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Abstract. 

Supertree methods reconcile a set of phylogenetic trees into a single structure that is often 

interpreted as a branching history of species. A key challenge is combining conflicting 

evolutionary histories that are due to artifacts of phylogenetic reconstruction and phenomena 

such as lateral gene transfer (LGT). Although they often work well in practice, existing supertree 

approaches use optimality criteria that do not reflect underlying processes, have known biases 

and may be unduly influenced by LGT. We present the first method to construct supertrees by 

using the subtree prune-and-regraft (SPR) distance as an optimality criterion. Although 

calculating the rooted SPR distance between a pair of trees is NP-hard, our new maximum 

agreement forest-based methods can reconcile trees with hundreds of taxa and > 50 transfers in 

fractions of a second, which enables repeated calculations during the course of an iterative 

search. Our approach can accommodate trees in which uncertain relationships have been 

collapsed to multifurcating nodes. Using a series of simulated benchmark datasets, we show that 

SPR supertrees are more similar to correct species histories under plausible rates of LGT than 

supertrees based on parsimony or Robinson-Foulds distance criteria. We successfully 

constructed an SPR supertree from a phylogenomic dataset of 40,631 gene trees that covered 244 

genomes representing several major bacterial phyla. Our SPR-based approach also allowed direct 

inference of highways of gene transfer between bacterial classes and genera; a small number of 

these highways connect genera in different phyla and can highlight specific genes implicated in 

long-distance LGT. 

 

Keywords: subtree prune-and-regraft, supertrees, phylogenomics, prokaryotic phylogeny, matrix 

representation with parsimony, lateral gene transfer, Robinson-Foulds 
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 An organism’s genome, typically comprising many thousands of genes, provides a detailed 

record of its past. While sets of homologous genes from a set of genomes can provide evidence 

about organismal relationships, individual gene trees covering these genomes may be influenced 

by processes including paralogy and gene loss, lineage sorting and lateral gene transfer (LGT) 

(Maddison and Knowles, 2006; Galtier and Daubin, 2008). One approach to reconcile trees that 5 

differ due to these processes and to artifacts of phylogenetic inference is to construct a single tree 

that aims to reflect the relationships in a set of gene trees. Supertree methods generate a single 

tree, which may serve as a hypothesis of organismal descent or relatedness, by optimizing a 

similarity criterion. Supertrees have been used to represent large-scale phylogenies including the 

first phylogeny of nearly all extant mammals (Bininda-Emonds et al. 2007), the first family-level 10 

phylogeny of flowering plants (Davies et al. 2004), and the first species-level phylogeny of non-

avian dinosaurs (Lloyd et al. 2008). They have also been used to study the extent of LGT in 

prokaryotes (Beiko et al. 2005) and to disentangle the origin of eukaryotic genomes (Pisani et al. 

2007). One key advantage of supertree methods is that they can take as input sets of gene trees 

sampled from overlapping but non-identical sets of taxa, in contrast with consensus tree 15 

approaches, which require that all input trees contain exactly the same set of leaves. Simulations 

have shown that supertrees are more reliable in the presence of a moderate amount of misleading 

LGT than the supermatrix approach which is based on concatenated alignments of many gene 

sequences (Lapierre et al. 2012). 

Many optimality criteria have been proposed for supertree construction. Matrix 20 

representation with parsimony (MRP) (Ragan 1992; Baum 1992) was among the earliest 

methods proposed and remains the most commonly used, but detailed work with MRP has raised 
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several concerns with the approach. MRP converts input trees into a binary character matrix and 

solves the parsimony problem on this matrix. Although the parsimony problem is NP-hard, fast 

hill-climbing heuristics in PAUP* or TNT allow MRP to be applied to large datasets (Goloboff 25 

1999; Swofford 2002; Roshan et al. 2004). MRP is very effective in practice, quickly 

constructing supertrees of competitive quality in every tested metric (Bininda-Emonds et al. 

2001; Eulenstein et al. 2004; Chen et al. 2006). However, it is not clear why the MRP approach 

performs so well and it may generate relationships that do not belong to any of the source trees 

(Pisani and Wilkinson 2002), has problems resulting from unequal representation of taxa 30 

(Bininda-Emonds et al. 2002), and may include relationships contradicted by the majority of 

source trees (Goloboff 2005). Other developed supertree criteria include consensus supertrees 

(Adams 1972), majority-rule supertrees (Cotton and Wilkinson 2007), Quartet supertrees 

(Piaggio-Talice et al. 2004) and Triplet supertrees (Lin et al. 2009). However, like MRP, other 

supertree building methods that are not based on symmetric tree-to-tree similarity measures may 35 

be unduly influenced by the shapes of the input trees (Wilkinson et al. 2005). 

Bansal et al. (2010) recently proposed Robinson-Foulds (RF) supertrees, which aim to 

minimize the total RF distance (Robinson and Foulds 1981) between the supertree and the set of 

input trees. The RF measure captures the number of bipartitions in one tree that do not exist in 

another, so the RF supertree approach aims to maintain as much phylogenetic information from 40 

the input trees as possible. Fast hill-climbing heuristics make computing rooted RF supertrees 

feasible from binary input trees and others have begun to extend this to unrooted trees with local 

search heuristics (Chaudhary et al. 2012). While RF appears to be a good criterion for supertrees, 

it may not be suitable for datasets with substantial amounts of LGT: a single "long-distance" 

LGT event between distant taxonomic relatives will result in many discordant bipartitions and a 45 
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high RF distance. If many organisms participate in long-distance LGT, then "phylogenetic 

compromise" trees (Beiko et al. 2008) may emerge which reflect neither the correct species 

relationships, nor the dominant pathways of gene sharing. The requirement that all input trees be 

binary is also potentially limiting, as many relationships in trees inferred from sequence data are 

unsupported by statistics such as the bootstrap, and should be collapsed into multifurcations. 50 

Another well-studied criterion for expressing differences between trees is the subtree 

prune-and-regraft (SPR) distance (Hein et al. 1996). The SPR operation involves splitting a 

pendant subtree from the rest of the tree, and reattaching it at a different location, with the 

rooting of the subtree preserved. Since SPR operations allow the pruned subtree to be reattached 

anywhere, they can accommodate long-distance transfers in a single step; such a transfer would 55 

increase the SPR distance by only 1, whereas the RF distance could be drastically increased. The 

SPR distance is the minimum number of such operations required to reconcile two trees. The 

relationship between an SPR operation and the topological consequences of an LGT event 

(Beiko and Hamilton 2006) makes SPR a natural criterion for assessing a supertree whose 

constituent trees contain a large number of LGT events. Given its relationship with the RF 60 

distance, the SPR criterion may also be suitable for datasets where a phenomenon other than 

LGT is the principal confounding factor. To date, no SPR-based supertree approach has been 

developed, in part because computing the SPR distance between two phylogenetic trees is NP-

hard (Bordewich and Semple 2005; Hickey et al. 2008). 

Combining two recent advances makes SPR supertrees feasible. First, using the 65 

equivalence between Maximum Agreement Forests (MAFs) and rooted SPR distance (Hein et al. 

1996; Bordewich and Semple 2005), Whidden and Zeh (2009) and Whidden et al. (2010; 2013a) 

developed an algorithm with running time O(2.42
k
n). The resulting implementation was orders 
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of magnitude faster than any previous algorithm and is able to compute SPR distances of up to 

46 on trees with 144 prokaryotic taxa, and 99 on synthetic 1000-leaf trees, in less than 5 hours. 70 

We have extended this algorithm with several enhancements that we believe improve the running 

time to O(2
k
n) for binary input trees, and allow the inclusion of input trees in which uncertain 

relationships have been collapsed into multifurcating nodes. Second, Linz and Semple (2011) 

developed a cluster reduction technique which can reduce the computation of an MAF into 

several subproblems, yielding an exponential reduction of the running time in practice. The 75 

approach taken by Linz and Semple is similar to the cluster reduction rule of Baroni et al. (2005) 

for computing the hybridization distance but requires more care in choosing which maximum 

agreement forest to take for each subproblem to build the complete MAF. We have also reduced 

the time required to compute a cluster reduction to linear from the originally published O(n
3
). 

