
Beyond p-values in the evaluation of brain-computer
interfaces

To statistically evaluate the performance of brain-computer interfaces (BCIs), researchers

usually rely on null hypothesis significance testing (NHST), i.e. p-values. However, over-

reliance on NHST is often identified as one of the causes of the recent reproducibility crisis

in psychology and neuroscience. In this paper we propose Bayesian estimation as an

alternative to NHST in the analysis of BCI performance data. For the three most common

experimental designs in BCI research - which would usually be analyzed using a t-test, a

linear regression, or an ANOVA - we develop hierarchical models and estimate their

parameters using Bayesian inference. Furthermore, we show that the described models

are special cases of the hierarchical generalized linear model (HGLM), which we propose as

a general framework for the analysis of BCI performance. The HGLM framework allows the

analysis of complex experimental designs with multiple levels of hierarchy (e.g. multiple

sessions, multiple subjects, multiple groups) and can accommodate different types of non-

normal data (e.g. classification accuracy), which are often analyzed under inappropriate

assumptions with NHST. We demonstrate the effectiveness of the proposed models on

three real datasets and show how the results obtained with Bayesian estimation can give a

more nuanced insight into BCI performance data, compared to NHST. Therefore we believe

that a wider adoption of the Bayesian estimation approach in BCI studies could bring about

greater transparency in data analysis, allow accumulation of knowledge across studies,

and reduce questionable practices such as "p-hacking". To achieve this goal, we provide all

the data and code necessary to reproduce the presented results, allowing BCI researchers

to use Bayesian estimation in their own work.
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Abstract—To statistically evaluate the performance of brain-1

computer interfaces (BCIs), researchers usually rely on null2

hypothesis significance testing (NHST), i.e. p-values. However,3

over-reliance on NHST is often identified as one of the causes of4

the recent reproducibility crisis in psychology and neuroscience.5

In this paper we propose Bayesian estimation as an alternative6

to NHST in the analysis of BCI performance data. For the three7

most common experimental designs in BCI research – which8

would usually be analyzed using a t-test, a linear regression,9

or an ANOVA – we develop hierarchical models and estimate10

their parameters using Bayesian inference. Furthermore, we show11

that the described models are special cases of the hierarchical12

generalized linear model (HGLM), which we propose as a general13

framework for the analysis of BCI performance. The HGLM14

framework allows the analysis of complex experimental designs15

with multiple levels of hierarchy (e.g. multiple sessions, multiple16

subjects, multiple groups) and can accommodate different types17

of non-normal data (e.g. classification accuracy), which are18

often analyzed under inappropriate assumptions with NHST.19

We demonstrate the effectiveness of the proposed models on20

three real datasets and show how the results obtained with21

Bayesian estimation can give a more nuanced insight into BCI22

performance data, compared to NHST. Therefore we believe23

that a wider adoption of the Bayesian estimation approach in24

BCI studies could bring about greater transparency in data25

analysis, allow accumulation of knowledge across studies, and26

reduce questionable practices such as “p-hacking”. To achieve27

this goal, we provide all the data and code necessary to reproduce28

the presented results, allowing BCI researchers to use Bayesian29

estimation in their own work.30

Index Terms—Brain-computer interface (BCI), classification31

accuracy, Bayesian inference, Bayesian estimation, null hypoth-32

esis significance testing (NHST), p-values, hierarchical models,33

generalized linear model (GLM).34

I. INTRODUCTION35

A little more than a decade ago, John Ioannidis put forward36

a statistical argument with a controversial conclusion: most37

published research findings are false [1]. The main point of38

Ioannidis’ argument was that the post-study probability of a39

statistically significant research finding being true is rarely40

above 50% when one takes into account all the relevant41

statistical factors. Although Ioannidis’ claim was based on the-42

oretical and simulation-based reasoning, it was corroborated43

on empirical grounds in two recent studies. First, Button et al.44

have estimated the median statistical power (i.e. probability of45

rejecting the null hypothesis when it is false) of neuroscientific46

studies to lie between 8% and 31%, based on empirical47

evidence from 49 meta-analyses [2]. Low statistical power is48
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not only a concern because of the wasted resources, but also 1

because the statistically significant results from low-powered 2

studies have small probability of actually being true. Second, 3

a recent study by the Open Science Collaboration has tried 4

to estimate the reproducibility of psychological science [3]. 5

This collaborative effort entailed replicating 100 experiments, 6

mainly from the fields of social and cognitive psychology. 7

Although 97% of original studies were statistically significant 8

at the 5% significance level, only 36% of replications reached 9

significance; moreover, the mean effect size of the replications 10

was halved in magnitude with respect to originally reported 11

effects. These results have prompted calls for reform and the 12

current situation has been referred to as a “reproducibility 13

crisis” or a “statistical crisis” in science [4]. 14

Although research on brain-computer interfaces (BCIs) is 15

often focused on the engineering challenges, much of ex- 16

perimental methodology and statistical practices have been 17

inherited from fields such as psychology and neuroscience. 18

Hence, it seems prudent to also consider the implications of 19

the statistical crisis on BCI research. With the recent advances 20

in BCI research, which have brought BCIs closer both to 21

markets and clinics, the stakes that depend on the veracity 22

of research claims have also risen. The need of more rigorous 23

statistical treatment of BCI results has been recognized [5–7], 24

but the literature on the topic is still scant, and the statistical 25

validation is in practice often carried out mechanistically and 26

under inappropriate assumptions. 27

One of the issues often identified as the crux of the statistical 28

crisis in science is the heavy reliance on null hypothesis 29

significance testing (NHST), i.e. p-values. The reliance on 30

NHST has been widely criticized in the statistical litera- 31

ture, and it is beyond the scope of this paper to rehash 32

all the arguments surrounding NHST (for some discussion 33

see references [8–14]). One of the proposed solutions for 34

the deficiencies of NHST is the so-called “Bayesian new 35

statistics” [15]. This framework differs from NHST in two 36

major ways: first, instead of hypothesis testing, the goal is 37

estimation of model parameters with uncertainty; and second, 38

instead of using frequentist inference, parameters are estimated 39

using Bayesian inference. 40

In the area of BCI research and brain decoding studies, 41

Bayesian methods have already shown promise in the analysis 42

of classification results. Olivetti et al. applied Bayesian infer- 43

ence to test the hypothesis of a decoder performing at chance 44

level in a population of users [16]. An important feature of 45

this work is that the decoder performance is modeled in a 46
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hierarchical fashion, taking into account that the group level1

accuracy is derived from subject-level accuracies, which are in2

turn estimated on a finite sample of trials. In a similar man-3

ner Brodersen et al. proposed several Bayesian hierarchical4

models of classification performance, also in the context of5

brain decoding studies [17]. Their approach focused more on6

estimation than hypothesis testing, in line with the trends of7

“new statistics” previously outlined. Importantly, the hierar-8

chical approach was contrasted with classical non-hierarchical9

approaches and shown to be superior, and the models were10

extended to the case of unbalanced class proportions.11

Although the aforementioned works have demonstrated the12

effectiveness of the Bayesian approach to the evaluation of13

BCIs, Bayesian inference is still rarely used in practice. One14

possible reason, which we try to address in this paper, is that15

previous works have illustrated the Bayesian approach only16

for the most simple experimental design: testing a single BCI17

with a group of subjects (which would usually be analyzed18

using a t-test). In practice, however, BCI studies often utilize19

more complex experimental designs.20

The main contribution of this paper is to bridge this apparent21

gap between developments in statistical methods and BCI22

research practice. We show that the three most common BCI23

experimental designs can be formulated within a hierarchical24

generalized linear model. The usual t-test, regression and25

ANOVA approach can be seen as special cases of the gener-26

alized linear model. We demonstrate the effectiveness of this27

approach on three previously published studies, corresponding28

to the three main BCI experimental designs, and show how29

the Bayesian estimation approach can lead to a more nuanced30

understanding of the obtained results.31

The proposed approach is highly flexible and can easily32

accommodate even more complex experimental designs in-33

cluding multiple levels of hierarchy (e.g. multiple sessions34

per subject, multiple subjects per group, multiple groups per35

study), multiple experimental factors and multiple covariates36

of interest. Unlike in the classical approach, all the model-37

ing assumptions are overtly stated, can be scrutinized, and38

easily changed if found unsatisfactory. Finally, the imple-39

mentation of the three proposed models, together with the40

data and code that produced the results of this paper, are41

made openly available online at www.github.com/fmelinscak/42

bayesian-bci-performance.43

II. BACKGROUND44

Most BCI studies involve answering questions of the fol-45

lowing three types:46

• “how well does a BCI perform?”,47

• “how is some independent variable of interest associated48

with BCI performance?”,49

• “how does performance of different BCI approaches50

compare?”51

We will now consider how NHST answers these questions,52

what are some of the problems associated with this statistical53

approach, and what are the possible solutions. Additionally,54

we will illustrate the difference between NHST and Bayesian55

estimation on a simple example.56

A. Problems with p-values in BCI research 1

The NHST in practice usually consists of three steps: 2

1) choosing an appropriate test statistic (implicitly, this 3

correspond to assuming a data model and defining the 4

null hypothesis), 5

2) computing the p-value, 6

3) rejecting the null hypothesis if the p-value is smaller than 7

the predetermined significance level α (usually fixed at 8

5%). 9

Corresponding to the three most common BCI research ques- 10

tions, the null hypothesis usually takes on one of the following 11

forms: (i) a BCI is operating at the chance level in the subject 12

population; (ii) there is no association between an independent 13

variable of interest (e.g. hours of sleep) and BCI performance; 14

(iii) there is no difference in performance between multi- 15

ple experimental or computational approaches (e.g. utilizing 16

different stimuli or classifiers). These null hypotheses are 17

usually tackled using the t-test, linear regression, or ANOVA, 18

respectively. 19

We can now see the first problem of NHST in BCI research 20

– most often we do not a priori believe the exact null 21

hypotheses: BCIs rarely work exactly at chance level in the 22

user population, there is usually some association between 23

an independent variable and BCI performance, and multiple 24

computational or experimental approaches will almost never 25

yield the same performance. This has the worrying implication 26

that we can always reject the null hypothesis as long as 27

we collect enough data. A related problem is that a p-value 28

gives us the probability of the data given the null hypothesis 29

P (data|H0), whereas we usually conduct experiments in order 30

to assess the plausibility of hypotheses in the light of the 31

observed data, i.e. to obtain the probability P (H0|data). 32

Moreover, the p-value gives us no indication of the estimated 33

effect size or uncertainty of the estimate, which is what we 34

usually care about – for example, we usually want to know 35

how well a BCI is performing and how certain we are in this 36

estimate, rather than if the accuracy is strictly above chance 37

level. 38

Another problematic aspect of p-values is their dependency 39

on the unobserved data. Although p-values are often used for 40

their supposed objectivity, they depend on the usually unstated 41

and possibly unknowable intentions of the experimenter and 42

the analyst – both the decision to stop collecting data and 43

testing intentions affect p-values. For example, recomputing 44

p-values after every subject has a 100% chance of eventually 45

obtaining a significant result with a flexible sampling plan, 46

even when the null hypothesis is exactly true. But even when 47

the sampling plan is pre-specified and there is no problem 48

of multiple comparisons (i.e. “p-hacking”), if data analysis 49

choices are made contingent on the obtained data, or interim 50

results, the p-values are no longer valid. This is known as 51

the problem of researchers’ degrees of freedom [18] or the 52

problem of the “garden of forking paths” [19]. The problem 53

of p-values’ sensitivity to testing and stopping intentions 54

is particularly relevant to BCI research where degrees of 55

freedom in data analysis abound, choices of a computational 56

approach are often contingent on interim results (e.g. choosing 57
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a classifier based on grand averages of features), and the1

