
 

A peer-reviewed version of this preprint was published in PeerJ
on 7 June 2016.

View the peer-reviewed version (peerj.com/articles/2111), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Zanin M. 2016. On causality of extreme events. PeerJ 4:e2111
https://doi.org/10.7717/peerj.2111

https://doi.org/10.7717/peerj.2111
https://doi.org/10.7717/peerj.2111


On causality of extreme events

Massimiliano Zanin

Multiple metrics have been developed to detect causality relations between data

describing the elements constituting complex systems, all of them considering their

evolution through time. Here we propose a metric able to detect causality within static

data sets, by analysing how extreme events in one element correspond to the appearance

of extreme events in a second one. The metric is able to detect both linear and non-linear

causalities; to analyse both cross-sectional and longitudinal data sets; and to discriminate

between real causalities and correlations caused by confounding factors. We validate the

metric through synthetic data, dynamical and chaotic systems, and data representing the

human brain activity in a cognitive task.
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I. INTRODUCTION1

Detecting causality relationships between the elements composing a (complex) system is2

an old, though unsolved problem [1, 2]. The origin of the concept of causality goes back to3

the ancient Greek phylosophy, according to which causal investigation was the search for an4

answer to the question “why?” [3, 4]; but the debate was still hot in the late 18th century, in5

the work of David Hume [5]. Moving to the scientific research, in the last few decades there6

has been an increasing interest for detecting causality in real data, which has resulted in the7

creation of multiple metrics: Granger causality, cointegration, or transfer entropy [6–10], to8

name a few.9

All proposed metrics share a common characteristic: causality is defined as a relation10

existing in the temporal domain, and the metrics thus involve a time series analysis. This11

probably originated in the way the human brain conceives causality, as sequences of related12

events close in time [11, 12]. This is an important limitation, especially when studying13

systems whose dynamics through time cannot easily be observed. Consider, for instance,14

genetic analysis; one single measurement is usually available per subject and gene, precluding15

the estimation of gene-gene interactions through a causal analysis solely based on expression16

levels.17

Although correlation appears prima facie as an interesting solution, it presents the im-18

portant drawback of not being able of discriminating between real and spurious causalities.19

Suppose one is studying a system composed of three interconnected elements, as the one20

depicted in Fig. 1 Left, with the aim of detecting if the dynamics of element C is caused by21

B; additionally, no time series are available, and elements are described through vectors of22

cross-sectional observations. A statistically significant correlation between B and C may be23

found both when a true causality is present (Fig. 1 Right Bottom), and when both elements24

are driven by an unobserved (confounding) element A (Fig. 1 Right Top).25

In order to tackle the scenario of Fig. 1, in this contribution we propose a novel metric26

for detecting causality from observational data. It entails three innovative points. First,27

it is defined on vectors of observation, which do not have to necessarily represent a time28

evolution. In other words, input vectors may correspond to gene expression levels measured29

in a population (a cross-sectional study), or (but not necessarily) to multiple observations30

of the same subject (a longitudinal study). Second, the method is based on the detection31
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FIG. 1. Distinguishing causality from correlation. (Left) General situation, in which three elements

(A, B and C) interact in a simple triangular configuration. If one is interested in the relation between

B and C, two different scenarios may arise. (Right top) When A is dominating the dynamics, any

common dynamics between B and C will be a correlation, generated by the external confounding

factor. (Right bottom) The situation corresponding to a real causality between B and C.

of extreme events, and on their appearance statistics. This is not dissimilar to Granger32

causality, as the latter measures how shocks in one time series are explained by a second33

one; but without the need of a time evolution. Third, it is optimised for the detection of34

non-linear causal relations, which are common in many real-world complex systems [13], but35

that may create problems in standard causality metrics [14].36

II. METRIC DEFINITION37

Suppose two vectors of elements B = {bi} and C = {ci} of equal size. The two elements38

of each pair (bi, ci) must be related, e.g. they may correspond to the measurement of two39

biomarkers in a same subject. In the case of B and C being time series, clearly (bi, ci) would40

correspond to measurements at time i; yet, as already introduced, such dynamical approach41

is not required.42

Starting from these vectors, some of their elements are labelled as extreme when they43

exceed a threshold, i.e. bi > τb and ci > τc. If a causality relation is present between44

them, such that B → C, this should affect the way extreme events appear. First, under45

non-extreme dynamics, the two systems B and C are loosely coupled. Especially when the46

relation is of a non-linear nature, small values in the former system are dampened during47

the transmission. Second, most (ideally, all) of the extreme values of B should correspond48
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FIG. 2. p-value obtained by the proposed causality metric, for vectors of synthetic data drawn

from six different distributions, as a function of the coupling constant γ - see main text for details.