Neither refinement alone is fast enough to compute the thousands of SPR distances required to 80 

build an SPR-based supertree on interesting numbers of taxa. However, by combining the cluster 

reduction with our improved MAF-based approach we obtain dramatic improvements in running 

time, processing tree pairs that previously required 1-5 hours to reconcile in one second or less, 

thus enabling the many SPR distance computations needed to iteratively construct a supertree. 

Our heuristic approach uses a greedy hill-climbing strategy to build an initial supertree, 85 

then refines this supertree using iterative global SPR rearrangements. We use a bipartition-based 

heuristic to identify and ignore proposed rearrangements that violate relationships that are well-

supported in many trees, greatly reducing the number of rearrangements that need to be 

evaluated. These algorithms are implemented in the SPR Supertree software version 1.2.0, which 

is available at http://kiwi.cs.dal.ca/Software/SPRSupertrees. The software is freely available, 90 

open source and licensed under the GNU GPL version 3. Here we describe the steps in our 
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approach, and demonstrate the speedups achieved using the algorithmic refinements described 

above. Our experiments using simulated datasets with LGT show that the SPR approach is more 

accurate than RF and, for some realistic rates and regimes of LGT, MRP as well. Comparisons 

based on the eukaryotic datasets used by Bansal et al. (2010) for benchmarking show that the 95 

SPR approach yields supertrees with lower total SPR distances to the input trees than either RF 

or MRP, and with slightly higher RF and parsimony scores. To demonstrate the application of 

the SPR supertree approach on a dataset in which considerable LGT is expected, we also used a 

phylogenomic data set of 244 bacteria covering 393,876 genes in 40,631 orthologous sets to 

analyze preferential transfer of genes between bacterial lineages. We were able to reconstruct a 100 

highly plausible supertree, and with the SPR approach we identified putative highways of gene 

sharing. Interestingly, preference for alternative hypotheses of the relatedness between bacterial 

phyla depended on the choice of gene tree rootings, suggesting that unrooted supertree methods 

may be ignoring plausible hypotheses.  

 105 

METHODS 

Calculating the Subtree Prune-and-Regraft Distance Between a Pair of Rooted Trees 

We can compute the SPR distance between a pair of rooted trees quickly in practice, 

despite the NP-hardness of the problem (Bordewich and Semple 2005), using our efficient fixed-

parameter bounded search tree algorithm in combination with our linear-time formulation of 110 

Linz and Semple’s cluster reduction (Linz and Semple 2011) to solve the equivalent Maximum 

Agreement Forest (MAF) problem. The MAF problem is a static version of the SPR distance 

problem that is easier to manipulate and analyze. An agreement forest of two trees is a forest on 

the same label set that can be created by cutting (deleting) edges from either tree. Bordewich and 
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Semple (2005) showed that a maximum agreement forest—an agreement forest that requires the 115 

fewest edge cuts—requires exactly as many edge cuts as the SPR distance between the trees. 

Indeed, each edge cut represents a transfer and the proposed series of transfers can be quickly 

inferred from the MAF (Fig. 1). Our algorithms, like most recent work on the SPR distance, 

compute such MAFs. 

Our published MAF algorithm (Whidden et al. 2010; Whidden et al. 2013) operates in a 120 

bottom-up fashion in the first tree, denoted T1, and reduces the second tree to a forest, denoted 

F2. During the algorithm we identify subtrees that are identical in T1 and F2 and, in particular, 

pairs of such trees that are siblings in T1 (sibling pairs). If any identical subtree is a component of 

F2 we cut its corresponding parent edge in T1. If any sibling pair in T1 is also a sibling pair of F2 

we note that their parent nodes are identical in T1 and F2. If neither of these two situations 125 

applies, we identify at most three possible edge cutting scenarios and explore each recursively. 

We explore each scenario in turn, thus using very little memory, and use our 3-approximation 

algorithm (which operates similarly but simply cuts all three possible edges so that its running 

time scales linearly and may return at most 3 times the correct distance) to avoid exploring 

scenarios that are guaranteed to not return an optimal MAF. 130 

We have enhanced our MAF algorithm to prioritize non-branching edge cut scenarios and 

ignore duplicate search branches through edge protection. First, we examine each sibling pair to 

select a sibling pair with only one edge cutting scenario, if any exist. This limits the exponential 

explosion of our search when possible. Second, we protect edges that have been cut in 

previously rejected scenarios. If we have two scenarios that cut edges e1 and e2, respectively, and 135 

the e1 scenario fails to find an MAF, then the e2 scenario will not find an MAF by cutting e1 so 

we protect e1 to indicate this and ignore any scenario that would cut e1. This prevents us from 
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exploring duplicate edge sets and increases the chance of finding a non-branching edge cut 

scenario. When no non-branching sibling pairs remain, we select a sibling pair with a protected 

member, if possible, to capitalize on this effect. For further details see Appendix I. 140 

We have also extended our MAF algorithm to allow for reconciliation of multifurcating 

gene trees with the reference supertree (see Appendix I). For such gene trees we define the soft 

SPR distance (Whidden et al. 2013b; Linz and Semple 2008) to be the minimum number of SPR 

operations required to transform the reference tree into some binary resolution of the gene tree. 

This definition accounts for the general assumption that multifurcations imply uncertainty rather 145 

than simultaneous speciation. Our algorithm proceeds similarly to the binary case (as the 

reference tree, required to be T1, is binary) with modifications to our considered edge scenarios 

that allow the resolution of multiple siblings and cutting the resulting edge.  

The cluster reduction of Linz and Semple (2011) splits the input trees into smaller 

subproblems that can be solved iteratively (but not independently). As our algorithms' running 150 

times scale exponentially with the computed distance, this reduction has an enormous impact in 

practice. Two subtrees of the input trees on the same leaf sets represent a cluster. A cluster MAF 

with its root edge removed (representing a transfer prior to the LCA of the leaf set) is guaranteed 

to be part of some complete MAF of the two trees, if any such cluster MAF exists. Alternatively, 

if every MAF of the cluster must maintain its root edge, every cluster MAF will be part of a 155 

complete MAF. We thus modified our search strategy to prefer MAFs with their root edge 

removed in order to accommodate this reduction. In addition, we removed the complicated 

weighting scheme of the original cluster reduction method and improved the time required to 

compute such a cluster reduction to linear in the size of the trees from the cubic scaling reported 

by Linz and Semple (see Appendix II).  160 
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 Recently, Chen and Wang proposed a separate improvement to our previous SPR distance 

algorithm for binary trees called UltraNet (Chen and Wang 2013). We do not compare our 

algorithms with UltraNet in detail as UltraNet requires binary trees and failed to find the correct 

SPR distance in 30 of our tests. However, our improved algorithm for the SPR distance even 

without the cluster reduction was significantly faster than UltraNet and our previous algorithm 165 

with clustering outperformed UltraNet on 65 of our tests.  