sampling plans are usually flexible.2

And finally, but perhaps most importantly, the use of NHST3

leads to a black-and-white mode of scientific reasoning and4

to frequent misunderstanding of the results [20, 21]. On one5

hand, statistically significant effects are believed to be true,6

although they might be practically insignificant in size or we7

might have large uncertainty about the effect size; on the other8

hand, statistically non-significant results are discarded as being9

false, although they might stem from insufficient data rather10

than a lack of a practically significant effect. The problem gets11

compounded by the usual publication and reviewing practices,12

where the “p < 0.05” statement is often a necessary condition13

for a result to be accepted and published. This practice distorts14

the scientific record and litters it with statistically significant,15

but perhaps uncertain or inconsequential results, at the same16

time robbing us of negative, but perhaps fairly certain and17

practically relevant results [22–24].18

B. Moving beyond NHST19

One recent proposal to improve statistical practices and20

replace NHST has been termed “new statistics” [25]. The21

“new statistics” mostly involves recommendations of replacing22

NHST and p-values with the estimation of effect sizes and23

providing frequentist confidence intervals (CIs) for the esti-24

mated effects in order to quantify uncertainty. Although these25

methods are not new by themselves, their wide adoption by26

researchers would be a notable departure from the common27

practice. In our view, the most important aspect of “new28

statistics” is the rejection of the black-and-white thinking29

induced by the NHST. Instead of asking whether the effect30

is statistically significant, we can pose the more nuanced31

questions of how big the effect is and how uncertain we are32

of our estimate.33

Although we believe that the adoption of “new statistics” in34

BCI research would be a step forward, adoption of confidence35

intervals instead of p-values would not solve all the problems36

associated with NHST. Since both p-values and CIs are based37

on the frequentist statistical methods they share some of38

the previously outlined problems. Most notably, frequentist39

CIs also depend on the possibly covert testing and stopping40

intentions of the analyst. Therefore all the problems related to41

the researchers’ degrees of freedom or the “garden of forking42

paths” apply to the confidence intervals just as much as the p-43

values. Moreover, just like p-values, frequentist CIs are often44

misinterpreted by researchers [26, 27].45

An alternative to frequentist methods, and a possible so-46

lution to some of the problems with NHST, are Bayesian47

methods. One important distinction between frequentist and48

Bayesian inference is that Bayesian inference is insensitive to49

the stopping and testing intentions. The estimation approach of50

the “new statistics”, but in a Bayesian framework, has recently51

been proposed under the name “Bayesian new statistics” [15].52

This proposal argues that Bayesian methods are more apt53

at achieving the goals of “new statistics”, namely building54

a cumulative body of knowledge based on estimating effect55

sizes. At the high level, the proposed Bayesian estimation56

approach can be summarized in the following steps, partly 1

analogous to NHST: 2

1) hypothesizing a probabilistic model of the data (i.e. 3

describing the dependence of the data on the model 4

parameters and the prior information about the parame- 5

ters), 6

2) estimating the model parameters conditional on the 7

observed data using the Bayes’ rule (i.e. computing the 8

posterior probability distribution of the parameters), 9

3) communicating the inference results (i.e. the posterior 10

distribution) using numerical and graphical summaries. 11

C. NHST vs. Bayesian estimation: a simple illustration 12

Since BCI literature is dominated by NHST, and Bayesian 13

estimation is not yet a common practice in BCI research, we 14

will now compare the two approaches on a simple example. 15

We will use a common setup for both methods, assuming 16

that we have experimentally obtained a random, independent 17

sample d = {yi|i = 1, . . . , N}, where i indexes individual 18

observations of a continuous random variable y, and N is the 19

sample size. We have generated one such dataset (N = 14) 20

using random normal numbers with mean 1 and standard 21

deviation 3; the dataset is shown in Figure 1.A. Let us suppose 22

that the goal of the experiment is to characterize the mean of 23

the population from which the sample has been drawn. 24

In both NHST and Bayesian estimation, the first step is to 25

hypothesize a model that could describe the data generating 26

mechanism. In this example, the data generating mechanism 27

is known but we will model the data as being normally 28

distributed with unknown mean and variance parameters, i.e. 29

y ∼ Normal(µ, σ2). The model can also be represented 30

graphically, by a directed acyclic graph (DAG), as shown in 31

Figure 1.B. 32

In the NHST framework, the statistical question that might 33

correspond to the substantive goal of characterizing the mean 34

of the population is “does the mean µ differ significantly 35

from 0?” An appropriate statistical test of this null hypothesis, 36

under the given model assumptions, would be the t-test. In 37

the given example the value of the t-statistic is 1.09 and the 38

corresponding p-value is 0.29. Therefore, we would not reject 39

the null hypothesis that the mean µ equals 0, at the usual 0.05 40

significance level. 41

In contrast, Bayesian estimation answers the question “what 42

are the plausible values of the population mean µ?” The ques- 43

tion is answered by the posterior distribution p(µ, σ|d), which 44

provides the plausibility of all parameter values, conditional 45

on the data. The posterior can be obtained by applying the 46

Bayes’ rule, i.e. combining the observed data d, the assumed 47

model of the data (in the form of a likelihood function 48

p(d|µ, σ)), and the prior knowledge (in the form of a prior 49

distribution p(µ, σ)). The full posterior for the given example 50

is shown in Figure 1.C, and it contains all the information 51

about the parameters that is provided by the data, but also 52

by the prior (unlike in NHST). Since the main question in 53

the given example relates only to the mean parameter µ, we 54

can summarize the full posterior p(µ, σ|d) with the marginal 55

posterior p(µ|d) shown in Figure 1.D (for comparison with 56
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(A) (B) (C) (D)

Fig. 1: (A) The generated dataset (red crosses and the histogram) and the corresponding posterior predictive distribution for future data
(the density is arbitrarily scaled). (B) Diagram of the model for normal data in the form of a DAG. Arrows indicate dependency, shading
indicates observed variables, and plate notation indicates repetition. (C) The full posterior distribution of the population mean µ and the
population standard deviation σ. The dashed lines indicate true values of the parameters. (D) The marginal posterior and prior distribution
of the population mean µ, together with indicated posterior 95% CI and the true parameter value.

the posterior, Figure 1.D also shows the marginal prior p(µ)1

that was used in the analysis). The marginal can further be2

numerically summarized, e.g. by its median (0.951) and 95%3

CI ([-1.12, 2.97]). Additionally, it is also possible to estimate4

future data ỹ using the posterior predictive distribution p(ỹ|d),5

which can be derived from the posterior. The posterior predic-6

tive distribution is shown in Figure 1.A, and comparing it to7

the histogram of the observed data constitutes a check of the8

model fit (i.e. a posterior predictive check).9

We can now compare conclusions drawn from NHST and10

Bayesian estimation on the given dataset. Whereas NHST11

falsely fails to reject the null hypothesis that the population12

mean is 0, Bayesian estimation provides us with a more13

nuanced view: it shows we have a large uncertainty about14

the population mean (due to the small sample size), and that15

plausible values of the population mean span a wide interval16

that includes 0, but also a range of both large negative and17

positive values. Moreover, the posterior 95% CI includes the18

true value of µ and the posterior p(µ|d) is peaked around the19

true value. A more thorough account of the inference proce-20

dure in both the NHST and Bayesian estimation frameworks21

is given in the Appendix A.22

III. METHODS AND MATERIALS23

A more detailed description of the Bayesian estimation24

approach, as we have used it in this paper, consists of the25

following steps:26

1) define the relevant data d obtained from an experiment,27

2) formulate a model for the data in the form of a likelihood28

p(d|θ) and state underlying assumptions,29

3) formulate a prior for the model parameters p(θ) and30

motivate the choice,31

4) use Bayes’ rule to infer the posterior p(θ|d) (e.g. via32

Markov chain Monte Carlo simulation),33

5) provide numerical and graphical summaries of the pos-34

terior and interpret them,35

6) evaluate the model using a posterior predictive check:36

compare the posterior predictive distribution p(d̃|d) with37

the observed data d.38

It should be noted that the outlined process is iterative: if 1

the model is found unsatisfactory in evaluation, it can be 2

modified accordingly and the process is repeated. Furthermore, 3

we would like to point out that this process applies to situations 4

where the experiment has already been conducted and the data 5

collected. Although this is a common situation in practice, it is 6

often possible to consider the model that is going to be used 7

to analyze the data before conducting an experiment. With 8

the model formulated before the experiment, simulated data 9

can be used to judge if the experimental design is adequate to 10

answer research questions of interest, and modify the design if 11

necessary. Lastly, the outlined process is not meant to cover all 12

possible elements of an analysis, but rather provide a rough 13

guideline. Therefore some important tools – such as model 14

comparison, sample size planning, sensitivity analysis, etc. 15

– have been omitted from the described framework, but are 16

touched upon in the Discussion section. 17

We now illustrate the outlined Bayesian estimation approach 18

on the three most common experimental designs in BCI 19

research, listed here in the order of increasing complexity: 20

• performance of a single BCI in a group of subjects 21

(Model 1), 22

• association between a subject-specific variable and BCI 23

performance (Model 2), 24

• comparison of different BCI approaches in a within- 25

subject design (Model 3). 26

Subsequently, we show that these three models are special 27

cases of the hierarchical generalized linear model, which is 28

proposed as an encompassing model for the analysis of BCI 29

performance. 30

A. Model 1: performance of a single BCI in a group of 31

subjects 32

A common question in BCI research, especially when 33

introducing a novel computational or experimental approach, 34

is “how well does a BCI approach perform in a particular 35

population of subjects?” To answer the question a simple 36

experimental design is used: the performance of the BCI is 37

recorded for a sample of subjects, with multiple trials per 38
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subject. The goal of statistical inference is then to estimate the1

mean and the variance of BCI performance in the population2

from which the subjects were recruited.3

We will first assume that the data d from the experiment has4

been recorded as a list of pairs d = {(yi, Ti)|i = 1, . . . , NS},5

where i is the index of the subject, yi is the number of6

successful trials, and Ti is the total number of trials. The7

model for this experimental design is shown in Figure 2, and8

we now examine the assumptions behind the model and the9

interpretation of its parameters.10

yiTi

ψi

αi

µα σα

α̃

ψ̃

i = 1, 2, . . . , NS

Data:
yi ∼ Binomial(ψi, Ti)

Individual parameters:
logit(ψi) = αi

αi ∼ Normal(µα, σ
2
α)

Group-level parameters:
µα ∼ Normal(Mµα , S

2
µα

) (prior)
σα ∼ Uniform(Lσα , Uσα) (prior)

Predicted parameters:
α̃ ∼ Normal(µα, σ

2
α)

logit(ψ̃) = α̃

Fig. 2: Diagram and specification of Model 1 (performance of a
single BCI in a group of subjects, together with predicted parameters).
See the caption of Figure 1 for the interpretation of the diagram
elements. Additionally, square nodes denote discrete variables and
doubly outlined nodes are deterministically dependent on their par-
ents. See the main text for the interpretation of variables.

