m waves93

(for a system of m equations) propagating at constant speed. This is true even for nonlinear problems,94

where the waves may be shocks or rarefaction waves (through which the solution varies continuously in95

a self-similar manner).96

The main theoretical and numerical difficulties of hyperbolic problems involve the prescription of97

physically correct weak solutions and understanding the behavior of the solution at discontinuities. The98

Riemann solver is an algorithm that encodes the specifics of the hyperbolic system to be solved, and it is99

the only routine (other than problem-specific setup such as initial conditions) that needs to be changed100

in order to apply the code to different hyperbolic systems. In some cases, the Riemann solver may also101

be designed to enforce physical properties like positivity (e.g., for the water depth in GeoClaw) or to102

account for forces (like that of gravity) that may be balanced by flux terms.103

Clawpack is based on Godunov-type finite volume methods in which the solution is represented104

by cell averages. Riemann problems between the cell averages in neighboring states are used as the105

fundamental building block of the algorithm. The wave-propagation algorithm originally implemented106

in Clawpack (and still used in much of the code) is based on using the waves resulting from each107

Riemann solution together with limiter functions to achieve second-order accuracy where the solution108

is smooth together with sharp resolution of discontinuities without spurious numerical oscillations (see109

[34] for a detailed description of the algorithms). The recently developed SharpClaw algorithms (see110

Section 3.6), now incorporated into PyClaw, use higher-order WENO methods but rely on the same111

Riemann solvers.112

Problem-specific boundary conditions must also be imposed, which are implemented by a subroutine113

that sets the solution value in ghost cells exterior to the domain each time step. The Clawpack114
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software contains library routines that implement several sets of boundary conditions that are commonly115

used, e.g. periodic boundary conditions, reflecting solid wall boundary conditions for problems such116

as acoustics, Euler, or shallow water equations, and non-reflecting (absorbing) extrapolation boundary117

conditions. As with all Clawpack library routines, the boundary condition routine can be copied and118

modified by the user to implement other boundary conditions needed for a particular application.119

In two space dimensions, hyperbolic equations might take the form120

qt(x, y, t) + f(q(x, y, t))x + g(q(x, y, t))y = 0 (3)121

or122

qt(x, y, t) +A(x, y)q(x, y, t)x +B(x, y)q(x, y, t)y = 0 (4)123

In order to be hyperbolic, the coefficient matrices A and B in (3) or the Jacobian matrices f ′(q) and124

g′(q) in (4) must have the property that any linear combination gives a diagonalizable matrix with real125

eigenvalues. The extension to three space dimensions is similar.126

In two or three space dimensions, the wave-propagation methods are extended using either dimen-127

sional splitting, so that only one-dimensional Riemann solvers are needed, or by a multi-dimensional128

algorithm based on transverse Riemann solvers introduced in [33]. Both approaches are supported in129

Clawpack. A variety of Riemann solvers have been developed for Clawpack, many of which are130

collected in the riemann repository, see Section 3.2.131

Adaptive mesh refinement is essential for many problems and has been available in two space di-132

mensions since 1995, when Marsha Berger joined the project team and her AMR code for the Euler133

equations of compressible flow was generalized to fit into the software which became AMRClaw [8].134

AMRClaw was carried over to three space dimensions using the unsplit algorithms introduced in [31].135

Starting in Version 5.3.0, dimensional splitting is also supported in AMRClaw, which can be partic-136

ularly useful in three space dimensions where the unsplit algorithms are much more expensive. Other137

recent improvements to AMRClaw are discussed in Section 3.4.138

2 Development Approach139

Clawpack’s development model is driven by the needs of its developer community. The Clawpack140

project consists of several interdependent projects: core solver functionality, a visualization suite, a141

general adaptive mesh refinement code, a specialized geophysical flow code, and a massively parallel142

Python framework. Changes to the core solvers and visualization suite have a downstream effect on the143

other codes, and the developers largely work in an independent, asynchronous manner across continents144

and time zones.145

The core Clawpack software repositories are:146

• clawpack – responsible for installation and coordination of other repositories,147

• riemann – Riemann solvers used by all the other projects,148

• visclaw – a visualization suite used by all the other projects,149

• clawutil – utility functions used by most other projects,150

• classic – the original single grid methods in 1, 2, and 3 space dimensions,151

• amrclaw – the general adaptive mesh refinement framework in 2 and 3 dimensions,152