 

Supertree Construction 

We attempt to find the minimal SPR supertree for a given set of gene trees, that is, the 

binary rooted tree on the union of the label sets of the gene trees with the minimal cumulative 170 

SPR distance to the gene trees (hereafter, simply minimal SPR distance). When the leaf set of the 

(partially constructed) supertree differs from that of a gene tree, we ignore unique taxa when 

computing this distance. If no starting tree is provided to initiate the search, we construct an 

initial SPR supertree through stepwise addition of taxa and then use global SPR rearrangements 

to optimize the tree. To construct the initial tree, we begin with the four most common taxa in the 175 

input trees and select the tree shape on these four taxa with minimal SPR distance to the 

projected input trees. We then successively add taxa to the supertree, in decreasing order 

according to the frequency of occurrence in the gene trees. Each taxon is added in the location 

that minimizes the SPR distance. When determining this location, we only compute the SPR 

distance to gene trees containing the new taxon, as the SPR distance between the supertree and 180 

other gene trees is unchanged. Once we have constructed an initial SPR supertree (or, 

alternatively, are supplied an initial tree by the user) we begin the SPR rearrangement phase. For 

a prespecified number of iterations, we look at the O(n
2
) trees that can be obtained from the 
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current supertree of n leaves by one SPR operation and select from these the tree with minimal 

SPR distance. Many of these SPR rearrangements will be obviously flawed, so we incorporate a 185 

bipartition clustering approach to ignore such rearrangements. Any bipartition of the supertree 

that is supported by at least half of the gene trees containing two or more taxa from each of the 

two sets induced by the bipartition is considered "fixed", and SPR rearrangements that disrupt it 

are disallowed. This greatly decreases the number of considered bipartitions with little effect on 

the accuracy of the tree search. 190 

Our methods were developed for rooted gene trees, but we provide three options to 

accommodate the unrooted gene trees that are typically produced by maximum-likelihood and 

Bayesian phylogenetic approaches. Our first method is to compute the minimal SPR distance 

between the supertree and any rooting of each gene tree using an exhaustive search of all 

possible rootings. Second, given a rooted (partial) supertree and unrooted gene tree we use each 195 

bipartition of the gene tree to try and identify the root bipartition of the supertree. We root the 

gene tree at the bipartition that best matches the supertree root bipartition according to the 

balanced accuracy score, an average of the similarities between each matching side of the 

bipartitions. Suppose that the supertree root bipartition splits the taxa into two groups A and B 

and a gene tree bipartition splits the taxa into two groups C and D. Then the balanced accuracy 200 

of the C|D bipartition as compared to the A|B bipartition is the larger of ((|A| ∩ |C|) / 2(|A| + |C|)) 

+ ((|B| ∩ |D|) / 2(|B| + |D|) or ((|A| ∩ |D|) / 2(|A| + |D|)) + ((|B| ∩ |C|) / 2(|B| + |C|), depending on 

whether A and C or B and D are more closely matched. Third, we can root the gene trees at a set 

of outgroup taxa, throwing away trees where this outgroup is not monophyletic. We then build a 

supertree of this reduced tree set and can then, if desired, root the remainder of the trees using 205 

our balanced accuracy approach to build a final supertree. 
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Comparative Evaluation and Data Sets 

We evaluated the performance of our SPR supertree algorithm against two other 

approaches: the widely used matrix representation with parsimony (MRP) approach of Baum 210 

(1992) and Ragan (1992) and the recently published Robinson-Foulds (RF) supertree algorithm 

(Bansal et al. 2010). Since the RF supertree approach is also based on topological distances 

between trees, it is an appropriate comparator for our SPR-based method. To construct MRP 

supertrees we used the Clann 3.2.2 (Creevey and McInerney 2005) software package to generate 

matrices for a PAUP* version 4.0b10 (Swofford 2003) parsimony search using 25 iterations of 215 

SPR rearrangements (to match the SPR and RF approaches). RF supertrees were constructed 

using version 1.8.4 of the software described by Bansal et al. (2010) which uses 25 iterations of 

SPR rearrangements interleaved with partial data ratchet iterations. The three methods were 

compared in terms of their running time on various datasets as well as their accuracy, either 

against the known phylogeny in the case of simulated data sets or the three supertree criteria 220 

when empirical data sets were used. 

We built simulated data sets to evaluate the accuracy of SPR, MRP and RF on gene trees 

generated from a completely known species history. EvolSimulator (Beiko and Charlebois 2007) 

version 2.2 was used to generate 15 replicated speciation and extinction histories in populations 

limited to 25 extant genomes. 10,000 simulation iterations were run in all cases. For each of the 225 

15 distinct histories, multiple runs were carried out in which the rate of LGT was varied between 

0 (no LGT) and 2.5 events per iteration in increments of 0.1. We also simulated two different 

LGT regimes: random, in which transfers between any donor/recipient pair were equally 

probable; and divergence-biased, where donor/recipient exchanges were more likely between 

PeerJ PrePrints | https://peerj.com/preprints/18 | v1 received: 10 May 2013, published: 10 May 2013, doi: 10.7287/peerj.preprints.18

P
re
P
rin

ts



13 

 

closely related genomes (i.e., genomes that share a recent common ancestor), with no LGT at all 230 

between genomes that diverged > 5000 generations in the past. The ancestral genome in each 

simulation (i.e., iteration 1) had 150 genes, and lineages could gain and lose genes to a minimum 

of 100 and a maximum of 200. A full list of parameter settings can be found in the sample 

configuration file (see online Supplemental Material). The resulting gene trees were used to infer 

supertrees under the SPR, MRP and RF criteria: supertree accuracy was evaluated based on 235 

dissimilarity with the known species tree, and the total distance between the supertree and all 

gene trees. 

We also compared the three methods using published eukaryotic supertree datasets of 

marsupials (Cardillo et al. 2006), seabirds (Martyn and Page 2002), placental mammals (Beck et 

al. 2006) and papilionoid legumes (Wojciechowski et al. 2000) obtained from 240 

http://www.cs.utexas.edu/~phylo/datasets/supertrees.html. These datasets cover between 121-

558 taxa in 7-726 trees and were used to compare the supertree methods according to their 

respective supertree optimization criteria, as was done by Bansal et al. (2010). 

Finally, we constructed a 244-taxon bacterial SPR supertree from a 40,631-tree subset of the 

159,905 unrooted multifurcating prokaryotic phylogenetic trees from Beiko (2011), compared it 245 

with an MRP supertree and used the SPR supertree to infer “highways of gene sharing”, that is, 

frequently implied pathways of LGT among major bacterial lineages. From the 1179 taxa in the 

original dataset, we randomly selected 15 Alphaproteobacteria, Betaproteobacteria and 

Deltaproteobacteria, 14 Epsilonproteobacteria, 13 Gammaproteobacteria, 40 Bacilli, 34 

Clostridia, 74 Actinobacteria, 2 Deferribacteres, 11 Thermotogae, 7 Aquificae, 2 Nitrospira and 250 

2 Synergistetes for a total of 244 taxa (listed in online Supplemental Table 1) covering a subset 

of well-sampled and sparsely sampled classes of bacteria and restricted the 159,905 trees to this 
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subset. We then collapsed all branches with a bootstrap support value of less than 0.8 and 

discarded all star trees and trees with fewer than 4 taxa. After this procedure, 40,631 trees 

remained. In total, there were 393,876 leaves in the trees for an average of 9.7 taxa per tree. To 255 

construct a supertree from the set of unrooted gene trees, we used our rooting method described 

above with the Aquificae as outgroup. We first constructed an initial guiding supertree from the 

40 largest gene trees with a monophyletic Aquificae group (Griffiths and Gupta 2004). This 

required 13 global rearrangement iterations and 87 CPU hours to converge on a local minimum. 

The remaining trees were then rooted using our balanced accuracy approach, and we constructed 260 

our SPR supertree from this data set using the guiding supertree as a base, which required 16 

iterations to converge and 1198 CPU hours.  

Once the final supertree was obtained, LGT events were inferred using MAF comparisons 

between our SPR supertree and the gene trees. We computed a single MAF for each gene tree 

and determined the equivalent sequence of implied LGT events in less than one minute. 265 

Transfers where both the putative donor and recipient were contained within two distinct genera 

were counted, and the results visualized as a heatmap and LGT affinity graph constructed using 

Cytoscape 2.8.3 (Smoot et al. 2012). We ignored directionality as it is often possible to identify 

partners but not the direction of transfer (Beiko and Ragan 2008). Heatmap values were scaled 

such that each row had a mean of 0 and standard deviation of 1 and relationships with fewer than 270 

5% of the maximum transfer events for a row or only a single transfer event were filtered out. 