If we assume that each of the Ti trials is an independent11

binary random variable (which indicates success or failure of12

the BCI), then the total subject-wise number of successful13

trials yi can be modeled as a binomial random variable with14

the probability of success ψi (i.e. individual accuracy).15

Next, we would like to model the subject-wise performance16

as being a sample from a population, which could in turn be17

described with a normal distribution; however, the individual18

accuracies are measured on the probability scale (on the19

interval [0, 1]) and the normal distribution is supported over20

the whole real line. To overcome this discrepancy we can21

transform individual accuracies ψi from the probability scale,22

to individual accuracies αi on the log-odds scale using the23

logit function:24

α = logit(ψ) = logO(ψ) = log
ψ

1− ψ , (1)25

where O(ψ) are the odds corresponding to probability ψ. E.g.26

this transformation will map probabilities 0, 0.5, and 1 to log-27

odds of −∞, 0, and +∞, respectively.28

The individual performance on the logit scale αi can now29

be modeled as a sample from the normally distributed group-30

level performance, with mean parameter µα and between-31

subject variance parameter σ2
α. We might also be interested32

in interpreting the group-level mean accuracy µα on the 1

probability scale; in this case we can use the inverse of the 2

logit function, i.e. the logistic function: 3

µψ = logit−1(µα) =
1

1 + exp(−µα)
, (2) 4

where µψ is the group-level accuracy on the probability scale. 5

Although the probability scale might be more common in 6

practice (and thus more intuitive), we would argue that the 7

log-odds scale has an important advantage in interpretation. 8

Consider the following two cases: (i) increase of accuracy 9

from 51% to 52%, and (ii) increase of accuracy from 98% 10

to 99%. Although both cases represent a unit increase in 11

probability, the first increase would usually be practically 12

negligible, whereas the same increase in the second case could 13

be of significant practical value because it halves the frequency 14

of errors. In contrast, the corresponding improvements on the 15

log-odds scale – 0.04 and 0.7, respectively – more closely 16

reflect the practical importance of the accuracy increase. 17

The last step before applying the Bayes’ rule is to define the 18

prior distributions of the top-level model parameters µα and 19

σα. For the group-level mean µα we use a vague normal prior 20

on the logit scale with mean Mµα = 0 and standard deviation 21

Sµα =
√

2. This choice of a prior corresponds to a fairly 22

uniform distribution on the probability scale, indicating the 23

lack of strong prior information [28, p. 85]. For the variance 24

between subjects we use a uniform prior over the standard 25

deviation σα, with a lower bound Lσα = 0 and a relatively 26

large upper bound Uσα = 10, again indicating the lack of 27

prior information, and letting the data to drive the inference 28

(for other choices consult refs. [29–31]). 29

Since we are often interested not only in the average 30

performance and variance in the population, but also in pre- 31

dicting the performance of future subjects, we define predicted 32

performance of a new subject α̃ on the logit scale, or equiva- 33

lently ψ̃ on the probability scale. The distribution of predicted 34

performance reflects our posterior uncertainty about both the 35

population-level mean and variance, given the data that we 36

have observed in the experiment. 37

Example dataset for Model 1: To illustrate the analysis 38

with Model 1, we chose the study of Power et al. [32]. 39

This study investigated whether it is possible to implement a 40

NIRS-based BCI for binary communication by differentiating 41

cognitive tasks of mental arithmetic and music imagery. Each 42

of the 10 healthy subjects participated in three experimental 43

sessions, with each session consisting of 17 trials of mental 44

arithmetic, and 17 trials of music imagery: in total there were 45

102 trials for each subject, with balanced class proportions 46

(hence, the chance level was 50%). The BCI was tested using 47

5-fold cross-validation, and the paper describing the study 48

provides the accuracy obtained in cross-validation (averaged 49

across folds) for each subject, with the trials from all the 50

sessions aggregated together. The exact number of trials that 51

were correctly classified is not provided for each subject, and 52

therefore we have obtained the approximate number of correct 53

trials by multiplying the reported subject-wise accuracy with 54

the total number of trials, and rounding to the nearest integer. 55
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B. Model 2: association between a subject-specific variable1

and BCI performance2

Another frequent question in BCI research is “how is some3

subject-specific variable associated with BCI performance?”4

For example, we might be interested in the association between5

the hours of sleep a subject has had, and the BCI performance6

he obtained. The experimental design used to answer this7

question is essentially the same as the one used with Model8

1, but now the value of the subject-specific variable also has9

to be recorded.10

The data obtained from such an experiment can be repre-11

sented as a list of triples d = {(yi, Ti, xi)|i = 1, . . . , NS}.12

The i, yi and Ti have the same meaning as in Model 1 and13

the xi represents the recorded value of the continuous, subject-14

specific variable of interest. It is useful to transform the values15

of the covariate xi to z-scores zi by subtracting the sample16

mean x̄, and standardizing with the sample standard deviation17

sx – as we will see shortly, this leads to more meaningful18

model parameters. The model we propose for this type of data19

is specified in Figure 3.20

yiTi

ψi

αi

µizi

β0 β1

σα

i = 1, 2, . . . , NS

Data:
yi ∼ Binomial(ψi, Ti)

Individual parameters:
logit(ψi) = αi

αi ∼ Normal(µi, σ
2
α)

µi = β0 + β1zi

Group-level parameters:
β0 ∼ Normal(Mβ0 , S

2
β0
) (prior)

β1 ∼ Normal(Mβ1 , S
2
β1) (prior)

σα ∼ Uniform(Lσα , Uσα) (prior)

Fig. 3: Diagram and specification of Model 2 (association between
a subject-specific variable and BCI performance). See Figure 2 for
notation and the main text for the interpretation of variables.

The main change in Model 2, relative to Model 1, is that21

the subject-specific logit accuracies αi are now not drawn22

from a single normal distribution, but rather from a normal23

distribution whose mean µi depends linearly on the value of24

the covariate zi. The parameters of this linear association are25

the intercept β0 and the slope β1. Since we are using z-scores26

of the covariate, we can interpret β0 as the expected logit27

accuracy µ for the average value of the covariate x (i.e. when28

z is zero), and β1 as the expected increase in logit accuracy29

obtained when the covariate x increases for one standard30

deviation (i.e. unit increase in z)1.31

1Had we not standardized the covariate x, the intercept β0 would be
interpreted as the expected logit accuracy µ when the value of the covariate x
was zero, and the slope β1 would be interpreted as the change in the expected
µ for a unit increase in x. In many cases the zero value for the covariate x
might not be meaningful. Moreover, standardizing x leads to scale invariance,
allowing for easier modeling of the slope β1.

Although the log-odds scale is mathematically convenient 1

in allowing us to fit a linear additive model, the parameter 2

interpretation on this scale may not be so intuitive. One way 3

to obtain more interpretable results is to use the odds scale 4

– a linear additive model on the log-odds scale will give 5

a multiplicative model on the odds scale. For example, let 6

us consider the expected odds of success O(ψ) for known 7

parameters β0, β1, and a known value of the covariate z: 8

E[O(ψ)|z, β0, β1] = E[exp(α)|z, β0, β1], 9

= exp(β0) exp(β1z), 10
11

where we have used eqn. (1) to relate logit accuracy α with 12

odds of success O(ψ), and the specification of the model in 13

Figure 3 to compute the expectation. In this formulation we 14

can interpret exp(β0) as the baseline odds and exp(β1) as the 15

factor by which the baseline odds are multiplied for a unit 16

increase in the covariate z. 17

The interpretation of the variance parameter σα also changes 18

relative to the same parameter in Model 1: σα no longer 19

represents the overall between-subject variance, but rather the 20

between-subject variance observed when we account for the 21

the covariate x (i.e. the variance unexplained by the covariate). 22

The priors for the top-level parameters β0, β1, and σα are 23

again relatively vague, expressing the lack of prior information 24

or the intention to let the data determine the inferences. For the 25

intercept β0 we use the same vague prior as for the group-level 26

mean µα of Model 1. For the slope β1 we use a “skeptical” 27

normal prior, with mean Mβ1
= 0 (indicating lack of prior 28

information on the direction of the effect), but with a large 29

standard deviation Sβ1
= 5, allowing the inferred effect to 30

have a large size, if such an inference is supported by the data 31

(see refs. [31, 33] for more discussion of priors in logistic 32

regression). For the unexplained variance parameter σα we 33

use the same prior as in Model 1. 34

Although the predicted accuracy α̃ is not specified in 35

Figure 3 for the sake of simplicity, it is obtained similarly 36

as it was in Model 1, with a minor addition – it is necessary 37

to specify all the values of the covariate x for which we wish 38

to predict the accuracy. 39

Example dataset for Model 2: To illustrate the analysis 40

with Model 2, we chose the study of Blankertz et al. [34]. 41

This study investigated if there is an association between the 42

spectral power of resting state EEG in the alpha band over the 43

motor cortex, and the subsequent performance in operating 44

a motor imagery BCI for binary selection. Each of the 80 45

healthy subjects participated in two phases of the experiment 46

– a calibration phase and an online feedback phase. The 47

calibration phase was used to train the BCI and the feedback 48

phase was used to test it in a balanced, binary selection 49

task (hence, the chance level was 50%). The feedback phase 50

consisted of three runs, each with 100 trials. Out of the 100 51

trials in each feedback run, 20 were used for the adaptation of 52

the BCI, and 80 were used to test it. Therefore, the maximum 53

number of test trials per subject was 240, but some of the 54

subjects did not complete all of the feedback runs. While 55

the subject-wise values of the covariate (i.e. resting alpha 56

power) and the accuracies are available in the paper describing 57
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the study, the subject-wise numbers of trials are not given;1