• geoclaw – solvers for depth-averaged geophysical flows which employs the framework in amrclaw,153

and154

• pyclaw – a Python implementation and interface to the Clawpack algorithms including high-155

order methods and massively parallel capabilities.156
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A release of Clawpack downloaded by users contains all of the above. The repositories riemann,157

visclaw, and clawutil are sometimes referred to as upstream projects, since their changes affect all158

the remaining projects in the above list, commonly referred to as downstream projects. There are159

some variations on this, for instance AMRClaw is upstream of GeoClaw, which uses many of the160

algorithms and software base from AMRClaw. To coordinate this the clawpack repository points to161

the compatible version of each repository, described later in this section.162

Beyond the major code containing repositories additional repositories contain documentation and163

extended examples for using the packages:164

• doc – the primary documentation source files, developed using Sphinx2,165

• clawpack.github.com – a host repository for the documentation html files that appear at http:166

//www.clawpack.org, and167

• apps – applications contributed by developers and users that go beyond the introductory examples168

included in the core repositories.169

The Clawpack 4.x code is also available in the repository clawpack-4.x but is no longer under170

development.171

2.1 Version Control172

The Clawpack team uses the Git distributed version control system to coordinate development of173

each major project. The repositories are publicly coordinated under the Clawpack organization on174

GitHub3 with the top-level clawpack super-repository responsible for hosting build and installation175

tools, as well as providing a synchronization point for the other repositories. The remaining “core176

Clawpack repositories” listed above are subrepositories of the main clawpack organization.177

GitHub itself is a free provider of public Git repositories. In addition to repository hosting, the178

Clawpack team uses GitHub for issue tracking, code review, automated continuous integration via179

Travis CI4, and test coverage tracking via Coveralls5 for the Python-based modules. The issue tracker on180

GitHub supports cross-repository references, simplifying communication between Clawpack developer181

sub-teams. The Travis CI service, which provides free continuous integration for publicly developed182

repositories on GitHub, runs Clawpack’s test suites through nose6 on proposed changes to the code183

base, and through a connection to the Coveralls service, reports on any test failures as well as changes184

to test coverage.185

2.2 Submodules186

The clawpack “super-repository” serves as an installation and synchronization point for the project187

repositories: each of the other core Clawpack repositories listed above is a submodule of the clawpack188

repository. A commit to the clawpack repository serves to keep track of the versions of each sub-189

module that are meant to function together. Git submodules provide an invaluable mechanism for190

allowing Clawpack team members to work asynchronously on independent projects while reusing and191

maintaining common software infrastructure.192

Typically theClawpack developers advance the master development branch of the top-level clawpack193

repository any time a major feature is added or a bug is fixed in one of the upstream projects that might194

affect code in other repositories. By checking out a particular commit in the clawpack repository and195

performing a git submodule update, all repositories can be updated to versions that are intended to196

be consistent and functional.197

2http://sphinx-doc.org
3https://github.com/clawpack
4https://travis-ci.org/
5http://coveralls.io
6https://nose.readthedocs.org
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In particular, when Travis runs the regression tests in any project repository (performed automat-198

ically for any pull request), it starts by installing Clawpack on a virtual machine and the current199

head of the clawpack/master branch indicates the commit from each of the other projects that must200

be checked out before performing the tests. If the clawpack repository has not been properly updated201

following changes in other upstream projects, these tests may fail.202

Any new release of Clawpack is a snapshot of one particular commit on clawpack and the related203

commits on all submodules. These particular commits are also tagged for future reference with con-204

sistent names, such as v5.3.1. (Git tags simply provide a descriptive name for a particular commit205

rather than having to refer to a Git hash code.)206

2.3 Contributing207

Scientists who program are often discouraged from sharing code due to existing reward mechanisms208

and the fear of being “scooped”. However, recent studies indicate that scientific communities that209

openly share and develop code have an advantage because each researcher can leverage the work of210

many others [43], and that paper citation rates can be increased by sharing code [44] and/or data [41].211

Moreover, journals and funding agencies are increasingly requiring investigators to share code used to212

obtain published results. One of the goals of the Clawpack project is to facilitate code sharing by213

users, by providing an easy mechanism to refer to a specific version of the Clawpack software and214

ensuring that past versions of the software remain available on a stable and citable platform.215

On the development side, we expect that the open source development model with important dis-216

cussions conducted in public will lead to further growth of the developer community and additional217

contributions from users. Over the past twenty years, many users have written code extending Claw-218

pack with new Riemann solvers, algorithms, or domain-specific problem tools. Unfortunately, much219

of this code did not make it back into the core software for others to use. Many of the development220

changes in Clawpack 5.x were done to encourage contributions from a broader community. We have221

begun to see an increase in contributions from outside the developers’ groups, and hope to encourage222

more of this in the future.223

The primary development model is typical for GitHub projects: a contributor forks the repository224

on GitHub, then develops improvements in a branch that is pushed to her own fork. She issues a “pull225

request” (PR) when the branch is ready to be merged into the main repository. Increasingly, contributors226

are also using PRs as a way to conveniently post preliminary or prototype code for discussion prior to227

further development, often marked WIP for “work in progress” to signal that it is not ready to merge.228