Two genera were connected by an edge if the number of inferred LGT events between them 

exceeded 5% of the total number of homologous genes common to at least one member of both 

genera. 
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All supertrees constructed from empirical data, as well as the input bacterial trees we used, 275 

are available online as Supplemental Material. 

  

RESULTS 

Bacterial SPR Supertree and Large-Scale Analysis of LGT 

 We first present our supertree of 244 bacterial taxa that was constructed from 40,631 280 

unrooted input gene trees using our two-stage outgroup procedure. The taxa selected for our 

bacterial supertree analysis were chosen to examine several interesting phylogenetic questions in 

the Bacteria. For example, there are two competing hypotheses for the placement of the 

Aquificae. Informational genes such as 16S small subunit ribosomal RNA suggest that the 

Aquificae are deep-branching and either external to or sister with the Thermotogae but the 285 

majority of other proteins suggest that the Aquificae are sister to the Epsilonproteobacteria (or 

other groups such as the Deltaproteobacteria) and not the Thermotogae (Boussau et al. 2008). It 

has been suggested that the Aquificae may be closely related to the Epsilonproteobacteria with 

either LGT or a thermophilic G+C bias and long-branch attraction responsible for the observed 

affinity for Thermotogae (Griffiths and Gupta 2004). Informational proteins are thought to be 290 

transferred infrequently, so it has been more recently suggested that there have been large 

amounts of lateral gene transfer between the Aquificae and Epsilonproteobacteria (Boussau et al. 

2008). Our dataset also includes members of many other groups implicated in LGT, including 

the Deltaproteobacteria and Clostridia: both of these groups show evidence of frequent LGT with 

other lineages (Dagan et al. 2010; He et al. 2010; Beiko 2011). Other genera frequently 295 

associated with high LGT rates including Pseudomonas and Burkholderia are also included. 

Finally, several lineages such as Deferribacteres and Synergistetes with relatively few sequenced 
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representatives and an uncertain phylogenetic position (Jumas-Bilak et al. 2009) were included 

to assess their placements in the SPR supertree. 

 Figure 2 shows our SPR supertree of the 244-taxon bacterial dataset. The SPR supertree 300 

largely recovered the major bacterial classes as monophyletic groups with several notable 

exceptions. The Deltaproteobacteria are separated from the other Proteobacteria by the 

Actinobacteria. The Deltaproteobacteria are also split into a group containing the Myxobacteria 

and Candidatus “Nitrospira defluvii”, and a group containing all other orders of the class. 

Although assigned to phylum Nitrospirae, Ca. N. defluvii has strong affinities to other 305 

phylogenetic groups, with deltaproteobacterial genomes constituting seven of the 15 most 

frequently observed phylogenetic partners. This is an interesting link as Sorangium cellulosum 

has the largest known bacterial genome (Schneiker et al. 2007) and both Candidatus Nitrospira 

defluvii and Anaeromyxobacter dehalogenans are gram-negative nitrite reducers. Further, it has 

been suggested that Ca. N. defluvii evolved from microaerophilic or even anaerobic ancestors 310 

(Lucker et al. 2010) and Anaeromyxobacter dehalogenans exhibits aerobic and anaerobic growth 

(Sanford et al. 2002). Two other proteobacteria are separated from their classes: Bdellovibrio 

bacteriovorus, a Deltaproteobacterium that parasitizes other gram-negative bacteria (Stolp and 

Starr) and appears to have acquired genes from the protebacterial cells it parasitises (Gophna et 

al. 2006), and Candidatus Hodgkinia cicadicola, an alphaproteobacterial cicada symbiont with 315 

the smallest known genome (McCutcheon et al. 2009), form a pairing that is sister to the 

Epsilonproteobacteria.  

 Among other phylogenetic groups, Veillonella parvula and Acidaminococcus fermentans, 

initially assigned to class Clostridia, are sister to the Bacilli. Veillonellaceae and 

Acidaminococcaceae have a peculiar cell wall composition which stains Gram-negative, unlike 320 
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most Firmicutes, and have been suggested to belong to a class Negativicutes, separate from the 

Bacilli and Clostridia, by Marchandin et al. (2010). Coprothermobacter proteolyticus groups 

with the Thermotagae rather than the Clostridia. C. proteolyticus was assigned to class Clostridia 

using small subunit ribosomal RNA (Rainey and Stackebrandt 1992) but phylogenomic analysis 

(Beiko 2011; Yutin et al. 2012) and newer phylogenetic trees built from many more samples of 325 

small subunit ribosomal RNA agree with a closer relationship between C. proteolyticus and 

Thermotogae (Munoz et al. 2011). With Aquificae as the outgroup, the next-deepest branches in 

the bacterial tree are Thermodesulfovibrio yellowstonii, the other member of phylum Nitrospirae, 

and the Deferribacteres, followed by Thermotogae. The Synergistetes are sister to the Firmicutes 

in this tree. 330 

 We then inferred LGT events between these bacteria by computing a single MAF for each 

gene tree and determining the equivalent sequence of implied LGT events. This entire analysis of 

the 40,631 gene trees required less than one minute using our refined MAF algorithms. Transfer 

events with source and endpoints both in a monophyletic subtree of the same genus or different 

genera were identified to focus on relatively recent transfers. Directionality was ignored as it is 335 

often possible to identify partners but not the direction of transfer (Beiko and Ragan 2008). 

Figure 3a shows the results of this analysis. Clustering based on the strength of their LGT 

affinities still groups most genera by class and phylum, and the majority of inferred LGT events 

occur within clusters of taxonomically related genera. However, there are also many linkages 

between genera of distinct phyla and clusters of genera with distinct classes and phyla. Online 340 

Supplemental Figure 1 shows a heatmap of the relative LGT trends between classes. 

 A genus-level LGT affinity graph (Fig. 3b) between genera was used to further explore 

these relationships and identify paths of gene sharing between distinct lineages. Genera were 
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connected by edges representing transfer events exceeding 5% of their total number of shared 

homologous genes. As in Figure 3a, the majority of inferred LGT events connect members of the 345 

same class or phylum. Yet many linkages connect different classes and phyla such that all of the 

genera but two, Ehrlichia and Wolbachia, are connected. The large and diverse genus 

Clostridium, in particular, connects Actinobacteria, Thermotogae, four of the five classes of 

Proteobacteria, Thermoanaerovibrio (phylum Synergistetes), and has many strong connections 

with Bacilli and other Clostridia (online Supp. Fig. 2). Family Coriobacteriaceae, comprising 350 

Slackia, Eggerthella, and Cryptobacterium, had linkages with the other Actinobacterial genera 

Corynebacterium and Bifidobacterium but was also connected to the Firmicute genera 

Clostridium, Eubacterium, and Streptococcus. There are numerous pathways of gene sharing 

between actinobacterial genera such as Acidimicrobium, Corynebacterium and Mycobacterium 

on the one hand, and proteobacterial genera such as Helicobacter, Sorangium, Xanthomonas and 355 

Mesorhizobium on the other. A single path between Nitratiruptor and Persephonella connects 

the Epsilonproteobacteria with the Aquificae. Many connections are observed between the 

different classes of Proteobacteria, highlighting the numerous LGT events that occur between 

distinct lineages of phylum Proteobacteria. The connectedness of higher taxonomic groups is 

supported by the class-level affinity graph (online Supp. Fig. 3), in which each class is connected 360 

to 3.92 other classes on average, with the Actinobacteria connected to a total of ten.  