however, the authors of the paper have kindly provided us2

with the numbers of trials upon request.3

C. Model 3: comparison of different BCI approaches in a4

within-subject design5

The third common question in BCI research that we con-6

sider in this paper is “how well do different BCI approaches7

work in a population of subjects?” Here under the “BCI8

approach” we denote both differences in the employed ex-9

perimental paradigm (e.g. changing the set of used stimuli)10

and differences in the computational implementation of the11

BCI (e.g. changing the used classifier). We also constrain12

our attention to the within-subject (i.e. repeated measures)13

experimental designs, where each of the subjects uses the BCI14

in all the experimental conditions of interest. This is the most15

common setup in practice, especially for offline studies of16

different computational approaches. In such “computational17

experiments” there is usually no barrier to trying out all the18

approaches in each subject. We also limit the discussion to19

a study of a single discrete experimental factor, although the20

approach is general and can easily be extended to multiple fac-21

tors (see subsection III-D “A unifying model for the analysis22

of BCI performance”).23

The data of a single-factor, within-subject BCI experi-24

ment can usually be represented as a list of tuples d =25

{(yi, Ti, li, si)|i = 1, . . . , NO}. The yi and Ti again have the26

same meaning as before, whereas li ∈ {1, . . . , NL} is the level27

of the experimental factor (i.e. the experimental condition),28

si ∈ {1, . . . , NS} is the index of the subject, and i is the29

index of the observation. While in Model 1 and 2 we did not30

record explicitly for which subject each observation was made,31

as each subject contributed only one observation, here we need32

to explicitly take into account which observations come from33

the same subject. This adds an additional level in the hierarchy34

of the model.35

Model 3 (shown in Figure 4) shares most of its structure36

with Model 2, but some changes are necessary to accom-37

modate multiple observations from the same subject. The38

predicted performance µi for a particular level of the factor39

li and subject si is modeled as a linear combination of the40

grand-average performance β0, factor-level effect β1,li and the41

subject-specific effect ηsi . In this parametrization β0 is the42

expected performance over all the levels of the experimental43

factor and all the subjects (i.e. grand-average). Parameters44

β1,k are the level-specific deviations from the grand-average45

(i.e. fixed effects). The random subject-specific effects ηj are46

modeled as normally distributed with mean zero and between-47

subject variance ση . The ηj effects represent the subject-48

specific deviations from the grand-average performance β0,49

when averaging over all the levels of the factor. To enforce50

the interpretation of parameters β1,k and ηj as deviations51

from the grand-average β0, it is necessary to constrain the52

two sums over these sets of parameters to zero (i.e. sum-to-53

zero or STZ constraints). The parameter σα is interpreted as54

the variance that has not been explained neither by the factor-55

specific effects, nor by subject-specific effects.56

yiTi

ψi

αi

µi

li

si

β0 β1 η

σα

ση

i = 1, 2, . . . , NO

Data:
yi ∼ Binomial(ψi, Ti) i = 1, . . . , NO

Individual parameters:
logit(ψi) = αi

αi ∼ Normal(µi, σ
2
α)

µi = β0 + β1,li + ηsi
ηj ∼ Normal(0, σ2

η) j = 1, . . . , NS∑NS

j=1 ηj = 0 (STZ constraint)

Group-level parameters:
β0 ∼ Normal(Mβ0 , S

2
β0
) (prior)

β1,k ∼ Normal(Mβ1 , S
2
β1
) k = 1, . . . , NL (prior)

∑NL

k=1 β1,k = 0 (STZ constraint)
σα ∼ Uniform(Lσα , Uσα) (prior)
ση ∼ Uniform(Lση , Uση) (prior)

Fig. 4: Diagram and specification of Model 3 (comparison of
different BCI approaches in a within-subject design). See Figure 2
for notation and the main text for the interpretation of variables.

For the top level parameters β0, β1,k, ση , and σα we again 1

use vague priors. The forms and parameters of the priors are 2

the same as in Model 2. 3

The predicted variables have again been omitted from the 4

model in Figure 4 for the sake of simplicity. To predict the 5

logit accuracy α̃k of a future subject for all the levels k of 6

the experimental factor, we first define the predicted subject- 7

specific effect η̃ which depends on the inferred ση . Then we 8

model the dependency of α̃k on the predicted effect η̃ and the 9

inferred top level parameters β0, β1,k, and σα. 10

Example dataset for Model 3: To illustrate the analysis with 11

Model 3, we chose the study of Brunner et al. [35]. This study 12

compared three EEG-based BCI approaches for binary selec- 13

tion: a motor-imagery paradigm based on the event-related 14

desynchronization (ERD), a visual paradigm based on steady- 15

state visual evoked potentials (SSVEP), and a hybrid paradigm 16

combining motor imagery and visual stimulaton. Each of the 17

12 healthy subjects used all of the three BCI approaches in a 18

binary selection task with balanced classes (chance accuracy 19

was 50%). The experiment consisted of a calibration phase and 20

an online feedback phase. The calibration phase was used to 21

train the BCIs and the feedback phase was used to test them. 22

Although the BCIs were also tested within the calibration 23

phase using cross-validation, here we only consider the results 24

from the feedback phase. The feedback phase consisted of 25

three runs, one per each BCI approach, with 40 trials per run. 26

D. A unifying model for the analysis of BCI performance 27

In the previous sections we have described a general 28

methodology based on Bayesian parameter estimation and 29

presented three use cases for the arguably most typical ex- 30

perimental designs in BCI research. All three models can be 31

derived from a common model, the hierarchical generalized 32

linear model (HGLM) [36]. Using this HGLM framework it 33
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is also possible to derive models that cover other experimental1

designs. We now describe the HGLM for BCI performance and2

provide some directions on how to extend its applicability.3

An HGLM for classification accuracy can be described as:4

yi ∼ Binomial(ψi, Ti), (3)5

logit(ψi) ∼ Normal(µi, σ
2), (4)6

µi = β0 +

K∑

k=1

β1,kxi,k, (5)7

8

where equation (3) models the observed outcomes, equa-9

tion (4) models the unexplained variability of individual ac-10

curacies, and equation (5) models the expected logit accuracy11

based on a linear prediction from explanatory variables xi,k.12

Previously described models 1 and 2 are direct instances of13

the described HGLM for accuracy. We can obtain Model 114

by modifying the linear predictor of equation (5) to a simple15

intercept-only form, i.e. setting µi = β0 = µα, where µα16

is the group-level accuracy. Model 2 is obtained simply by17

using only one continuous explanatory variable in the linear18

predictor, i.e. setting K = 1. However, the linear predictor19

of equation (5) does not restrict us to continuous variables20

– discrete variables can also be included by using dummy21

encoded binary variables. This allows us to implement multi-22

factor ANOVA-like models with multiple discrete factors or23

ANCOVA-like models with a mix of continuous and dis-24

crete explanatory variables. Moreover, instead of just using25

simple main effects, we can also study interactions between26

explanatory variables by including interaction terms (obtained27

as products of explanatory variables).28

In addition to including multiple continuous and discrete29

explanatory variables, HGLM can also be extended with extra30

levels of the hierarchy. We can see an example of this in Model31

3. To obtain Model 3 from the HGLM we modify the linear32

predictor as follows:33

µi = β0,i +

K∑

k=1

β1,kxi,k, (6)34

β0,i = β0 + ηsi , (7)35

ηj ∼ Normal(0, σ2
η). (8)36

37

Here we have used the varying intercepts β0,i to model the38

nesting of repeated measures within subjects. The same pattern39

of expanding the model by additional levels of hierarchy40

can further be applied to analyze datasets with, for example,41

multiple sessions per subject, multiple groups of subjects per42

study (e.g. a control and a patient group), multiple studies in43

a meta-analysis, etc.44

It is also worth to consider cases of multi-class classification45

and classification with unbalanced classes. In both situations46

the HGLM described in equations (3)-(5) can simply be47

applied to trials of each class separately, with yi and Ti48

representing the number of correct trials and the total number49

of trials for one of the classes. To deal with class unbalanced50

problems, class-specific accuracies can be combined into bal-51

anced accuracy (i.e. accuracy averaged over classes) for which52

the chance level is always 1/C, where C is the number of53

classes [37, 38]. If we wish to model also the covariation54

of accuracy for different classes, instead of using separate 1

univariate models, we can use a multivariate HGLM by 2

utilizing a multivariate normal distribution in equation (4) [17]. 3

The HGLM can also be used to model different types 4

of performance metrics. For example, if the full confusion 5

matrices are available for all the subjects they can be mod- 6

eled as multinomial outcomes in an HGLM (i.e. multinomial 7

regression). In this case we can also obtain the Cohen’s 8

kappa coefficient [39, p. 65-67]. If the BCI is used to predict 9

or decode continuous variables, the HGLM can be used by 10

modeling the errors as normally distributed outcomes in the 11

equation (3). Lastly, if we wanted to model count-based 12

metrics (e.g. number of commands completed in a period of 13

time) we could use the log-Poisson version of the HGLM. For 14

a more thorough account of different modeling possibilities 15

with the HGLM we refer the interested reader to the text by 16

Ntzoufras [40]. 17

E. Computational details of the inference procedure 18

To inspect the properties of the joint posterior distribution 19

p(θ|d), we have obtained a random sample from it by using 20

Markov chain Monte Carlo (MCMC) simulation [41]. For 21

MCMC sampling we used the freely available WinBUGS 22

software [42]. For each of the analyses we ran three parallel 23

MCMC chains, recording 50000 samples per each chain, after 24

discarding the first 50000 samples (burn-in period). For each 25

of the parameters presented in the Results section we have 26

verified that the effective sample size was at least 10000 27

samples (i.e. Monte Carlo standard error was below 1% of the 28

standard deviation of the parameter). Furthermore, we have 29

checked the convergence of the chains by visual inspection of 30

the traces and by verifying that the Gelman-Rubin statistic was 31

below 1.1, which is usually taken as a threshold to diagnose 32

convergence issues [43, 44]. 33

IV. RESULTS 34

A. Results from Model 1 on the example dataset 35

For Model 1 we will inspect both the parameter estimates 36

at the subject level and at the group level. Although group 37

level parameters are usually of greater interest, as we want 38

to generalize out of the sample of the subjects, subject-level 39

inferences might also be of interest – for example, if a pilot 40

study is performed with the intention of screening subjects for 41

a future study. In Figure 5 we show the results of estimating 42

the parameters of Model 1 on the example dataset of Power et 43

al. In Figure 5.A the obtained marginal posterior distributions 44

of subject-level accuracies ψi are summarized by their medians 45

and 95% CIs. Comparing the posterior medians to sample 46

accuracies, we can see the pooling (or shrinkage) effect of 47

the hierarchical model, where we have assumed the subjects’ 48

accuracies come from a common normal distribution (on the 49

logit scale). For each subject, its accuracy estimate is influ- 50

enced by the estimates for all the other subjects. This is most 51

evident in the subjects which are further from the group mean 52

accuracy: for this subjects estimates are most strongly shrunk 53

towards the group mean. In this way information is pooled 54
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(A) (B) (C)