After a PR is issued, other developers, including one or more of the maintainers for the corresponding229

project, review the code. The Travis CI server also automatically runs the tests on the proposed new230

code. The test results are visible on the GitHub page for the PR. Usually there is some iteration as231

developers suggest improvements or discuss implementation choices in the code. Once the tests are232

passing and it is agreed that the code is acceptable, a maintainer merges it.233

2.4 Releases234

Although Clawpack is continuously developed, it is convenient for users to be able to install stable235

versions of the software. The Clawpack developers provide these releases through two distribution236

channels: GitHub and the Python Package Index (PyPI). Full source releases are available on GitHub.237

Alternatively, the PyClaw subproject and its dependencies can be installed automatically using a PyPI238

client such as pip.239

Clawpack does not follow a calendar release cycle. Instead, releases emerge when the developer240

community feels enough changes have accumulated since the last release to justify the cost of switching to241

a new release. For the most part, Clawpack releases are versioned using anM.m.p triplet, representing242

the major (M), minor (m), and patch (p) versions respectively. In the broader software engineering243

community, this is often referred to as semantic versioning. Small changes that fix bugs and cosmetic244

issues result in increments to the patch-level. Backwards-compatible changes result in an increase to the245
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minor version. The introduction of backwards-incompatible changes require that the major version be246

incremented. In addition, the implementation of significant new algorithms or capability will also justify247

the increment of major release number, and is often an impetus for providing another release to the248

public. In practice, the Clawpack software has frequently included changes in minor version releases249

that were not entirely backwards compatible, but these have been relatively minor and documented in250

the release notes. Major version numbers have changed infrequently and related to major refactoring251

of the code as in going from 4.x to 5.0.252

3 Advances253

This section describes the major changes in each of the code repositories in moving from Clawpack254

4.x to the most recent version 5.3. A number of the repositories have seen only minor changes as the255

bulk of the development is focused on current research interests. There are a number of minor changes256

not listed here and the interested reader is encouraged to refer to the change logs7 and the individual257

Clawpack Git repositories for a more complete list.258

3.1 Global Changes259

Substantial redesign of the Clawpack code base was performed in the move from Clawpack 4.x to260

5.x. Major changes that affected all aspects of the code include:261

• The interface to the Clawpack Riemann solvers was changed so that one set of solvers can262

be used for all versions of the code (including PyClaw via f2py8). Rather than appearing in263

scattered example directories, these Riemann solvers have all been collected into the new riemann264

repository. Modifications to the calling sequences were made to accommodate this increased265

generality.266

• Calling sequences for a number of other Fortran subroutines were also modified based on experi-267

ences with the Clawpack 4.x code. These can also be used as a stand-alone product for those268

who only want the Riemann solvers.269

• Python front-ends were redesigned to more easily specify run-time options for the solver and vi-270

sualization. The Fortran variants (ClassicClaw, AMRClaw, and GeoClaw) all use a Python271

script to facilitate setting input variables. These scripts create text files with a rigidly specified272

format that are then read in when the Fortran code is run. The interface now allows updates to273

the input parameters while maintaining backwards compatibility.274

• The indices of the primary conserved quantities were reordered. In Clawpack 4.x, the mth275

component of a system of equations in grid cell (i, j) (in two dimensions, for example), was stored276

in q(i,j,m). In order to improve cache usage and to more easily interface with PETSc, a global277

change was made to the ordering so that the component number comes first; i.e. q(m,i,j). A278

seemingly minor change like this affects a huge number of lines in the code and cannot easily be279

automated. The use of version control and regression tests was crucial in the successful completion280

of the project.281

3.2 Riemann: A Community-Driven Collection of Approximate Riemann282

Solvers283

The methods implemented in Clawpack, and all modern Godunov-type methods for hyperbolic PDEs,284

are based on the solution of Riemann problems as discussed in Section 1.2. Whereas most existing285

codes for hyperbolic PDEs use Riemann solvers to compute fluxes, Clawpack Riemann solvers instead286

7http://www.clawpack.org/changes.html
8http://docs.scipy.org/doc/numpy-dev/f2py
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compute the waves (or discontinuities) that make up the Riemann solution. In the unsplit algorithm,287

Clawpack also makes use of transverse Riemann solvers, responsible for computing transport between288

cells that are only corner (in 2d) or edge (in 3d) adjacent.289

For nonlinear systems, the exact solution of the Riemann problem is computationally costly and290

may involve both discontinuities (shocks and contact waves) and rarefactions. It is almost always291

preferable to employ inexact Riemann solvers that approximate the solution using discontinuities only,292

with an appropriate entropy condition. The solvers available in Clawpack are all approximate solvers,293

although one could easily implement their own exact solver and make it available in the format needed294

by Clawpack routines.295

A common feature in all packages in the Clawpack suite is the use of a standard interface for296