 

Validation of Efficiency and Accuracy 

 We next demonstrate the improved performance of our MAF algorithms with a single SPR 

distance analysis of our 244-taxon bacterial supertree as compared to each of the 40,631 gene 365 

trees. Figure 4 shows the mean running time for tree comparisons with a given SPR distance on a 
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log scale. Our improved algorithms reduced the time required for individual calculations from 5 

hours to a maximum of 0.8 seconds on the initial set of binary gene trees. Both the cluster 

reduction and our improved algorithms are necessary to achieve these running times. Our 

algorithm requires slightly more time to compare the supertree with multifurcating trees for a 370 

given SPR distance but this is balanced by the reduction in SPR distance caused by collapsing 

unsupported bipartitions; clustered comparisons required at most 0.76 seconds. As mentioned 

previously, a full LGT analysis now requires just 34 seconds on a single CPU. Without our new 

algorithms, such an analysis would be limited to binary trees and require more than 65 hours. 

 375 

Validation with Simulated Datasets 

  We next compared the ability of SPR, RF, and MRP based supertrees to recover the 

species tree in a series of simulated datasets. EvolSimulator (Beiko and Charlebois 2007) was 

used to evolve sets of genomes under a model of lineage duplication and extinction, with each 

lineage capable of gene duplication, gene loss, and LGT. Varying the rate of LGT in different 380 

sets of replicated simulations allowed us to explore the effectiveness of SPR, RF and MRP at 

relatively low or high levels of LGT. We also simulated two regimes of LGT: random LGT, 

which can interfere with the recovery of correct branching patterns, and divergence-biased LGT, 

which can actually reinforce the true tree due to preferential sharing between close relatives 

(Beiko et al. 2008). 385 

 Simulated LGT rates varied between 0 (no LGT) and 2.5 events per iteration (see Methods 

for details). To give context to our LGT rate simulation parameter, we computed the mean ratio 

of SPR distance to number of leaves in the simulated trees, to similar values inferred for the 244-

taxon SPR supertree (Fig. 5). The inferred frequency of LGT in our empirical data equated to a 
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simulated random LGT rate between 0.1 and 0.2 and a simulated divergence-biased LGT rate 390 

between 0.3 and 0.4. Since the bacterial supertree has 244 leaves rather than 25, we also 

restricted our bacterial supertree and gene trees to 25 randomly sampled subsets of 25 leaves and 

computed this ratio. We found these subsampled supertrees corresponded to lower simulated 

rates of LGT. This suggests that our simulations with lower rates of LGT are biologically 

plausible; also, since the distribution of LGT events is non-uniform across bacterial lineages 395 

(Kunin et al. 2005; Beiko et al. 2005; Thiergart et al. 2012) the higher rates are likely to be 

relevant to the inference of some relationships in the supertree. 

 Having established the relevance of our simulated rates of LGT, we then assessed the 

ability of different supertree algorithms to recover the correct organismal history based on 

analysis of the gene trees. Figure 6 shows the mean SPR difference between the simulated 400 

species histories and the RF supertree, SPR supertree, SPR supertree seeded with an MRP 

starting tree, and SPR supertree seeded with the correct species tree. SPR supertrees were 

significantly more similar to the simulated species tree than RF supertrees for the LGT rates seen 

in our bacterial dataset and higher (p < 0.05 for random LGT rates of 0.2-1.4 and divergence-

biased LGT rates of 0.7,0.8 and 1.0 with a 2-tailed paired student’s t-test; p < 0.01 for random 405 

LGT rates of 0.2-0.7, 0.9, 1.3, 1.4; the overall results were significant with p < 10
-5

 for both 

types of LGT). Seeding the SPR supertree search with an MRP tree did not substantially change 

these results. Seeding the SPR supertree search with the correct tree does not substantially 

change the results for divergence-biased LGT or plausible rates of random LGT. We see that the 

SPR supertree and the simulated species tree diverge as the random LGT rate increases, even 410 

when seeded with the species tree. These results suggest that datasets with substantially higher 
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rates of LGT than our bacterial data would require a better search strategy or a network-based 

analysis rather than a supertree. 

 Figure 7 compares the accuracy of SPR and MRP supertrees. As MRP constructs unrooted 

supertrees, the error is measured here as the minimum SPR distance between the simulated 415 

species history and any rooting of the inferred supertrees. The upper panels of Figure 7 show the 

mean supertree error between the simulated species histories and the MRP supertree, SPR 

supertree, SPR supertree seeded with an MRP starting tree, and SPR supertree seeded with the 

correct species tree. The SPR supertrees were significantly more similar to the simulated species 

history than the MRP trees under biologically plausible rates of LGT (p < 0.01 for random LGT 420 

rates of 0.3-0.5 with a two-tailed paired student’s t-test; the divergence-biased results were not 

significantly different for individual rates other than 0.6 and 1.0 due to the small supertree error 

but were significantly better overall with p < 0.001). At higher simulated rates of LGT the 

accuracy of SPR supertrees matches that of the MRP trees. We observed that this occurs when 

the accuracy of the SPR supertree and the SPR supertree seeded with the correct tree diverge, 425 

suggesting that a better search strategy may improve these results. We also examined the 

accuracy of RF supertrees with this unrooted measure and found similar results to the unrooted 

comparison, that is, SPR supertrees and MRP supertrees were both significantly more similar to 

the simulated species tree than the RF supertrees (online Supp. Fig. 4). The lower panels of 

Figure 7 show the mean supertree error between the simulated species histories and the MRP 430 

supertree and SPR supertrees using our balanced accuracy based simple unrooted comparison 

without and with an MRP seed tree. The accuracy of our SPR supertrees when the gene tree roots 

are unknown matches that of the MRP trees for plausible rates of LGT but the performance of 

our SPR supertrees declines with increasing rates. Using an MRP seed tree prevented this decline 
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which suggests that our initial tree construction step is not well suited to gene trees with 435 

unknown roots. Developing an improved method for building starting trees from unrooted gene 

trees could improve these results. 

 

Comparison with MRP and RF Supertrees on Eukaryotic Datasets 

 Bansal et al. (2010) validated their RF supertree approach on a series of eukaryotic datasets 440 

that varied substantially in the number of input trees and total number of taxa. We compared the 

accuracy of each supertree method on these datasets as measured by their ability to minimize the 

three supertree criteria of SPR distance, RF distance, and parsimony score to the gene trees. In 

addition to the three basic methods, we tested a variant of SPR supertrees that uses the RF 

distance as a secondary optimization criterion to break ties when multiple supertrees have the 445 

same SPR distance, and tested the SPR and RF supertree methods when the MRP supertree was 

used as the initial tree. As MRP supertrees are unrooted, we computed the RF and SPR distances 

for each rooting of the MRP supertree and show the minimum value. For these tests each 

supertree method was run with its default parameters to match the comparisons of Bansal et al 

(2010) so we used the SPR and RF methods with 25 iterations of SPR rearrangements and the 450 

MRP method with 10 iterations of TBR rearrangements. Due to excessive running times (> 3 

days) for the MRP method on the marsupial and legume datasets we disabled the 'multrees' 

option on these runs which would otherwise retain multiple trees per iteration. 

 The performance of each approach according to all optimality criteria is shown in Table 1. 

Each supertree method was best at minimizing its respective optimization measure, suggesting 455 

that each method has merit and a well-balanced analysis should either include a justification for 

the choice of method (e.g. the presence of LGT for the SPR distance) or consider multiple 
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optimization criteria. The MRP method required the least amount of time and the SPR method 

the most. However, the SPR method converged rapidly in 3, 1, 5 and 3 iterations on the 

marsupial, seabird, placental mammal, and legume datasets respectively and thus produced an 460 

optimal result in only a fraction of the reported time. Seeding the search with the MRP tree 

greatly reduced the time required by the SPR method and reduced the resulting parsimony scores 

at the expense of increasing the SPR distance. Starting with the MRP tree reduced the time 

required by the RF method and found supertrees with better RF and MRP scores on the 

marsupial and placental mammal datasets but increased RF and MRP scores on the legume 465 

dataset. Using the RF distance as a tie-breaker with the SPR method found lower SPR distances, 

RF distances and parsimony scores in a shorter period of time over the basic method and avoided 

an issue with the seabird dataset where many supertrees have the same SPR distance but poor RF 

distances and parsimony scores. These results suggest that blended methods have merit even 

when only considering a single optimization criterion. In particular, the SPR distance with RF 470 

distance as a tie-breaker should be used when nontrivial amounts of lateral gene transfer are 

expected. 