Fig. 5: First example dataset and the results of Model 1. (A) Subject-level inferences (posteriors) for the accuracy ψi on the probability
scale, together with sample accuracies. (B) Group-level inference for the group mean accuracy µα and group accuracy SD σα on the logit
scale. The contours are obtained using 2D kernel density estimation on the MCMC sample. (C) The posterior for the group mean accuracy
µψ on the probability scale, together with the posterior predictive distribution of accuracy ψ̃ on the probability scale and the observed sample
accuracies (horizontal lines indicate 95% CI). The probability densities are obtained using kernel density estimation on the MCMC sample.

across subjects, and we avoid making extreme inferences based1

on noisy data, since shrinkage acts as a form of regularization.2

Figure 5.B shows the results of inference at the group-level3

parameters, i.e. group mean accuracy, and the group SD of4

accuracy, both on the logit scale. From the joint posterior5

distribution depicted in the figure, we can clearly see which6

values of the parameters are jointly credible, and we can7

observe if there are correlations between the parameters in8

the posterior distribution. For example, in the given dataset9

we can see that for extreme credible values of mean accuracy10

µα, only large values of SD σα are plausible, whereas for11

central credible values of µα, a wider range of values for σα12

are credible.13

Figure 5.C compares the observed sample accuracies (i.e.14

the data), the marginal posterior of the group mean accuracy15

µψ (obtained by transforming µα to the probability scale,16

using the logistic function), and the posterior distribution of17

accuracy ψ̃ for future subjects (i.e. the posterior predictive18

distribution). Here we can see that the marginal distribution19

of mean accuracy is fairly narrow (Mdn = 0.776, 95% CI:20

[0.722, 0.822]), mainly due to low inter-subject variation in21

performance. However, it is important to note that although22

the posterior of the mean is narrow, the posterior predic-23

tive distribution of the subject-wise accuracies is relatively24

wide-spread (Mdn = 0.775, 95% CI: [0.596, 0.891]). This25

reflects the fact that the posterior predictive distribution takes26

into account both the mean and the variance of the subject27

population. Consequently, with an increasing sample size,28

the posterior distribution for the mean (or variance) would29

become increasingly peaked, whereas the posterior predictive30

distribution would stay relatively wide (unless the estimate for31

the variance decreased significantly with the new data).32

With the MCMC sample of the posterior distribution, we33

can also answer other questions of interest. For example, 70%34

accuracy is often considered to be a lower bound for a BCI35

to be practically useful; we might therefore be interested in36

the probability that the mean group accuracy is above 70%. 1

If we had the joint posterior in the analytical form, answering 2

this question would require integrating all the variables except 3

group-level mean accuracy out of the joint posterior, and then 4

finding the area under the probability distribution for accura- 5

cies larger than 70%. However, since we have the MCMC 6

sample from the posterior available, we can answer this 7

question using Monte Carlo integration. Taking into account 8

only the samples of accuracy µψ corresponds to integrating 9

out the other variables, and determining the proportion of 10

samples of µψ larger than 70% by simply counting them 11

corresponds to integrating the marginal probability distribution 12

of µψ . In the example dataset, the posterior probability that 13

group average accuracy exceeds 70% is P (µψ > 0.7|d) = 14

P (µα > 0.847|d) ≈ 99.4%. From the posterior predictive 15

distribution of future subject’s accuracy ψ̃, we can find out 16

also what is the probability that a future subject will obtain 17

accuracy larger than 70%: P (ψ̃ > 0.7|d) ≈ 85.8%. 18

As a qualitative check of the model, we can graphically 19

compare the posterior predictive distribution of subject-wise 20

accuracy with the observed subject-wise sample accuracies, 21

and see if the observed data is credible given the model. In 22

the presented case it seems that the model properly predicts 23

(or “postdicts”) the data from which it has been estimated, 24

therefore not eliminating the model as a good description of 25

the data. 26

B. Results from Model 2 on the example dataset 27

From Model 2 results, we will for brevity only look into the 28

results at the group-level, although the subject-level parameter 29

estimates are also available in the full joint posterior. In 30

Figure 6 we show the dataset of Blankertz et al., as well as 31

the results of inference based on Model 2. Figure 6.A shows 32

values of the recorded covariate (alpha log-power) and the 33

sample accuracies obtained by subjects. For reference, in this 34

figure we also present the linear model fitted using ordinary 35
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(A) (B) (C) (D)

Fig. 6: Second example dataset and the results of Model 2. (A) The observed subject-wise values of the covariate (standardized) and the
observed sample accuracies, with the ordinary least squares fit for reference. The dotted arrows show that the linear model can predict
accuracies larger than 1 even for observed levels of the covariate. (B) Group-level inference for the intercept β0 and slope β1 on the logit
scale. (C) The marginal posteriors for the intercept β0 and β1 (95% CI indicated). (D) The fitted logistic model on the probability scale.
Orange lines show the posterior median (solid) and 95% CI for accuracy (dashed), and the dotted blue line indicates the 95% posterior
predictive interval. All the predictions of the model are now constrained between 0 and 1, the natural boundaries for accuracy (as shown by
the dotted arrows).

least squares procedure. The dotted arrows point out one of1

the problems with the linear, normal model – namely, the2

possibility of predicting accuracy larger than 100% (or smaller3

than 0%), even for the values of the covariate that are present4

in the dataset.5

Figure 6.B presents the joint posterior distribution of the6

group-level parameters which are usually of main interest in7

studies of this type: intercept β0 and slope β1. The joint8

posterior shows that the slope and the intercept parameter9

estimates are not correlated for the given dataset. In Figure 6.C10

we can inspect the marginal posterior distributions of the11

intercept and the slope. With the posterior of the intercept12

we may again wish to answer questions such as: “what is13

the probability that the group level accuracy is above 70%,14

when controlling for the covariate z?” This can be answered15

with the probability P (logit−1(β0 + β1z) > 0.7|d, z = 0) =16

P (logit−1(β0) > 0.7|d) = P (β0 > 0.847|d) ≈ 100%. We17

can also summarize the marginal posterior of the intercept on18

the logit scale with its median (1.36), and its 95% CI ([1.13,19

1.60]). However, usually the slope β1 is of greater interest, as20

it tells us the strength of the association between the covariate21

and the accuracy. In the given dataset we can determine with22

high level of certainty that higher alpha power has a positive23

association with accuracy (P (β1 > 0|d) ≈ 100%), and that the24

effect is quite large (Mdn = 0.606, 95% CI: [0.372, 0.844]).25

The model fit (i.e. posterior median of accuracy for a given26

value of the covariate), the point-wise confidence intervals, and27

the point-wise prediction intervals are shown in Figure 6.D.28

It is instructive to compare this model fit to the linear model29

fit in Figure 6.A. As we can see, the linear model predicts30

that the subject with the highest value of alpha power will31

have accuracy above 1, whereas the logistic model correctly32

constrains the predicted accuracies within the [0, 1] interval,33

due to the employed logit link function.34

Again, we can asses the model qualitatively, by comparing35

the posterior predictive intervals with the observed data in36

Figure 6.D. For the given dataset we can see that most37

observed data points lie within the predictive interval; however,38

for lower values of the covariate the model predicts a larger39

proportion of accuracies below 0.5 chance level than we 1

observe in the data. This is due to the fact that classifiers 2

used in BCIs rarely perform below chance level, but in the 3

Model 2 this prior information is not explicitly used. In future 4

modeling efforts one might want to use this knowledge to 5

explicitly constrain the predicted accuracies to the [0.5, 1] 6

interval. As it is not impossible that in some studies we might 7

want the model to predict below chance accuracies (e.g. if the 8

data generating process is adversarial), for generality we have 9

not pursued the direction of constraining the model only to 10

above chance accuracies. 11

C. Results from Model 3 on the example dataset 12

With Model 3, we again look only at the group level results, 13

although the inference procedure also provides us with the 14

subject-level parameter estimates (in the full joint posterior). 15

Figure 7 shows the dataset of Brunner et al. [35] and the 16

results obtained from using Model 3 with this dataset. In 17

Figure 7.A we can see the sample accuracies recorded for 18

each of the subject with the three proposed BCI approaches 19

– ERD, SSVEP, and hybrid. The sample accuracies recorded 20

within the same subject are connected to indicate the within- 21

subject nature of the experimental design. 22

The inferred posteriors of accuracy for different approaches 23

are shown in Figure 7.B with violin plots. To obtain the 24

inferred approach-specific accuracy, it is necessary to sum 25

the grand average parameter β0 (common to all the levels of 26

the factor) and the approach-specific parameter β1,k, where k 27

indicates the level of the factor (in this dataset k ∈ 1, 2, 3, 28

and corresponds to ERD, SSVEP, and hybrid approaches, 29

respectively). This yields the accuracy on the logit scale, so we 30

need to apply the inverse-logit mapping to obtain accuracies on 31

the probability scale; i.e. the marginal distributions of interest 32

are p(logit−1(β0 + β1,k)|d). From the marginal posteriors we 33

can see that the hybrid approach was the best performing 34

one (Mdn = 0.978, 95% CI: [0.946, 0.993]), followed by 35

SSVEP (Mdn = 0.971, 95% CI: [0.929, 0.991]), and ERD 36

(Mdn = 0.792, 95% CI: [0.622, 0.897]). 37
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(A) (B) (C)

Fig. 7: Third example dataset and the results of Model 3. (A) The observed subject-wise sample accuracies for all three experimental
conditions (within-subject data points are connected). Overlaid on observed accuracies are the posterior predictive distributions for the three
levels of the factor. (B) Group-level posterior probability distributions for the average accuracy achieved with each approach, on the proability
scale (median and 95% CI indicated). (C) Probability distribution for differences (contrasts) between different BCI approaches (on the logit
scale). Horizontal lines indicate the 95% CI.