Fortran Riemann solver routines. This ensures that new solvers or solver improvements developed for297

one package can immediately be used by all packages. To further facilitate this sharing and to avoid298

duplication, Riemann solvers are (with rare exceptions) not maintained under the other packages but299

are collected in a single repository named riemann. Users who develop new solvers for Clawpack are300

encouraged to submit them to the Riemann repository.301

In the Fortran-based packages (Classic, AMRClaw, and GeoClaw) the Riemann solver is selected at302

compile-time by modifying a problem-specific Makefile. In PyClaw, the Riemann solver to be used is303

selected at run-time. This is made possible by compiling all of the Riemann solvers (when PyClaw is304

installed) and generating Python wrappers with f2py. For PyClaw, riemann also provides metadata305

(such as the number of equations, the number of waves, and the names of the conserved quantities) for306

each solver so that setup is made more transparent.307

3.3 ClassicClaw308

The classic repository contains code implementing the wave propagation algorithm on a single uniform309

grid, in much the same form as the original Clawpack 1.0 version of 1994 but with various enhance-310

ments added through the years. Following the introduction of Clawpack 4.4 the three-dimensional311

routines were left out of the Python user interfaces and plotting routines. These have been reintroduced312

in Clawpack 5. Additionally the OpenMP shared-memory parallelism capabilities have been extended313

to the three-dimensional code.314

3.4 AMRClaw315

Fortran code in the AMRClaw repository performs block-structured adaptive mesh refinement [4, 5]316

for both Clawpack and GeoClaw applications. The algorithms implemented in AMRClaw are317

discussed in detail in [7, 36], but a short overview is given here to set the stage for a description of318

recent changes. AMRClaw includes the functionality for:319

• Coordinating the flagging of points where refinement is needed, with a variety of criteria possible320

for flagging cells that need refinement from each level to the next finer level (including Richardson321

extrapolation, gradient testing, or user-specified criteria)9,322

• Organizing the flagged points into efficient grid patches at the next finer level, using the algorithm323

of [9],324

• Interpolating the solution to newly created fine grids and initializing auxiliary data (topography,325

wind velocity, metric data and so on) on these grids,326

• Averaging fine grid solutions to coarser grids,327

• Orchestrating the adaptive time stepping (i.e. sub-cycling in time),328

• Interpolating coarse grid solution to fine grid ghost cells, and329

9See http://www.clawpack.org/flag.html
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• Maintaining conservation at patch boundaries between resolution levels.330

AMRClaw now allows users to specify “regions” in space-time [x1, x2]× [y1, y2]× [t1, t2] in which331

refinement is forced to be at least at some level L1 and is allowed to be at most L2. This can be332

useful for constraining refinement, e.g. allowing or ensuring resolution of only a small coastal region333

in a global tsunami simulation. Previously the user could enforce such conditions by writing a custom334

flagging routine, but now this is handled in a general manner so that the parameters above can all be335

specified in the Python problem specification. Multiple regions can be specified, and a simple rule is336

used to determine the constraints at a grid cell that lies in multiple regions.337

Auxiliary arrays are often used in Clawpack to store data that describes the problem and the338

routine. The routine setaux must then be provided by the user to set these values each time a new grid339

patch is created. For some applications computing these values can be time-consuming. In Clawpack340

5.2, this code was improved to allow reuse of values from previous patches at the same level where341

possible at each regridding time. This is backward compatible, since no harm is done if previously342

written routines are used that still compute and overwrite instead of checking a mask.343

In Clawpack 5.3 the capability to specify spatially varying boundary conditions was added. For344

a single grid, it is a simple matter to compute the location of the ghost cells that extend outside the345

computational domain and set them appropriately. With AMR however, the boundary condition routine346

can be called for a grid located anywhere in the domain, and may contain fewer or larger numbers of347

ghost cells. For this reason, the boundary condition routines do not assume a fixed number of ghost348

cells.349

Anisotropic refinement is allowed in both two and three dimensions. This means that the spatial and350

temporal refinement ratios can be specified independently from one another (as long as the temporal351

refinement satisfies the CFL condition). In addition, capabilities have been added to automatically352

select the refinement ratio in time on each level based on the CFL condition. This has only been353

implemented in GeoClaw. where the wave speed in the shallow water equations depends on the local354

depth. The finest grids are often located only in shallow coastal regions, so a large refinement ratio in355

space does not lead to a large refinement ratio in time.356

AMRClaw has been parallelized using OpenMP directives using a patch-based decomposition. The357

main paradigm in structured AMR is a loop over all patches at a given level, where some operation is358

done on each patch (i.e. taking a time step, finding ghost cells, conservation updates, etc.). This lends359

itself easily to a parallel for loop construct where each iteration of the loop corresponds to a grid360

at that level. Dynamic scheduling is used with a chunk size of one, so that one thread is assigned one361

patch at a time. To help with load balancing, patches at each level are sorted from largest to smallest362

workload when they are first created, using the total number of cells in the grid as an indicator of work.363