 

Comparison of SPR and MRP Supertrees of 244 Bacterial Genomes 

To contrast with the SPR supertree described above and examine the influence of tree 475 

rootings, we constructed an MRP supertree from the 244-taxon bacterial dataset using 25 

iterations of an SPR rearrangement search and compared it to our SPR supertree (Fig. 8). The 

MRP supertree does not recover the same arrangement of hyperthermophiles as the SPR 

supertree; notably, it places the Epsilonproteobacteria in close proximity to the Aquificae. If we 

place the root somewhat arbitrarily between the Firmicutes and all other Bacteria, the MRP 480 
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supertree like the SPR supertree places the Thermotogae and C. proteolyticus as sisters, although 

this pairing is sister to the Synergistetes and not the Deferribacteres in the MRP supertree. The 

two Nitrospirae are again split, with Nitrospira sister to the Deltaproteobacteria and 

Thermodesulfovibrio with the Aquficae and Deferribacteres. As with the SPR supertree, the 

Deltaproteobacteria are separated from the other Proteobacteria. 485 

The rooted nature of MAFs allowed the evaluation of our chosen rooting and alternative 

rootings on inferring phylogenetic relationships from this dataset. We have already described the 

MRP supertree rooted to separate the Firmicutes from the other taxa (MRP), the SPR supertree 

constructed from the 40 largest trees with a monophyletic Aquificae group (40-Aquificae) and 

the SPR supertree constructed using the SPR-Aquificae supertree (SPR-Aquificae). Three more 490 

supertrees were constructed to test the influence of starting topology and rooting. The first was 

an SPR supertree seeded with the MRP supertree (SPR-MRP). We then rooted the gene trees 

with both the MRP supertree and SPR-Aquificae tree using our balanced accuracy measure and 

constructed an SPR supertree from these two sets of rooted gene trees (SPR-MRP-Rooting and 

SPR-Aquificae-Rooting, respectively). 495 

These six supertrees were compared to the two sets of rooted gene trees (see Table 2). The 

three MRP-rooted supertrees had a much smaller aggregate SPR distance (nearly 11% smaller) 

to the MRP-rooted gene trees than the Aquificae-rooted supertrees but the three Aquificae-rooted 

supertrees had a much smaller SPR distance (more than 8% smaller) to the Aquificae-rooted 

gene trees than the three MRP-rooted supertrees. Thus, it is impossible to determine which 500 

supertree is more similar to the gene trees without choosing a specific rooting of the gene trees. 

The four SPR supertrees constructed from the full bacterial dataset were compared by 

measuring their pairwise SPR distances (see Table 3). The two Aquificae-rooted supertrees 
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differed by only 10 SPRs, despite the fact that one was constructed from the 40-Aquificae tree 

and the other was constructed with our usual greedy addition procedure and no a priori 505 

information other than the gene tree roots. Even more telling, the two MRP-rooted supertrees 

were essentially identical, differing by only 2 SPRs. The SPR-MRP-Rooting supertree also 

differed from the MRP supertree by only 2 SPRs, so we were able to essentially recover the 

MRP supertree just by biasing the gene tree roots. This suggests that MRP infers relationships 

that are consistent with certain gene tree roots despite not implicitly assuming any rooting. As 510 

these relationships are also inconsistent with plausible alternative roots, it may be that unrooted 

supertree methods such as MRP are insufficient to distinguish between controversial 

evolutionary hypotheses such as the placement of the Aquificae. 

  

DISCUSSION 515 

Large phylogenies are being built from multiple sequence datasets to reconstruct the 

histories of many groups of living organisms, and supertrees offer the means to carry this out in a 

rigorous fashion. The known limitations of widely used approaches such as MRP have motivated 

the development of new strategies, such as the use of Robinson-Foulds distance as an alternative 

optimality criterion. Although RF is frequently used to assess the dissimilarity of phylogenetic 520 

trees, it is not based on a specific phylogenetic process and can be heavily influenced by shifts in 

the position of single taxa. A single LGT event will influence the RF distance (and parsimony 

score) in proportion to the number of branches in the path between the donor and recipient 

lineages, and many LGT events are likely to confound RF-based supertree inference. The SPR 

distance is an alternative optimality criterion that is particularly well-suited to analyzing 525 

phylogenomic data where LGT or other reticulate evolutionary processes are expected to play an 
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important role in generating phylogenetic discordance. Each SPR operation is equivalent to an 

LGT event, and the degree of separation between donor and recipient in the tree does not 

influence the SPR score. The SPR distance may thus avoid some of the “phylogenetic 

compromises” of other supertree methods.  530 

Using simulations, we verified that SPR supertrees were significantly more similar to the 

known species history than RF supertrees given biologically plausible rates of simulated LGT. 

The effect was more pronounced for random LGT, which produces more "long-distance" 

transfers, than for divergence-biased LGT. The improved performance of SPR with random LGT 

events suggests that penalizing phylogenetic discordance in a manner that is insensitive to the 535 

number of impacted bipartitions may be preferable to the alternative RF criterion. However, in 

the future this assertion should be tested under a wider range of scenarios, with larger trees and 

different types of phylogenetic discordance modelled. SPR also outperformed MRP in a 

narrower, but still biologically relevant, range of LGT rates. However, the advantage of SPR 

disappeared when the gene tree roots were unknown, demonstrating that the obligately rooted 540 

SPR approach is influenced by alternative rootings of the reference and gene trees. We also 

verified that each of the three supertree methods excel at minimizing their respective supertree 

criteria on a eukaryotic dataset. Combining multiple supertree criteria, such as using the RF 

distance to break ties in an SPR supertree approach, yielded better results than any method did 

alone. This finding suggests that combinations of criteria that consider different types of 545 

phylogenetic discordance may provide even greater accuracy. 

Although the history of bacteria may be better represented with a phylogenetic network 

than a single tree, the supertree we inferred offers a useful backdrop for the inference of 

highways of gene sharing. As shown in Figures 2 and 8, both SPR and MRP recovered a 
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majority of bacterial classes as monophyletic groups, regardless of the choice of rooting. Many 550 

of the topological differences between the SPR and MRP supertrees are minor, including subtle 

shifts in the position of taxa such as Nitrospira defluvii and the Negativicutes. One point of 

substantial difference between the two trees related to the controversial placement of Aquificae 

and the Epsilonproteobacteria: MRP, being unrooted, placed these two groups adjacent to one 

another, corresponding to a sister relationship under the reasonable assumption that the root of 555 

the supertree is placed somewhere outside of this pairing. When the SPR supertree was rooted to 

reflect the MRP tree topology in the manner described above, the two supertrees were nearly 

identical; however, if Aquificae were treated as the outgroup then the SPR supertree produced a 

topology that placed other groups with many thermophiles, such as Thermotogae, as early 

branches. These results suggest that unrooted supertree criteria such as MRP provide hypotheses 560 

that are consistent with certain rootings despite not implicitly assuming any rooting. 

Furthermore, the Aquificae SPR supertree was much more similar to the Aquificae rooted gene 

trees than the MRP supertree, but the MRP supertree was much more similar to the MRP-rooted 

trees. It was thus impossible to distinguish between these two hypotheses of Aquificae 

placement; either could be plausible given knowledge of the correct gene tree roots. This is a 565 

practical example of the fundamental limits of unrooted supertree methods identified by Steel et 

al. (2000). 