Black, red and green lines respectively correspond to linear, quadratic and cubic couplings; solid

lines depict true causalities (as in Fig. 1 Right Bottom), dashed lines spurious ones (Fig. 1 Right

Top). Each point corresponds to 10.000 realisations.

to extreme values of C, as extreme signals will be amplified from the former to the latter49

by the non-linear coupling. Third, extreme values of C only partially correspond to extreme50

values of B; due to its internal dynamics, C can display extreme events not triggered by the51

other element.52

Let us denote by p1 the probability that an extreme event in C also corresponds to an53

extreme event in B, i.e p1 = P (bi > τb|ci > τc). Conversely, p2 will denote the probability54

that an extreme event in B corresponds to an extreme event in C, i.e. p1 = P (ci > τc|bi > τb).55

In the case of a real causality, the second condition implies that p1 ≈ 1, the third one that56

p2 � 1. On the other hand, in the case of an external confounding effect, and if the two57

thresholds are chosen such that the probability of finding extreme events is the same for58

both elements, it is easy to see that p1 ≈ p2. Notice that the same is true if B and C are59

bidirectionally interacting.60

The previous analysis suggests that the necessary condition for having a B → C causality61

is p1 > p2. The statistical significance can be quantified through a binomial two-proportion62

z-test:63
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z =
p1 − p2

√

p̂(1− p̂)( 1

n1

+ 1

n2

)
, (1)

with n1 and n2 the number of events associated to p1 and p2, and p̂ = (n1p1+n2p2)/(n1+64

n2). The corresponding p-value can be obtained through a Gaussian cumulative distribution65

function.66

Before demonstrating the effectiveness of the proposed causality metric, it is worth dis-67

cussing several aspects of the same.68

First of all, the attentive reader will notice the similarity of this method with some metrics69

for assessing synchronisation in time series. For instance, local maxima and their statistics70

were considered in Ref. [15], and event coincidences in Ref. [16]. In both cases, an essential71

ingredient is the time evolution: extreme events in one time series are identified and related72

to those appearing in a second time series, and the delay required for their transmission73

assessed through a time shift optimisation. While this yields an estimation of the direction74

of the information flow between two time series, it cannot be applied to systems whose75

time evolutions are not accessible. The metric here proposed has the advantage that can be76

applied to static data sets, in principle paving the way to the construction of data mining77

algorithms based on causality.78

Second, the metric definition requires setting two thresholds, i.e. τb and τc. This can79

be done using a priori information, e.g. when a level is accepted as abnormal for a given80

biomarker; or by simply explore all the parameters space, in order to assess the values81

of (τb, τc) corresponding to the lowest p-value. This may result especially useful in those82

situations for which the input elements are not well characterised: beyond the identification83

of causality relations, this method may also be used to define what an abnormal value is.84

Third, we have previously stated that the presence of a confounding effect can be correctly85

detected, and that in such situations the metric would not detect a statistically significant86

causality. According to the Common Cause Principle [1], two variables are unconfounded iff87

they have no common ancestor in the causal diagram; and ensuring this requires including88

the confounding effects in the analysis, i.e. detect if there are causalities A → B and89

A → C in the diagram of Fig. 1. In the context here analysed, a confounding effect would90

be detected as the presence of co-occurring extreme events (generated by the confounding91

element) in both vectors of data. This requires the confounding element to influence in the92
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same way both analysed elements, or, in other words, to have the same coupling strength93

between A → B and A → C. Additionally, if the causality B → C is mixed with an external94

influence, the latter cannot be detected if the strength of the former is greater - that is, a95

strong causality can mask a confounding effect. For all this, the proposed method does not96

always allow to discriminate true causalities from spurious relationships, although it provides97

important clues about which one of these two effects is having the strongest impact.98

III. METRIC EVALUATION99

We first test the proposed metric with synthetic data. Fig. 2 presents the evolution of100

the p-value for two vectors B and C, whose values are drawn from different distributions.101