Note that this approach causes a memory bulge. Each thread must have its own scratch arrays to364

save the incoming and outgoing waves and fluxes for future conservation fix-ups. The bulge is directly365

proportional to the number of threads executing. For stack-based memory allocation per thread, the366

use of the environment variable OMP STACKSIZE to increase the limit may be necessary.367

Figure 1 shows two snapshots of the solution to a three-dimensional shock-bubble interaction problem368

found in the Clawpack apps repository, illustrating localized phenomena requiring adaptive refine-369

ment. In Fig. 2 we show scalability tests and some timings for this example, when run on a 40 core370

Intel Xeon Haswell machine, using KMP AFFINITY compact. For timing purposes, the only modifica-371

tions made to the input parameters was to turn off checkpointing and graphics output. The plot on372

the left shows that most of the wall clock time is in the integration routine (stepgrid), which closely373

tracks the total time. The second chunk of time is in the regridding, which contains algorithms that374

are not completely scalable. Very little time is in the filling of ghost cells, mostly from other patches375

but also includes those at domain boundaries. The efficiency is above 80% until 24 cores, then drops376

off dramatically. Note that there are only 2 level 1 grids, and an average of 22.8 level 2 grids. Most377

of the work is on level 3 grids, where there are an average of 138.1 grids over all the level 3 timestep.378

This is very coarse for large numbers of cores (hence the dropoff in efficiency). At 40 cores, there are379

less than 4 grids per core, and the grids are very different sizes.380
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Figure 1: AMRClaw example demonstrating a shock-bubble interaction in the Euler equations of com-
pressible gas-dynamics at two times, illustrating the need for adaptive refinement to capture localized
behavior. The 40 × 10 × 10 grid at Level 1 is refined where needed by factors of 4 and then 2 in this
3-level run.

The parallelization of AMRClaw and GeoClaw assumes multi-core machines for the target ar-381

chitecture. PyClaw, on the other hand, does not include AMR but uses MPI via PETSc to achieve382

parallelism on distributed memory machines that scale to tens of thousands of cores (see Section 3.6).383

Other frameworks exist, most notably ForestClaw [11], which are being developed in parallel with384

AMRClaw, that provide scalable AMR calculations on large distributed memory machines.385

3.5 GeoClaw386

The GeoClaw branch of Clawpack was developed to solve the two-dimensional shallow water equa-387

tions over topography for modeling tsunami generation, propagation, and inundation. The AMRClaw388

code formed the starting point but it was necessary to make many modifications to support the require-389

ments of this application, as described briefly below. This code originated with the work of George390

[15, 16, 17] and was initially called TsunamiClaw. Later it became clear that many other geophysical391

flow applications have similar requirements and the code was generalized as GeoClaw.392

One of the major issues is the treatment of wetting and drying of grid cells at the margins of the393

flow. The handling of dry states in a Riemann solver is difficult to handle robustly, and has gone394

through several iterations. GeoClaw must also be well-balanced in order to preserve steady states, in395

particular the “ocean at rest”. To achieve this, the source terms in the momentum equations arising396

from variations in topography are incorporated into the Riemann solver rather than using a fractional397

step splitting approach. This is critical for modeling waves that have very small amplitudes relative to398

the variations in the depth of the ocean. See [35] for a general discussion of such methods and [16, 17]399

for details of the Riemann solver used in GeoClaw. Other features of GeoClaw include the ability to400

solve the equations in latitude–longitude coordinates on the surface of the sphere, and the incorporation401

of source terms modeling bottom friction using a Manning formulation. More details about the code402

and tsunami modeling applications can be found in [6, 36]. In 2011, a significant effort took place to403

verify and validate GeoClaw against the US National Tsunami Hazard Mitigation Program (NTHMP)404

benchmarks [21]. NTHMP approval of the code allowsGeoClaw to be used in hazard mapping projects405

that are funded by this program or other federal and state agencies, e.g. [19, 20]. One such project is406

illustrated in Fig. 3.407

In addition to a variety of tsunami modeling applications, GeoClaw has been used to solve dam408

break problems in steep terrain [14], storm surge problems [39] (see Fig. 4), and submarine landslides409

[29]. The code also formed the basis for solving the multi-layer shallow water equations for storm surge410
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Figure 2: Left is strong scaling results for the AMRClaw example shown in Fig. 1. Right is plot of
efficiency based on total computational time.

modeling [37, 38], and is currently being extended further to handle debris flow modeling in the packages411