 Using the tree in Figure 2 as a basis for LGT inference, we searched for highways of LGT 

between classes and genera. Not surprisingly, connections were more frequently associated with 

specific lineages such as Clostridium and interactions between the Proteobacteria and other phyla 570 

varied considerably. In addition, larger gene trees (those shared by many taxa) required 

proportionately more transfers to explain, including ribosomal proteins. Such biased LGT could 
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muddy or completely obscure the vertical evolutionary signal. Our improved SPR algorithm 

allowed the entire set of >40,000 trees to be reconciled with the supertree in less than one 

minute: a similar analysis could have been carried out using any rooted reference tree, regardless 575 

of what method was used to construct this tree. The rapid inference of LGT highways raises the 

possibility of using information about lateral connections to construct phylogenetic networks 

with reticulations explicitly based on major directions of LGT (MacLeod et al. 2005; Nakhleh et 

al. 2005; Beiko and Hamilton 2006). 

The scaling of runtimes with the number and size of trees is a central concern in 580 

phylogenomics. The analysis of Beiko et al. (2005) required over 20,000 CPU hours to reconcile 

22,432 gene trees with a 144-taxon supertree, and the largest trees could not be reconciled at all 

due to limitations of the breadth-first search of EEEP (Beiko and Hamilton, 2006). Alternative 

methods of inferring highways of LGT have been proposed based on quartets (Bansal et al. 

2013), but such methods are limited to finding the most obvious highways and required on the 585 

order of two days to analyze the same dataset of 22,432 gene trees. Repeated applications of SPR 

distances in large phylogenomic data sets were heretofore not feasible due to the complexity of 

the algorithm, but our efficient new methods for computing the SPR distance made the 

computation of these supertrees feasible even for hundreds of taxa and tens of thousands of gene 

trees. Of particular importance is the adaptation of the clustering strategy of Linz and Semple 590 

(2011) to subdivide the construction of a MAF for a given pair of trees. Clustering yields no 

improvement in theoretical runtime, because there is no guarantee that >1 cluster will be 

identified between a pair of trees. However, our results clearly demonstrate that clustering is 

effective in practice, because LGT connections are not random and consistent partitioning can 

usually be identified and used as the basis for subdivision. We are optimistic that our approach 595 
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will be applicable to much larger phylogenomic data sets with thousands of taxa, for two 

reasons: first, our fixed-parameter algorithm scales exponentially with the distance between a 

pair of trees and not their size; and second, as the timing results of Figure 5 suggest, clustering 

increases the speed of the algorithm and reduces the rate of increase of running times with 

increasing SPR distance. With only a small number of exceptions, all trees with SPR distance < 600 

60 were resolved in less than one second, with the time of MAF construction dominated by the 

single cluster with the largest distance. We expect that most large trees will have a cluster size 

distribution similar to that of the trees we tested here; consequently the size of the largest cluster 

and the corresponding computational burden may increase only slightly. This hypothesis remains 

to be tested on larger phylogenomic data sets. 605 

Our methods could be expanded and refined in several ways. As we identified in our 

results, our current supertree search method could potentially be improved with a better strategy 

for constructing the initial guide tree such as SuperFine (Swenson et al. 2012), methods for 

avoiding local optima such as ratchet searches, or using prior knowledge to constrain the 

supertree search (Wehe et al. 2012). An RF supertree method has been recently proposed for 610 

multi-labelled gene trees (Chaudhary et al. 2013); extending our SPR distance algorithms to 

accept such trees would enable their inclusion in SPR supertrees. The rooting problem remains to 

be resolved. While in many cases rooting can be performed using an appropriate outgroup taxon, 

the bacterial case considered here lacks an obvious outgroup: the Archaea could be used to root 

the Bacteria and vice versa, but many gene trees have shown evidence of interdomain LGT and 615 

rooting between domains may be invalid or even impossible. Finally, our approach considers 

only the history of observed genes, and does not attempt to account for processes such as gene 

duplication and loss. Methods of reconciling multiple evolutionary processes such as 
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duplications, losses, transfers and incompatible lineage sorting (ILS) show a great deal of 

promise (Bansal et al. 2012; Szöllosi et al. 2012), but are currently limited to smaller datasets 620 

(Stolzer et al. 2012). 
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Table 1: Experimental results comparing the performance of the SPR supertree method to RF 

and MRP supertree methods. Six analyses are shown: The SPR supertree method starting from 

an SPR greedy addition tree (SPR) or MRP supertree (SPR-MRP), the SPR supertree method 

breaking ties with the RF distance using a greedy addition tree (SPR-RF-TIES), the RF supertree 

method starting from random addition sequence trees (RF-Ratchet) or MRP supertree (RF-

MRP), and MRP with TBR global rearrangements (MRP-TBR). The best optimization criteria or 

running times for a dataset are shown in bold. 

Data Set Supertree Method SPR Distance RF-Distance Parsimony Score Time (s) 

Marsupial 

(267 taxa; 158 trees) 

  

SPR 382 1604 2203 1097.79 

SPR-RF-TIES 373 1536 2149 767.01 

SPR-MRP 380 1534 2126 219.64 

RF-Ratchet 394 1520 2145 2150.30 

RF-MRP 379 1502 2116 2044.07 

MRP-TBR 379 1514 2112 20.52 

Sea Birds 

(121 taxa; 7 trees) 

  

SPR 17 109 235 31.15 

SPR-RF-TIES 17 63 208 29.44 

SPR-MRP 17 61 208 2.04 

RF-Ratchet 17 61 208 10.43 

RF-MRP 17 61 208 9.16 

MRP-TBR 17 61 208 1.03 

Placental Mammals 

(116 taxa; 726 trees) 

  

SPR 1715 5908 8946 5561.84 

SPR-RF-TIES 1713 5902 8934 5040.03 

SPR-MRP 1713 5876 8921 1819.08 

RF-Ratchet 1790 5738 8827 801.92 

RF-MRP 1780 5692 8810 659.32 

MRP-TBR 1783 5702 8809 34.27 

Legumes SPR 108 651 1175 21130.08 
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(558 taxa; 19 trees) 

  

SPR-RF-TIES 92 471 1037 12376.00 

SPR-MRP 110 511 903 276.49 

RF-Ratchet 117 401 1102 1349.56 

RF-MRP 130 429 1068 1558.60 

MRP-TBR 140 519 891 579.76 
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Table 2: Aggregate SPR distance to supertrees constructed from different rootings of the 

bacterial protein trees. Six different construction methods were compared: The MRP supertree 

(MRP), the SPR supertree constructed from the 40 largest trees with a monophyletic Aquificae 

group (40-Aquificae), the SPR supertrees constructed using the MRP supertree (SPR-MRP) or 

SPR-Aquificae supertree (SPR-Aquificae), and the SPR supertrees constructed by only rooting 

the gene trees using the MRP supertree (SPR-MRP-Rooting) or SPR-Aquificae tree (SPR-

Aquificae-Rooting) and building a greedy addition supertree. Each supertree was compared to 

the MRP rooted gene trees or SPR-Aquificae rooted gene trees with the SPR distance. 

MRP rooted gene trees  SPR-Aquificae rooted gene trees 
 SPR 

Distance 

  SPR Distance 

SPR-MRP-Rooting 52867  SPR-Aquificae-Rooting 53534 
SPR-MRP 52896  SPR-Aquificae 54488 
MRP 52896  40-Aquificae 55570 
SPR-Aquificae-

Rooting 
58539  SPR-MRP-Rooting 58023 

SPR-Aquificae 59561  SPR-MRP 58057 
40-Aquificae 60611  MRP 58057 
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Table 3: Dissimilarity of supertrees constructed from the same rooting of bacterial protein trees. 