Two situations are compared. First, a real B → C causality, such that ci = ci + γbn
i
(n102

being the order of the coupling) - solid lines in Fig. 2. Second, a confounding effect in which103

bi = bi+γan
i
and ci = ci+γan

i
- dashed lines in Fig. 2. It can be appreciated that the p-values104

of real causalities drop to zero with small values of coupling constants; and that non-linear105

couplings perform better than linear ones. In some cases, a confounding effect (especially106

when highly non-linear) can foul the metric and yield a low p-value - see, for instance, the107

cubic confounding coupling for a gamma distribution in Fig. 2. Such situations can easily be108

identified by comparing the p-values for B → C and C → B: in the case of a true causality,109

which is by definition directed, the p-value should be small only for one of them. An example110

of this is depicted in Fig. 3, which shows the evolution of the p-values for a confounding111

effect (top panel) and a causality (bottom panel), for vectors of Gamma distributed values.112

Once the limitations and requirements about confounding effects, as defined in the previous113

section, are taken into account, discriminating between true and spurious causalities only114

requires calculating the two opposite p-values, and checking whether they are both small.115

The necessity of detecting extreme events introduces a drawback in the method, i.e.116

the need of having a large set of input values to reach a stable statistics. This problem is117

explored in Fig. 4, which depicts the p-value obtained as a function of the number of input118

values. Depending on the kind of relation to be detected, between 2 and 4 thousand values119

are required.120

One of the advantages of the proposed metric is that it can be applied both to cross-121

sectional and longitudinal (i.e. time evolving) data. Here we show such flexibility in the122
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FIG. 3. Evolution of the p-value of the causality, when considering both B → C and C → B tests

for a cubic coupling and for data drawn from a Gamma distribution (as in green lines of the first

panel of Fig. 2. The top panel reports the results for a confounding effect, the bottom one for a

true causality between B and C.
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FIG. 4. Evolution of the p-value of the causality, for a triangular distribution, as a function of the

number of values included in the input vectors. Black, red and green lines respectively correspond

to linear, quadratic and cubic couplings.

detection of the causality between two noisy Kuramoto oscillators [17, 18]. Suppose two123

oscillators whose phases are defined as:124

φ̇B = κB + ξ (2)

φ̇C = κC + γsin(φB − φC) + ξ. (3)

κ is the natural frequency of each oscillator (κB 6= κC), and ξ an external uniform noise125
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FIG. 5. (Left) Evolution of the p-value of the causality test between two Kuramoto oscillators, for

different values of the coupling constant γ. The solid black line and the dashed blue one respectively

correspond to a cross-sectional and longitudinal study - see main text for details. (Right) p-value

for two coupled Rössler oscillators as a function of the coupling constant γ, for a linear (top graph)

and cubic (bottom graph) coupling.

source. The coupling constant γ defines the way the two oscillators interact, with indepen-126

dent dynamics for γ ≈ 0, and a causality φB → φC for γ > 0. The longitudinal causality127

can be detected by considering the time series created by φ̇B and φ̇C, thus focusing on how128

abnormal jumps in the phase of the oscillators is transmitted from the former to the latter.129

The p-value of the metric is represented in Fig. 5 Left by the blue dashed line. The equiva-130

lent cross-sectional analysis requires multiple realisations of the previous dynamics; for each131

one of them, one single pair of values (φ̇B, φ̇C) is extracted, corresponding to the largest vari-132

ation of φB (and thus, to the most extreme jump in the phase of the first oscillator). The133

evolution of the corresponding p-value is shown in Fig. 5 Left by the black solid line. Both134

the longitudinal and cross-sectional analyses yield similar results, suggesting that dynamical135

and static causalities are equivalent under the proposed metric.136

An important characteristic of complex systems is that their constituting elements usu-137

ally have a chaotic dynamics [13], making more complicated the task of detecting causality138

between them. We here test the proposed metrics by considering two unidirectionally cou-139

pled Rössler oscillators (B → C) in their chaotic regime - see [19] for details. We consider140

both linear and cubic couplings; following the notation in [19], this means:141
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FIG. 6. Analysis of causality in EEG data. (Left) Proportion of pairs of channels in which causality

has been detected, for cross-sectional (blue) and longitudinal (red) analyses, as a function of the

significance level α. (Center) Top-10 causality links in the cross-sectional analysis. (Right) Top-10

causality links in the longitudinal analysis. In the central and right panel, the size of the node is

proportional to its weight.