D-Claw [24, 18] (see Fig. 5).412

Nearly one quarter of the files in the AMRClaw source library have to be modified for GeoClaw.413

There are currently 113 files in the AMRClaw 2D library, of which 26 are replaced by a GeoClaw-414

specific files of the same name in the GeoClaw 2D library. For example, to preserve a flat sea surface415

when interpolating, it is necessary to interpolate the surface elevation (topography plus water depth)416

rather than simply interpolating the depth component of the solution vector as would normally be done417

in AMRClaw. An additional 24 files in the GeoClaw shallow water equations library handle other418

complications introduced by the need to model tsunamis and storm surge.419

Several other substantial improvements in the algorithms implemented in GeoClaw have been420

made between versions 4.6 and 5.3.0, including:421

• In depth-averaged flow, the wave speed and therefore the CFL condition depends on the depth.422

As a result, flows in shallow water that have been refined spatially may not need to be refined in423

time. This “variable-time-stepping” was easily added along with the anisotropic capabilities that424

were added to AMRClaw.425

• The ability to specify topography via a set of topo files that may cover overlapping regions at426

different resolutions has been added. The finite volume method requires cell averages of topogra-427

phy, computed by integrating a piecewise bilinear function constructed from the input topo files428

over each grid cell. In Clawpack 5.1.0, this was improved to allow an arbitrary number of nested429

topo grids. When adaptive mesh refinement is used, regridding may take place every few time430

steps. Improvements were made in 5.2.0 so that topography could be copied rather than always431

being recomputed in regions where there is an existing old grid.432

• The user can now provide multiple dtopo files that specify changes to the initial topography at433

a series of times. This is used to specify sea-floor motion during a tsunamigenic earthquake, but434

can also be used to specify submarine landslide motion or a failing dam, for example.435

• A number of new Python modules has been developed to assist the user in working with topo436

and dtopo files. These are documented in the Clawpack documentation and several of them are437

illustrated with Jupyter notebooks found in the Clawpack Gallery.438

• New capabilities were added in 5.0.0 to monitor the maximum of various flow quantities over439

a specified time range of a simulation. This capability is crucial for many applications where440
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Figure 3: Left: Gray’s Harbor showing Westport, WA on southern peninsula. Middle: Simulation
of a potential magnitude 9 Cascadia Subduction Zone event, 40 minutes after the earthquake. Right:
Design for new Ocosta Elementary School in Westport, based in part on GeoClaw simulations [19].

the maximum flow depth at each point, maximum current velocities in a harbor, or maximum441

momentum flux (a measure of the hydrodynamic force that would be exerted by the flow on a442

structure) is desired. Arrival time of the first wave at each point can also be monitored. Such443

capabilities were included in the 4.x version of the code, but were more limited and did not always444

perform properly near the edges of refinement patches. In Version 5.2 these routines were further445

improved and extended. The user can specify a grid of points on which to monitor values, and446

the new code is more flexible in allowing one-dimensional grids (e.g. a transect), two-dimensional447

rectangular grids, or an arbitrary set of points10.448

3.6 PyClaw449

PyClaw is an object-oriented Python package that provides a convenient way to set up problems450

and call the algorithms of Clawpack. It grew from what was initially a set of data structures and451

file IO routines that are used by the other Clawpack codes and by VisClaw. These routines were452

released in an early form in later 4.x versions of Clawpack. Those releases also included a fully-453

functional implementation of the 1D classic algorithm in pure Python. That implementation still exists454

in PyClaw and is useful for understanding the algorithm.455

The current release of PyClaw includes access to the classic algorithms as well as the high-order456

algorithms introduced in SharpClaw [27] (i.e., WENO reconstruction and Runge–Kutta integrators)457

and can be used on large distributed-memory parallel machines. For the latter capability, PyClaw458

relies on PETSc [2]. Lower-level code (whatever gets executed repeatedly and needs to be fast) from459

the earlier Fortran Classic and SharpClaw codes is automatically wrapped at install time using f2py.460

Recent applications of PyClaw include studies of laser light trapping by moving refractive index461

perturbations [42], instabilities of weakly nonlinear detonation waves [13], and effective dispersion of462

nonlinear waves via diffraction in periodic materials [28]. Two of these are depicted in Figure 6.463

3.6.1 Librarization and extensibility464

Scientific software is easier to use, extend, and integrate with other tools when it is designed as a465

library [10]. Clawpack has always been designed to be extensible, but PyClaw takes this further in466

several ways. First, it is distributed via a widely-used package management system, pip. Second, the467

default installation process (“pip install clawpack”) provides the user with a fully-compiled code468

and does not require setting environment variables. Like other Clawpack packages, PyClaw provides469

several “hooks” for users to plug in custom routines (for instance, to specify boundary conditions). In470

PyClaw, these routines – including the Riemann solver itself – are selected at run-time, rather than at471

compile-time. These routines can be written directly in Python, or (if they are performance-critical) in a472

10Described in http://www.clawpack.org/fgmax.html
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Package Threads Wall Time Core Time

ADCIRC 4000 35 minutes 2333 hours
GeoClaw 4 2 hours 8 hours

Figure 4: Top Left: A snapshot of a GeoClaw storm surge simulation of Hurricane Ike at landfall.
Top Right: Tide gauge data computed from GeoClaw and adcirc along with observed data at the
same location. Bottom: Computational effort and timings for GeoClaw and adcirc. From [39].