However, the main questions of interest in studies of this1

type pertain to the differences between different approaches.2

We explore the differences between approaches in Figure 7.C.3

For example, if we were interested in the difference between4

the hybrid and ERD approach we would take the estimate of5

the difference β1,3−β1,1 (the distribution for this difference is6

shown in upper left panel of Figure 7.C). More generally we7

can construct contrasts that encode the questions of interest8

in vector form c = [c1, . . . , cNL ]ᵀ (to be a contrast, the9

elements of c have to sum up to zero). The contrast value10

estimate is then obtained with the dot product cᵀβ1. For the11

aformentioned difference between the hybrid and the ERD12

approach, the contrast is c = [−1, 0, 1]ᵀ. We can also use13

contrasts that combine multiple approaches; e.g., if we wanted14

to know if the hybrid approach is better than non-hybrid15

approaches (average of SSVEP and ERD), we would use the16

contrast c = [−0.5,−0.5, 1]ᵀ (this contrast is shown in lower17

right panel of Figure 7.C).18

From the analysis of contrasts we can answer the main19

question of the original study directly – whether hybrid20

approach outperforms non-hybrid approaches – by calculating21

the probability P (Hybrid > Non− hybrid) = P (Hybrid >22

ERD&SSVEP) = P (β1,3 > 0.5β1,1 + 0.5β1,2) ≈ 99.0%.23

Therefore, we have strong evidence that the hybrid approach24

outperforms non-hybrid approaches. Perhaps a more important25

question is how much better the hybrid approach is than non-26

hybrid approaches: the median of this difference (on the logit27

scale) is 1.39, with a 95% CI [0.240, 2.69]. Here it is important28

to note that the CI spans both small effects, as well as large29

positive ones. This indicates that although we have strong30

evidence that the hybrid approach is better than non-hybrid31

approaches, we have a large degree of uncertainty about how32

much better it is. Similar calculations can be made for other33

contrasts in Figure 7.C, but we omit them for brevity.34

Lastly, with the fitted model we can again inspect the35

posterior predictive distributions for different levels of the36

factor and compare these distributions with the observed data.37

This comparison has been made in Figure 7.A. Again, we 1

can see that all the observed data is plausible under the 2

fitted model (all the points fall within the 95% prediction 3

intervals, not shown here to avoid clutter). However, in the 4

ERD condition the model predicts a substantial probability of 5

below-chance accuracies, similar to results of the Model 2. 6

Again the problem could be tackled by constricting the model 7

to above-chance accuracies. 8

V. DISCUSSION 9

A. What have we gained from rejecting NHST? 10

In this paper we have proposed an alternative to NHST for 11

statistical validation of BCI results: Bayesian estimation with 12

the hierarchical generalized linear model. While we have mo- 13

tivated the use of these methods on theoretical considerations 14

from statistics and empirical findings from other disciplines, 15

we can now directly compare hierarchical Bayesian estimation 16

with NHST on analyses of real BCI results. 17

Performance of a single BCI in a group of subjects (Model 18

1): In the dataset of Power et al. [32] NHST analysis can 19

proceed at two levels: single-subject level and group level. At 20

the single-subject level, we can test for each subject if the 21

obtained number of correct trials is above chance level using 22

the binomial test. In the given dataset binomial tests would 23

reject the null hypothesis of chance level performance for all 24

of the subjects. However, implicit in the tests is the assumption 25

that the subject-wise number of trials was fixed before the 26

experiment, which may often not be the case in practice (e.g. 27

when artifactual trials are rejected). 28

Another option at this point is to apply one of the multiple 29

comparison corrections (e.g. Bonferroni correction) to the 30

family of subject-wise tests, in order to ensure that the type 31

I error rate is preserved at the level α. In the given dataset, 32

after Bonferroni correction one subject-wise test would not 33

be considered significant anymore. It is worth noting that the 34

multiple comparison correction at the subject-level has an un- 35

desirable property: assuming that the subject-wise accuracies 36

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1828v1 | CC-BY 4.0 Open Access | rec: 7 Mar 2016, publ: 7 Mar 2016



12

are samples from a population (i.e. they have a fixed mean), all1

the subject-wise tests will be non-significant if a large enough2

sample is used. In this case, using a large sample is detrimental3

to inference, counter to intuition and desired behavior of the4

procedure.5

At the group level, we would usually first summarize6

subject-wise data by the sample accuracy, and assume that7

these sample accuracies are drawn from a normal group-level8

distribution; then we can use a right-tail t-test to test the null9

hypothesis that the group-level mean is equal or smaller than10

chance level. In the given dataset the p-value for this null11

hypothesis is smaller than 0.001, and thus we can reject the12

null hypothesis of chance level operation.13

Beyond previously outlined issues with NHST, there are14

two additional issues with this particular procedure. First,15

assuming that sample accuracies are normally distributed is16

not appropriate – sample accuracies are bounded between 017

and 1, whereas the normal distribution is unbounded. This18

modeling error will be more pronounced for high group-level19

accuracies, where the data has a larger negative skew – as20

a consequence, the group-level mean will be underestimated21

in this case. Second, by summarizing the subject-wise data22

with sample accuracies, information is lost because we have23

ignored the hierarchical nature of the experiment (i.e. that the24

trials are nested within subjects). In effect, all the variance25

in the data is assigned to between-subject variance, instead26

of decomposing it into a within-subject and between-subject27

component; therefore, the between-subject variance is going28

to be overestimated.29

Let us now consider how does the hierarchical Bayesian30

estimation approach deal with the same dataset. Again, we31

are interested in both subject-level and group-level analysis;32

however, due to the hierarchical nature of Model 1, the infer-33

ence is performed simultaneously at both levels. Analogous34

to subject-wise p-values, we can obtain posterior probabilities35

that the subject-wise accuracies are above chance level. In the36

given dataset for the subject with the lowest accuracy this37

probability is 99.93%, indicating high certainty that all of the38

subjects were performing above chance level. However, using39

the estimation approach, we can go beyond p-values by giving40

Bayesian CIs for each subject’s accuracy, thus describing our41

uncertainty of individual estimates, due to the finite number of42

trials per subject (see Figure 5.A). Importantly, these posterior43

probabilities and confidence intervals are not conditional on44

sampling intentions and have a straightforward interpretation,45

unlike p-values and frequentist CIs. Moreover, the posterior46

probabilities do not need to be corrected for multiple com-47

parisons since (i) the principal aim of Bayesian inference is48

coherence, rather than control of type I errors, and (ii) we have49

used a hierarchical model which shrinks individual accuracy50

estimates towards group-level accuracy, thus regularizing the51

inference [45].52

At the group level, we can again provide the posterior prob-53

ability that the the group-level mean is above chance level, and54

this probability in the given dataset is ∼100%. However, as we55

have pointed out earlier, a reasonably motivated BCI approach56

will rarely work at exactly chance level in a population of57

subjects, and thus the posterior probability of the group mean58

being over chance level is of limited value. Again, by using 1

the estimation approach we are able to give more complete 2

insight: we can provide the full posterior distribution over the 3

group mean and inter-subject variance, and we can further 4

summarize the posterior using point and interval estimates. For 5

example, in the given dataset we can summarize the posterior 6

by stating that the group-level mean accuracy is between 7

72.2% and 82.2% with 95% probability. Depending on the 8

analyst’s practical or research goals and peers’ judgment, this 9

estimate may or may not be sufficiently precise. In the latter 10

case the Bayesian framework allows us to simply collect more 11

data and update the posterior again using the Bayes’ rule, 12

still obtaining valid probabilities. In contrast, p-values and 13

frequentist CIs would be invalidated by such additional data 14

collection. 15

Additionally, in the proposed framework we can also predict 16

the future data. For example, we might be interested what is 17

the predicted accuracy for a new subject given the data we have 18

observed in the experiment. We can obtain this information 19

from the posterior predictive distribution over future data. In 20

the given dataset the predicted accuracy for a new subject is 21

between 59.6% and 89.1% with 95% probability. While the 22

posterior estimates of parameters such as mean and variance 23

can be made more precise by collecting more data, the pre- 24

dicted accuracy estimate will not necessarily become narrower 25

with more data since it depends on inter-subject variability 26

inherent to the BCI that is being tested. In the case that the 27

prediction interval is too wide for practical purposes, the BCI 28

approach itself should be modified to reduce the inter-subject 29

variability in performance. 30

Whereas modeling assumptions are rarely verified when 31

applying NHST in practice, in the proposed framework of 32

Bayesian estimation we can use the posterior predictive check 33

to assess if the assumptions of the model are justified. In 34

the given dataset we can inspect the posterior predictive 35

distribution of accuracy, and verify that the observed data does 36

not deviate systematically from it. 37

Association between a subject-specific variable and BCI 38

performance (Model 2): In the dataset of Blankertz et al. [34] 39

NHST can again proceed at both single-subject and group 40

level, but we will focus only on the group level, since the 41

effect of a subject-specific covariate on accuracy can only 42

be observed at this level. A typical NHST analysis for this 43

experimental design would involve using linear regression to 44

associate the covariate with accuracy and performing a t-test 45

to determine if the slope of the association is significantly 46

different than zero. In the given dataset the p-value obtained 47

from the t-test is smaller than 0.001 and we can reject the null 48

hypothesis that the slope is zero. 49

Apart from the aforementioned problems of disregarding 50

the hierarchical nature of data and inappropriately assuming 51

normally distributed data, there is an additional issue with 52

assuming a linear dependency between a covariate and accu- 53

racy. The reason is again the fact that accuracy is bounded 54

between 0 and 1 – this is opposed to the assumed linear 55

relationship between the covariate and accuracy, which can 56

predict accuracies smaller than 0 and larger than 1, even 57

for values of the covariate present in the dataset (as seen in 58
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Figure 6.A).1

In contrast, the use of Bayesian estimation to fit the pa-2

rameters of a hierarchical generalized linear model does not3

suffer any of the described problems. Using the appropriate4

link function in the generalized linear model (logistic link in5

this case) we obtain properly bounded predictions for all the6

values of the covariate. Moreover, we can again dispel black-7

and-white thinking by estimating the effect of the covariate on8

accuracy, instead of testing whether this effect is exactly zero2.9

In the given dataset we can estimate with 95% probability that10

the slope is between 0.372 and 0.844 on the log-odds scale,11

with the posterior median 0.606. In other words, we can expect12

that a subject with resting alpha power one standard deviation13

above the average will have an improvement between 1.45 and14

2.33 times in the odds of correct decoding. Again, depending15

on practical considerations we can decide if this estimate is16

precise enough, and if it is not we can collect more data and17

update the posterior estimate appropriately.18

As before, we can perform the posterior predictive check,19

predicting the expected accuracy for different values of the20

covariate. In the given dataset we can see that the model21

predicts a substantial proportion of subjects below chance22

level for low levels of alpha power (Figure 6.D), which is23

not observed in the actual data. This is a consequence of not24

modeling completely all the prior knowledge on the problem25

– in this concrete case, the model was not informed of the26

fact that classification accuracy will generally not be bellow27

the chance level. Hence, here the posterior predictive check28

reveals a systematic problem with the model which could29

then be resolved in a subsequent iteration of modeling by30

appropriately restricting the model. By just applying NHST31

without concern of the underlying assumptions, a discrepancy32

such as this one might easily go unnoticed.33

Comparison of different BCI approaches in a within-subject34

design (Model 3): For the dataset of Brunner et al. we35

will again focus on the group-level analysis. In the NHST36

framework, a standard way to analyze the within-subject37

experimental design with discrete factors is to use repeated38

measures ANOVA. In the given dataset repeated measures39

ANOVA indicates that the effect of the employed BCI ap-40

proach significantly reduces unexplained variance and the41

corresponding p-value is smaller than 0.001. Since the main42

hypothesis of the study is not that the used BCI approach43

affects accuracy (this is usually known a priori), but that the44

hybrid approach is better than the ERD-only and SSVEP-only45

approaches, additional pairwise post hoc tests would usually46

be conducted. Conducting pairwise t-tests (corrected using47

Bonferroni-Holm procedure) shows that the hybrid approach is48

significantly better than the ERD approach (p = 0.0013), but49

the difference between the hybrid approach and the SSVEP50

approach is not significant (p = 0.457).51

In the framework of hierarchical Bayesian estimation we52

2Since we usually test covariates which are likely to be related to accuracy
based on prior substantive knowledge, testing this hypothesis is not very
informative. Even if the slope is exactly zero, the estimation approach
will give a narrow estimate around zero with enough data, providing the
same conclusion. Alternatively, we can use Bayesian model comparison [46]
between a model with the slope parameter and an intercept-only model.