ẏ1 = −(y2 + y3)− γ(y1 − x1), and (4)

ẏ1 = −(y2 + y3)− γ(y1 − x1)
3. (5)

Time series are created by sampling the second dimension of each oscillator (i.e. x2 and142

y2) with a resolution lower than the intrinsic frequency. Fig. 5 Right depicts the evolution143

of the p-value for low coupling strengths γ, thus ensuring that the system is generalised144

synchronised. For γ ≈ 0.01 (γ ≈ 2 · 10−4 for cubic coupling), a true causality is detected,145

while for γ > 0.015 (γ > 4 · 10−4) the two oscillators start to synchronise.146

The possibility of combining a cross-sectional analysis of extreme values with a longitudi-147

nal analysis opens new doors towards the understanding of systems for which both aspects148

can be studied at the same time. Here we show how this can be achieved in the analysis of149

functional networks representing the structure of brain activity in healthy subjects [20, 21].150

The data set corresponds to electroencephalographic (EEG) recordings of 40 subjects during151

50 trials of an object recognition task (details can be found in [22] and references within),152

obtained through the UCI KDD archive [23]. For each trial and subject, 19 time series (cor-153

responding to 19 EEG channels in the 10− 20 configuration) of 256 samples were available.154

The longitudinal analysis was performed by calculating the causality using the raw time155

series. On the other hand, the cross-sectional analysis relies on identifying the propagation156

of extreme events, as in the case of the Kuramoto oscillators. Extreme events are defined157
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as those for which the energy of the signal is maximum in a given time series; the energy is158

defined, at each time point, as the deviation with respect to the mean, normalised by the159

standard deviation of the signal - i.e. as the absolute value of the Z-Score.160

Fig. 6 (Left) depicts a box plot of the proportion of significant pairs of channels (i.e.161

pairs of channels for which a causality was detected), in both the cross-sectional (blue)162

and longitudinal (red) analyses, for different significance levels α. In the case of the cross-163

sectional analysis, each value corresponds to the results for a single subject. Results are164

qualitatively equivalent, with the longitudinal analysis detecting slightly less links than165

the cross-sectional one for small values of α. Fig. 6 Center and Right depict the 10 most166

significant links, as detected by both analyses. While not completely equivalent, both graphs167

suggest that some areas are identified as active by both methods, e.g. the frontal lobe on the168

top and the visual and somatosensory integration area in the bottom. Remarkably, these169

two regions are expected to be relevant for the task studied, i.e. object identification: the170

former for higher function planning (react to the image shown), the latter in the processing171

of visual inputs.172

IV. CONCLUSIONS173

In conclusion, we presented a novel metric able to detect causality relationships both in174

static and time-evolving data sets, thus overcoming the limitation of existing metrics that175

rely on time series analysis. The proposed metric is designed to detect the propagation176

of extreme events, or shocks, and as such is more efficient when non-linear relations are177

present; it is further able to discriminate real from spurious causalities, thus enabling the178

detection of confounding effects. The effectiveness of the metric has been tested through179

synthetic data, data obtained from simple and chaotic dynamical systems (Kuramoto and180

Rössler oscillators), and on EEG data representing the activity of the human brain during181

an object recognition task.182

The possibility of detecting causality in static data sets is expected to be of increasing183

importance in those research fields in which time dynamics are not available, and that184

require ensuring that a causality is not just the result of the presence of a confounding185

factor. For instance, one may considering the raising field of biomedical data analysis [24–186

26]. The custom solution is to resort to data mining algorithms, which allow to detect and187

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1827v1 | CC-BY 4.0 Open Access | rec: 7 Mar 2016, publ: 7 Mar 2016



11

make explicit patterns in the input data, with the final objective of using such patterns in188

diagnostic and prognostic models [27]. Nevertheless, data mining (and machine learning in189

general) is based on the Bayes theorem, a form of statistics of co-occurrences, and thus on190

a generalised concept of correlation. These methods are thus sensitive to the confounding191

effects that are frequently in place, as genes and metabolites create an intricate network192

of interactions. Resorting to classical causality metrics, like Granger’s one, is not possible,193

as time series are seldom available - measuring gene expression or metabolite levels is an194

expensive and slow process. In spite of this, causality is an essential element to be detected:195

if one only focuses on correlations, there is a risk of detecting elements whose manipulation196

does not guarantee the expected results on the system [28–30]. We foresee that the proposed197

causality metric can be an initial solution to this problem, by providing a causality test that198

can be applied to static data, and that could be used as the foundation of a new class of199

data mining algorithms.200

A Python implementation of the proposed causality metric is freely available at www.201

mzanin.com/Causality.202
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