Figure 5: Left: Mt. Meager debris flow of 2010, from [1]. Middle: Simulated debris flow, from D.
George. Right: Observed (yellow line) and computed (blue) landslide at Oso, WA in 2014 [25].

compiled language (like Fortran or C) and wrapped with one of the many available tools. Problem setup473

(including things like initial conditions, algorithm selection, and output specification) is also performed474

at run-time, which means that researchers can bypass much of the slower code-compile-execute-post-475

process cycle. It is intended that PyClaw be easily usable within other packages (without control of476

main()).477

3.6.2 Python geometry478

PyClaw includes Python classes for describing collections of structured grids and data on them. These479

classes are also used by the other codes andVisClaw, for post-processing. A mesh in Clawpack always480

consists of a set of (possibly mapped) tensor-product grids (interval, quadrilateral, or hexahedral), also481

referred to as patches. At present, PyClaw solvers operate only on a single patch, but the geometry482

and grids already incorporate multi-patch capabilities for visualization in AMRClaw and GeoClaw.483
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Figure 6: Left: A two-dimensional detonation wave solution of the reactive Euler equations, showing
transverse shocks that arise from instabilities; see [13]. Right: Dispersion of waves in a layered medium
with matched impedance and periodically-varying sound speed; see [28].

3.6.3 PyClaw solvers484

PyClaw includes an interface to both the Classic solvers (already described above) and those of Sharp-485

Claw [26]. SharpClaw uses a traditional method-of-lines approach to achieve high-order resolution in486

space and time. Spatial operators are discretized first, resulting in a system of ODEs that is then solved487

using Runge–Kutta or linear multistep methods. The spatial derivatives are computed using a weighted488

essentially non-oscillatory (WENO) reconstruction from cell averages, which suppresses spurious oscilla-489

tions near discontinuities. The WENO routines in SharpClaw were generated by PyWENO11, which490

is a standalone package that generates WENO routines.491

The default time stepping routines in SharpClaw are strong stability preserving (SSP) Runge–492

Kutta methods of order two to four. Some of the methods use extra stages in order to allow more493

efficient time stepping with larger CFL numbers. Time stepping in SharpClaw has recently been494

augmented to include linear multistep methods with variable step size. These methods use a time step495

size selection that ensures the strong stability preserving property, as described in [22].496

3.6.4 Parallelism497

PyClaw includes a distributed parallel backend that uses PETSc through the Python wrapper petsc4py.498

The parallel code uses the same low-level routines without modification. In the high-level routines, only499

a few hundred lines of Python code deal explicitly with parallel communication, in order to transfer500

ghost cell information between subdomains and to find the global maximum CFL number in order to501

adapt the time step size. For instance, the computation shown in the right part of Figure 6 involved502

more than 120 million degrees of freedom and was run on two racks of the Shaheen I BlueGene/P503

supercomputer. The code has been demonstrated to scale with better than 90% efficiency in even504

larger tests on tens of thousands of processors on both the Shaheen I (BlueGene/P) and Shaheen II505

(Cray XC40) supercomputers at KAUST. A hybrid MPI/OpenMP version is already available in a506

development branch and will be included in future releases.507

3.7 VisClaw : Visualizing Clawpack output508

A practical way to visualize the results of simulations is essential to any software package for solv-509

ing PDEs. This is particularly true for simulations making use of adaptive mesh refinement, since510

11http://github.com/memmett/PyWENO
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most available visualization packages do not have tools that conveniently visualize hierarchical AMR511

data. VisClaw provides support for all of the main Clawpack submodules, including ClassicClaw,512

AMRClaw, PyClaw and GeoClaw.513

From the first release in 1994, Clawpack has included tools for visualizing the output of Clawpack514

and AMRClaw runs. Up until the release of version Clawpack 4.x, these visualization tools consisted515

primarily of Matlab routines for creating one, two and three dimensional plots including pseudo-color516

plots, Schlieren plots, contour plots and scatter plots, including radially or spherically symmetric data.517

Built-in tools were also available for handling one, two and three-dimensional mapped grids. Starting518

with version 4.x, however, it was recognized that a reliance on proprietary software for visualization519

prevented a sizable potential user base from making use of the Clawpack software. The one and two520

dimensional plotting routines were converted from Matlab to matplotlib, a popular open source Python521

package for producing publication quality graphics for one and two dimensional data [23].522