can readily obtain accuracy estimates both at the subject- 1

level and for different approaches individually, but we will 2

now proceed directly to the comparison of approaches, which 3

will address the main question of the study. First, we can 4

compute the posterior probability that the hybrid approach 5

is better in pairwise comparisons with the ERD and SSVEP 6

approaches: the probability that the hybrid approach is better 7

than the ERD approach and the SSVEP approach is 99.9% 8

and 68.0%, respectively. Moreover, we can also compare the 9

hybrid approach with the non-hybrid approaches (average of 10

the ERD and SSVEP estimates), and we obtain a probability of 11

99.0% that the hybrid approach is better. Whereas the post hoc 12

tests in the NHST analysis suggest there is no improvement in 13

using a hybrid approach over an SSVEP approach, Bayesian 14

estimation suggest that there is a non-negligible probability 15

that the hybrid approach is better. 16

However, since implementing a new BCI approach can be 17

costly in terms of time, effort, money, and computational re- 18

sources, it is not usually enough to show that the improvement 19

is statistically significant, the improvement also needs to be 20

practically significant. In other words, we also need to estimate 21

the size of the improvement and indicate the precision of 22

this estimate. Although the Bayesian analysis indicates that 23

the hybrid approach is probably an improvement upon the 24

ERD and SSVEP approaches, the size of this improvement 25

is quite uncertain (see Figure 7.C). This is most apparent in 26

the wide CI of the difference between the hybrid and SSVEP 27

approaches, which spans from large negative effects up to large 28

positive effects, with the posterior median of this difference 29

being 0.319 (logit scale), i.e. the odds of successful decoding 30

being 1.38 times bigger for the hybrid approach. This median 31

improvement in odds would correspond to a relative decrease 32

in error frequency of around 26%, with the SSVEP approach 33

making an error approximately once in 34 trials and the hybrid 34

approach making an error once in 46 trials. Although the 35

difference between the hybrid and the SSVEP approach was 36

deemed non-significant by NHST, and intuitively seemed small 37

on the probability scale (see Figure 7.B), Bayesian estimation 38

with the logistic model shows that the difference might be 39

practically significant, although the data does not allow precise 40

estimates. 41

Moreover, in the case of estimates with insufficient preci- 42

sion, the Bayesian framework provides simple guidance. A 43

follow-up study could be conducted to collect more data, and 44

the results of the present study could be used as a prior to 45

obtain more precise estimates via the Bayes’ rule – in this 46

way knowledge can easily be accumulated across studies. 47

B. Possible misgivings about Bayesian estimation 48

One aspect of the proposed framework that might bother us, 49

is the seemingly subjective nature of the employed Bayesian 50

inference. One might argue: if the results of the inference de- 51

pend on the prior, which should reflect subjective belief of the 52

analyst, how can they be presented as scientifically objective? 53

We can address this criticism from several viewpoints. 54

First, we should acknowledge that every statistical anal- 55

ysis (or scientific inquiry, for that matter) has subjective 56
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elements [47]. The choice of hypotheses to test, the choice1

of data to collect, the form of the model to fit, the choice of2

the significance level to apply, etc., are all subjective choices,3

although usually based on some substantive knowledge. In4

this respect, choosing a subjective prior should not be more5

controversial than choosing a likelihood; therefore, we would6

not consider the frequentist approach more objective than the7

Bayesian approach. If objectivity is our concern, we might8

even prefer the Bayesian approach, where the subjective prior9

is overtly stated, to the frequentist approach, where the results10

depend on possibly covert sampling and testing intentions.11

Second, there have been attempts to formulate objective12

priors [48]: these priors are chosen based on objective rules,13

and the results do not therefore depend on the analyst. How-14

ever, there are also issues with objective priors: the posterior15

obtained from an objective prior might not be a proper prob-16

ability distribution (integrating to unity) and, perhaps more17

importantly, the analyst still has to choose according to which18

rule to construct the prior (as multiple have been proposed).19

Third, it is possible to choose a middle ground between fully20

subjective priors and non-informative objective priors, the so-21

called weakly informative priors. Here we interpret the prior22

as a way to supply some substantive information (for example,23

the scale of the data, or the expected magnitude of effects),24

but not enough to strongly influence our conclusions. In this25

way we can interpret the prior as a type of a regularization26

device, rather than expression of subjective belief. This is the27

approach we have mostly adhered to in the analyses presented28

in this paper.29

Fourth, objectivity of the analyses should be ensured by30

proper peer review, which should also scrutinize the prior31

information that was included in the analysis. The chosen prior32

might seem too strong to a skeptical audience, and in that33

case might need to be weakened, but the reverse might also34

be true – the chosen prior could be too weak, relative to the35

information available from, for example, previous studies. In36

this case the prior becomes an asset, allowing us to accumulate37

knowledge across studies.38

Finally, if there are multiple defensible priors, we can39

conduct a sensitivity analysis, observing how the posterior40

changes as a function of the prior. On the one hand, if different41

choices of priors lead to essentially same conclusions, we42

do not need to be overly concerned with the subjectivity of43

the analysis. On the other hand, if different reasonable priors44

lead to different conclusions, we might be better off admitting45

the lack of certainty in our conclusions, rather than stating46

one conclusion as being objectively preferable. Furthermore,47

if the data and model code are openly shared online, other48

researchers can draw their own conclusions based on their49

priors, and need not take the results of the original analysis at50

face value.51

Another possible criticism of the proposed framework is52

the singular focus on parameter estimation. As pointed out by53

Morey et al. in the context of psychology, science needs both54

hypothesis testing and parameter estimation [49]. Their propo-55

sition is to use Bayesian hypothesis testing (also known as56

Bayesian model selection or comparison), alongside Bayesian57

parameter estimation. However, Bayesian hypothesis testing is58

not without critics (even among Bayesian inclined statisticians, 1

e.g. see ref. [50]), mainly because of its strong sensitivity to 2

the priors, which is not such a large concern for Bayesian pa- 3

rameter estimation. Although we agree with Morey et al. that 4

science needs both hypothesis testing and parameter estimation 5

in principle, in practice we consider the estimation approach 6

more useful for the types of studies usually conducted in BCI 7

research. 8

C. Present limitations and future work 9

One possible concern with the proposed models are vi- 10

olations of the underlying modeling assumptions. At the 11

lowest level of the proposed models we assume that the trials 12

are exchangeable (i.e. conditionally independent, given the 13

subject’s accuracy). We can find two possible reasons for 14

this assumption to be violated. First, in BCIs the underlying 15

data being classified has temporal structure and therefore the 16

probability of correctly classifying a trial might be temporally 17

correlated. Second, accuracy is often obtained using k-fold 18

cross-validation. In this case exchangeability is also violated, 19

as we would not judge the test trials to be exchangeable across 20

folds. While some simulation-based studies have shown how 21

cross-validated results violate the assumptions of binomial 22

sampling [7, 51], to the best of our knowledge, a correction for 23

this bias that could be integrated into a parametric model is not 24

known. Although this is an issue worthy of further research, we 25

would like to point out that the matter of violating assumptions 26

is as applicable to the framework we have described, as it is 27

to the usual NHST methods, which are also based on i.i.d. 28

assumptions. 29

There are also several computational issues which need to 30

be considered when using MCMC to estimate the parameters 31

of the proposed models. First, although MCMC procedures 32

are asymptotically exact, we cannot know with certainty that 33

the chains have converged to their stationary distribution and 34

that the samples we are using for inference are representa- 35

tive of the true posterior distribution. There is a number of 36

heuristic diagnostics which can be used to detect the lack of 37

convergence, but passing these diagnostics does not guarantee 38

that the procedure has converged. Second, MCMC methods 39

can also be computationally intensive, although this has not 40

been a significant issue in the analyses conducted in this paper 41

(MCMC sampling in all three example datasets was done in 42

under a minute on a medium-grade computer). Moreover, the 43

typical signal processing and machine learning pipelines used 44

in BCI research to obtain subject-wise accuracies are orders of 45

magnitude more time-demanding than the statistical analyses 46

proposed here. Third, using MCMC we do not directly obtain 47

the model evidence p(y). Again, this has not been a significant 48

issue in this paper as we have mainly been concerned with the 49

estimation of model parameters, rather than model comparison 50

where the model evidence plays a role. In the case that some 51

of these issues turn out to be problematic in some practical 52

situations, Bayesian inference might still be viable using 53

approximate methods, such as variational Bayes. For example, 54

a variational procedure has been developed by Brodersen et 55

al. for the single group model of classification accuracy [52]. 56
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While we have mostly discussed statistical inference and1