With the development of Clawpack Version 5 and above, Python graphics tools have been collected523

into the VisClaw repository. The VisClaw tools extend the functionality of the Version 4.x Python524

routines for creating one and two dimensional plots, and adds several new capabilities. Chief among525

these are the ability to generate output to webpages, where a series of plots can be viewed individually or526

as an animated time sequence using the Javascript package12 (which was motivated by code in an earlier527

version of Clawpack). TheVisClawmodule Iplotclaw provides interactive plotting capabilities from528

the Python or IPython prompt. Providing much of the same interactive capabilities as the original529

Matlab routines, Iplotclaw allows the user to step, interactively, through a time sequence of plots,530

jump from one frame to another, or interactively explore data from the current time frame.531

3.7.1 Tools for visualizing geo-spatial data produced by GeoClaw532

The geo-spatial data generated by GeoClaw has particular visualization requirements. Tsunami or533

storm surge simulations are most useful when the plots showing inundation or flooding levels are overlaid534

onto background bathymetry or topography. Supplementary one dimensional time series data (e.g.535

gauge data) numerically interpolated from the simulation at fixed spatial locations are most useful when536

compared graphically to observational data. Finally, to more thoroughly analyze the computational537

data, simulation data should be made available in formats that can be easily exported to GIS tools538

such as ArcGIS13 or the open source alternative QGIS14. For exploration of preliminary results or539

communicating results to non-experts, Google Earth is also helpful.540

The latest release of Clawpack includes many specialized VisClaw routines for handling the above541

issues with plotting geo-spatial data. Topography or bathymetry data that was used in the simulation542

will be read by the graphing routines, and, using distinct colormaps, both water and land can be viewed543

on the same plot. Additionally, gauge locations can be added, along with contours of water and land.544

One dimensional gauge plots are also created, according to user-customizable routines. In these gauge545

plotting routines, users can easily include observational data to compare with GeoClaw simulation546

results.547

In addition to HTML and Latex formats available for all Clawpack results, VisClaw will now also548

produce KML and KMZ files suitable for visualizing results in Google Earth. Using the same matplotlib549

graphics routines, VisClaw creates PNG files that can be used as GroundOverlay features in a KML550

file. Other features, such as gauges, borders on AMR grids, and user specified regions can also be shown551

on Google Earth. All KML and PNG files are compressed into a single KMZ file that can be opened552

directly in Google Earth or made available on-line. While VisClaw does not have any direct support553

for ArcGIS or QGIS, the KML files created for Google Earth can be edited for export, along with554

associated PNG files to these other GIS applications.555

12https://github.com/jakevdp/JSAnimation
13http://www.arcgis.com
14http://www.qgis.org
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3.7.2 Matlab plotting routines556

The Matlab plotting tools available in early versions of Clawpack are still included in VisClaw.557

While most of the one and two dimensional capabilities available originally in the Matlab suite have558

been ported to Python and matplotlib, the original Matlab routines are still available in the Matlab559

suite of plotting tools. Other plotting capabilities, such as two dimensional manifolds embedded in three560

dimensional space, or three dimensional plots of fully three-dimensional data are only available in the561

Matlab routines in a way that interfaces directly with Clawpack. More advanced three-dimensional562

plotting capabilities are planned for future releases of VisClaw.563

4 Conclusions564

Clawpack has evolved over the past 20 years from its genesis as a small and focused software package565

that two core developers could manage without version control. It is now an ecosystem of related projects566

that share a core philosophy and some common code (notably Riemann solvers and visualization tools),567

but that are aimed at different user communities and that are developed by overlapping but somewhat568

distinct groups of developers scattered at many institutions. The adoption of better software engineering569

practices, in particular the use of Git and GitHub as an open development platform and the use of pull570

requests to discuss proposed changes, has been instrumental in facilitating the development of many of571

the new capabilities summarized in this paper.572

4.1 Future Plans573

The Clawpack development team continues to look forward to new ideas and efforts that will allow574

great accessibility to the project as well as new capabilities that the core development team has not575

thought of. To this end a number of the broad efforts that are being considered for the next major576

release of Clawpack include577

• An increased librarization effort with the Fortran based sub-packages,578

• An extensible and more accessible interface to the Riemann solvers,579

• An effort to allow PyClaw and the Clawpack Fortran packages to rely on more of the same580

code-base,581

• An increased emphasis on a larger development community,582

• More support for new frameworks such as ForestClaw,583

• A refactoring of the visualization tools in VisClaw, along with support for additional backends,584

particularly for three-dimensional results (e.g. VisIt15, ParaView16, or yt17).585
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