parameter estimation, study planning is another important2

aspect of applied BCI research. A common practical issue3

when planning a study is determining an appropriate sample4

size for the desired experimental design. There are two general5

approaches in sample size determination, the “performance6

based” and the “utility based” approach, as termed by Wang7

and Gelfand [53]. Although the performance based approach8

also includes goals such as the classical statistical power9

(i.e. controlling type II error rate), from the “new statistics”10

perspective a more worthy goal is accuracy in parameter11

estimation (AIPE) [54]. An example of an AIPE goal would be12

to ensure a narrow confidence interval around the true value13

of the estimated parameter. The utility based approach is a14

more explicit application of decision theory to the sample15

size planning. In this approach it is necessary to define a16

utility function which expresses our valuation of the different17

outcomes of the study. Whichever way we stated the utility18

function, the solution to the optimal sample size is then19

obtained by maximizing the expected utility [55]. Whether20

we use the performance based or utility based approach for21

sample size planning, a general method to obtain the required22

sample size is to use Monte Carlo simulation, although this can23

be computationally demanding. Since inadequate sample sizes24

were identified as one of the reasons for the aforementioned25

“statistical crisis”, particularly in neuroscience, we believe that26

sample size planning should be given careful thought in future27

work and replace the usual “rule of thumb” sample sizes.28

VI. CONCLUSION29

With the increasing applicability of BCIs to medical, re-30

search, and commercial domains, it is in our view the right31

time to give some serious thought to the statistical procedures32

used to make claims about the effectiveness of BCIs. Since33

BCI research is a relatively young discipline, taking the right34

methodological precautions now might go a long way in35

avoiding an embarrassing and costly reproducibility crisis36

further along the road, similar to the one that the related fields37

of psychology and neuroscience are experiencing now.38

In this paper we have reviewed some of the problems39

of the usual NHST approach to the validation of BCIs and40

proposed an alternative framework. The proposed framework41

differs from “business as usual” in four distinct ways, listed42

here from most to least important, per our opinion: instead of43

hypothesis testing we conduct estimation of model parameters,44

instead of non-hierarchical we use hierarchical models, instead45

of frequentist we use Bayesian inference, and instead of a46

linear model of BCI performance we use a generalized linear47

model. The estimation approach dispels the black-and-white48

thinking induced by the NHST, hierarchical models allow us to49

flexibly fit data from complex experimental designs, Bayesian50

inference provides a principled method of reasoning about51

uncertainty in parameter estimates, and the generalized linear52

model allows us to analyze non-normal performance. Although53

the proposed framework is not itself a novelty, we extend it54

to typical experimental designs used in BCI research, demon-55

strate its effectiveness in three published datasets, and provide56

the accompanying code and data. In this way we believe we 1

have reduced the gap between advances in statistical methods 2

and BCI research practice. 3

Even though the proposed framework is in our opinion a 4

step in the right direction, we also acknowledge that alter- 5

native approaches, such as frequentist estimation methods or 6

Bayesian hypothesis testing, have their own merits. Whatever 7

the “right approach” ultimately might be, BCI research prac- 8

tice will be improved by a more thorough look at the employed 9

statistical methods and their wider discussion. 10
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APPENDIX A27

BASICS OF NHST AND BAYESIAN INFERENCE: THE SIMPLE28

ILLUSTRATION EXTENDED29

Using the simple example outlined in subsection II-C we30

now provide the details of the NHST approach and the31

Bayesian estimation approach.32

With the collected dataset and the defined model we first33

define a null hypothesis, e.g. H0 : µ = 0, which we then try34

to falsify. To do so, we must further define the measure of35

compatibility of the data with the null hypothesis, i.e. a test36

statistic T (d), which is a function of the data. In the given37

example of normally distributed data with unknown mean and38

variance, a commonly used statistic is the t-statistic. Next,39

to determine if the observed data is improbable under the40

null hypothesis, it is necessary to obtain the null distribution41

p(T (drep)|H0), i.e. the distribution of the test statistic T under42

repeated sampling, conditional on the null hypothesis being43

true. Here it is important to notice that the null distribution is44

conditional not only on H0, but implicitly also on the sampling45

and testing intentions (e.g. whether N is predetermined). In46

the example the null distribution would be the Student’s t-47

distribution with N −1 degrees of freedom, assuming that the48

sample size was fixed at N prior to the experiment. Finally, the49

discrepancy between the observed test statistic T (d∗) and the50

null hypothesis is measured by the p-value, which is defined51

as the tail area of the null distribution:52

p = P (T (drep) ≥ T (d∗)|H0). (9)53

Intuitively, we can interpret the p-value as the probability of54

obtaining data that is as extreme as, or more extreme, than the55

observed data, assuming the null hypothesis is true. As noted56

before, in the given dataset the value of the t-statistic is 1.0957

and the p-value is 0.29; hence, we would not reject H0 at the58

usual α = 0.05 significance level.59

Let us now compare NHST with Bayesian estimation. As 1

stated, Bayesian estimation also starts with formulating a 2

model, which is often represented as a directed acyclic graph 3

(DAG). The model is formalized as a likelihood function 4

p(d|θ), where θ represent all the parameters of the model. 5

In the given example the likelihood function is 6

p(d|θ) = p(y1, . . . , yN |µ, σ) 7

=

N∏

i=1

1

σ
√

2π
exp

(−(yi − µ)2

2σ2

)
, 8

9

and the corresponding graphical model is shown in Figure 1.B. 10

However, unlike NHST, we additionally need to define the 11

prior distribution p(θ) which formalizes information about the 12

parameters of the model that is available before observing the 13

data. Let us now additionally assume we a priori know that 14

the mean µ is unlikely to be larger than 9 in magnitude, and 15

the standard deviation σ cannot be larger than 10 – in this 16

case we might use the following independent priors: 17

p(θ) = p(µ, σ) = p(µ)p(σ), 18

p(µ) = Normal(µ;Mµ, S
2
µ), 19

p(σ) = Uniform(σ;Lσ, Uσ), 20

Mµ = 0, Sµ = 3, Lσ = 0, Uσ = 10, 21
22

where Mµ, Sµ, Lσ , and Uσ are the hyper-parameters. The 23

marginal prior for the population mean p(µ) is shown in 24

Figure 1.D. 25

With the likelihood and the priors specified, we can proceed 26

to the estimation of parameters conditional on the observed 27

data. In contrast with NHST, the goal of statistical inference 28

is now to answer questions such as “what are the plausible 29

values of the model parameters θ given the observed data d?” 30

In the Bayesian framework this question is answered by the 31

posterior distribution p(θ|d). To obtain the posterior we use 32

the Bayes’ rule: 33

p(θ|d) =
p(d|θ)p(θ)
p(d)

∝ p(d|θ)p(θ). (10) 34

Since we will be concerned with the estimation of model 35

parameters, rather than comparison of different models, the 36

model evidence p(d) (i.e. marginal likelihood) in the denom- 37

inator of Bayes’ rule (which does not depend on parameters 38

θ) will not play a role, and can be considered just as a 39

proportionality constant. 40

By inspecting the properties of the posterior distribution 41

we can now interpret the results of the inference. For the 42

example dataset the inferred joint posterior p(µ, σ|d) is shown 43

in Figure 1.C. Since the posterior will generally be high 44

dimensional and include parameters which may not be of 45

interest (i.e. nuisance parameters), we will often want to 46

obtain low dimensional probability distributions over particular 47

parameters (i.e. marginal distributions). We can obtain the 48

marginal posterior distribution for the parameter of interest 49

θi as: 50

p(θi|d) =

∫
p(θi, θ\i|d)dθ\i, (11) 51

where θ\i is the set of all the parameters except θi. With the 52

obtained marginals we can provide numerical summaries of 53
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the inference, such as the expectation, median, mode, variance1

(standard deviation), or the 95% CI, as well as graphical2

summaries. For the example dataset, the marginal distribution3

p(µ|d) is shown in Figure 1.D, since the population mean is of4

main interest. We can also provide the numerical summaries of5

the posterior marginal: Mdn = 0.951, 95% CI: [-1.12, 2.97]3.6

Moreover, we can answer questions such as “what is the7

probability that µ is positive?” The answer is simply obtained8

by integrating p(µ|d) for the positive values of µ; in the given9

example P (µ > 0|d) = 83.0%. Comparing with NHST, which10

simply indicates that µ is not significantly different than 0, in11

Bayesian estimation we obtain richer information: the mean12

µ is positive with a high probability, but we are uncertain of13

its magnitude due to the small sample size (indicated by the14

large 95% CI).15

Since the computation of the marginals and the computation16

of numerical summaries (e.g. expectation) involves integrals17

that are most often not analytically tractable, we resort to18

numerical approximations of the integrals using Monte Carlo19

(MC) integration. To perform the MC integration we need20

a sample from the probability distribution over which the21

integral is taken; however, the posterior distribution p(θ|d) (or22

equivalently p(d|θ)p(θ)) is usually too complex to be directly23

sampled from. Again, we can resort to a numerical solution24

– Markov chain Monte Carlo (MCMC) simulation – which25

provides the random sample from the posterior. While the26

computational part of the Bayesian estimation is more complex27

than NHST, there are multiple software packages that take a28

model specification in a formal language as input, and provide29

the user with an MCMC sample as output, removing the need30

to implement custom MCMC algorithms for a wide class of31

models [42, 56–58]. The details of the MCMC procedure we32

employed are given in the subsection III-E (“Computational33

details of the inference procedure”).34

With an MCMC sample {θ(1), θ(2), . . . , θ(T )} we can easily35

perform marginalization and computation of numerical sum-36

maries of the posterior. The sample of a marginal distribution37

p(θi|d) is obtained as {θ(1)i , θ
(2)
i , . . . , θ

(T )
i }, where nuisance38

parameters are simply ignored. Expectation of a function of a39

parameter θi can then be obtained using MC integration:40

E[g(θi)|d] ≈ 1

T

T∑

t=1

g(θ
(t)
i ), (12)41

where setting g(·) to identity yields the ordinary mean. To42

answer questions about the amount of probability mass within43

an interval [l, u] we can also use MC approximation:44

P (l < θi < u|d) ≈ 1

T

T∑

t=1

I[l < θ
(t)
i < u], (13)45

where I[·] is the indicator function, which gives 1 when its46

argument is true, and 0 otherwise. Similar calculations can47

be made for other types of inequalities. The calculation of48

the 95% CI and the median (as well as other percentiles)49

3Here and elsewhere in text we use the equi-tailed 95% CI, for which 2.5%
of probability mass is both below and above it. An alternative choice is to
use the highest posterior density (HPD) 95% CI, which is the shortest CI that
contains the specified probability mass.

can be obtained by sorting the MCMC sample and taking the 1

parameter values corresponding to appropriate ranks. 2

When doing Bayesian estimation, we may often be inter- 3

ested not only in the parameter estimates, but also in predicting 4

the future data. Once the posterior distribution of model 5

parameters has been inferred using the Bayes’ rule, we can 6

predict future data d̃ using the posterior predictive distribution: 7

8

p(d̃|d) =

∫
p(d̃|θ)p(θ|d)dθ. (14) 9

Here we take the top-down approach, with p(d̃|θ) modeling the 10

dependency of future data on the top-level parameters. In the 11

example dataset we might be interested in the posterior predic- 12

tive distribution of a new sample ỹ, which can be modeled in 13

the same way as observed data: ỹ ∼ Normal(µ, σ). The poste- 14

rior predictive distribution p(ỹ|d) is shown in Figure 1.A. The 15

computation of the posterior predictive distribution can again 16

be achieved using MCMC simulation, and the summaries are 17

obtained in an analogous way. As a check of the model fit, 18

we can conduct a posterior predictive check, i.e. we can check 19

(e.g. through graphical summaries such as Figure 1.A) if the 20

posterior predictive distribution predicts data that is similar to 21

the one we have observed. If we see systematic differences 22

between the observed data and the predicted data, we might 23

want to revisit the modeling assumptions and do another 24

iteration of modeling and analysis. 25
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