We compared the minimal SPR distance between any rooting of the SPR supertree constructed 

from the 40 largest trees with a monophyletic Aquificae group (40-Aquificae), the SPR 

supertrees constructed using the MRP supertree (SPR-MRP) or SPR-Aquificae supertree (SPR-

Aquificae), and the SPR supertrees constructed by only rooting the gene trees using the MRP 

supertree (SPR-MRP-Rooting) or SPR-Aquificae tree (SPR-Aquificae-Rooting) and building a 

greedy addition supertree. 

 SPR-Aquificae SPR-Aquificae-Rooting SPR-MRP SPR-MRP-Rooting 

SPR-Aquificae 0 10 34 33 

SPR-Aquificae-Rooting 10 0 27 25 

SPR-MRP 34 27 0 2 

SPR-MRP-Rooting 33 25 2 0 
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FIGURE LEGENDS 

 

Figure 1: The equivalence between the SPR distance and MAF size. (a) The species tree S and 

gene tree G differ only in the placement of the grey subtree. The roots of these trees are denoted 

by ρ. (b) The MAF of S and G is produced by cutting the dotted edge in both trees. (c) Each 

component of an MAF other than the component containing ρ represents an SPR move. A single 

SPR move transforms S into G by moving the grey subtree in S to its position in G. (d) Each 

SPR move models an LGT event in the reverse direction. From the MAF of S and G we infer 

that a transfer of gene G has occurred from an ancestor of taxon 1 to an ancestor of taxon 4. 

 

Figure 2. SPR supertree constructed using Aquificae as outgroup. Genera such as 

Mycobacterium with multiple representatives are shown as collapsed subtrees for brevity. 

Colours indicate the classes of bacteria. 

 

Figure 3. Inferred LGT events between 135 distinct bacterial genera. (a) An LGT heatmap. The 

coloured side bars indicate class using the colour mapping of Figure 2. The row and column 

genus order is the same. The number of transfers is shown in a white-yellow-red colour scale 

with darker colours indicating a higher proportion of transfer events. Colour intensity is relative 

to the largest number of transfers in a row. Relationships with fewer than 5% of the maximum 

transfer events for a row or only a single transfer event were filtered out. (b) Each node of the 

LGT affinity graph represents a bacterial genus, colored by class and scaled relative to the 

number of genomes representing that genus (1-15). Two genera are connected by an edge if the 

number of inferred LGT events between them exceeds 5% of the number of homologous genes 
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common to both genomes. The shade of an edge is proportional to this ratio of LGT events to 

common genome size; black edges indicate relationships with at least as many LGT events as the 

size of their common genome. The thickness of an edge scales relative to the actual number of 

inferred transfers (between 2 and 370) with thicker edges indicating more transfers. The graph is 

shown with a spring-loaded layout. 

 

Figure 4: Mean time required to compare gene trees with a given SPR distance from an SPR 

supertree of a 244-genome dataset. The time axis is on a log scale as the time required increases 

exponentially with the SPR distance. The left panel compares our previous (2.42
k
n) and new 

(2
k
n) algorithms, with (C) and without clustering, on the set of binary trees. The right panel 

compares our new algorithm with and without clustering on the set of trees with unsupported 

bipartitions collapsed. Note that collapsing bipartitions reduces the SPR distance. 

 

Figure 5: A comparison of our LGT rate simulation parameter to the bacterial dataset. Supertrees 

of empirical data have the same mean SPR distance to leaf ratio (within 95% confidence 

intervals) as our simulations with a random LGT rate less than 0.2 and a divergence-biased LGT 

rate less than 0.4.  

 

Figure 6: A comparison of the mean supertree error (as measured by the SPR distance) of RF 

supertrees (RF) to SPR supertrees using the default parameters (SPR), seeded with an MRP 

starting tree (SPR-MRP), or seeded with the correct tree (SPR-C). 
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Figure 7: A comparison of the accuracy of SPR and MPR supertrees with known or unknown 

gene tree roots. The upper panels compare the mean supertree error (as measured by the minimal 

SPR distance to any rooting of a supertree) when the gene trees are correctly rooted. We 

compared MRP supertrees (MRP) to SPR supertrees using the default parameters (SPR), seeded 

with an MRP starting tree (SPR-MRP), or seeded with the correct tree (SPR-C). The lower 

panels compare the mean error of the MRP supertree to SPR supertrees when the gene tree roots 

are unknown, using our balanced accuracy based simple unrooted comparison without and with 

an MRP seed tree (SPR-SU and SPR-MRP-SU, respectively). 

 

Figure 8: Comparison of SPR and MRP supertrees of 244 bacterial genomes. The SPR supertree 

on the left was constructed with the Aquificae as outgroup while the MRP supertree on the right 

is unrooted and places the Aquificae as neighbours of the Epsilonproteobacteria. Both figures 

show the largest monophyletic group of each class as a collapsed subtree and all members of a 

given class with the same color. 

 

Supplemental Figure 1. Inferred LGT events between 13 bacterial classes. (a) LGT heatmap. The 

colour side bars indicate class. The row and column order is the same. The number of transfers is 

shown in a white-yellow-red colour scale with darker colours indicating a higher proportion of 

transfer events. Colour intensity is relative to the largest number of transfers in a row. 

Relationships with fewer than 5% of the maximum transfer events for a row or only a single 

transfer event were filtered out. (b) LGT affinity graph of the bacterial classes. Each node of the 

graph represents a bacterial class scaled relative to the number of represented taxa (2-75). Two 

genera are connected by an edge if the number of inferred LGT events between them exceeds 5% 
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of their shared genes. The shade of an edge is proportional to this ratio of LGT events to shared 

genes; black edges indicate relationships with at least as many LGT events as shared genes. The 

thickness of an edge scales relative to the actual number of inferred transfers (30-1414) with 

thicker edges indicating more transfers. 

 

Supplemental Figure 2: The LGT affinity neighbourhood of genus Clostridium. Each node of the 

graph represents a bacterial genus coloured by class and scaled relative to the number of 

represented taxa (1-13). Two genera are connected by an edge if the number of inferred LGT 

events between them exceeds 5% of their shared genes. The shade of an edge is proportional to 

this ratio of LGT events to shared genes; black edges indicate relationships with at least as many 

LGT events as shared genes. The thickness of an edge scales relative to the actual number of 

inferred transfers (2-125) with thicker edges indicating more transfers. 

 

Supplemental Figure 3: A comparison of the accuracy of SPR, RF and MPR supertrees as 

measured by the minimal SPR distance between simulated species histories and any rooting of 

the supertree under varying rates of random or divergence-biased simulated LGT events.  

PeerJ PrePrints | https://peerj.com/preprints/18 | v1 received: 10 May 2013, published: 10 May 2013, doi: 10.7287/peerj.preprints.18

P
re
P
rin

ts



47 

 

SUPPLEMENTAL MATERIAL 810 

APPENDIX 1: FAST MAF ALGORITHM 

 In this appendix we discuss the efficiency and practicality improvements of our new MAF 

algorithm. We first introduce our previous algorithm (Whidden et al. 2010; Whidden et al. 

2013a) whose running time is bounded by O(2.42
k
n) for two binary trees with n leaves and an 

SPR distance of k. We then introduce our novel concept of “protecting” edges during the search 815 

for an MAF. This “edge protection” scheme allows us to avoid exploring the same edge cutting 

scenarios multiple times and greatly speeds up the search for an MAF, as we demonstrated in 

Figure 5. In a forthcoming paper (Whidden and Zeh 2013) we give the full details of this 

algorithm and prove that its running time is bounded by O(2
k
n). Finally, we explain how we 

extended our algorithm to compute MAFs of a binary and multifurcating tree and thereby 820 

account for uncertainty in the gene trees input to our supertree method. In a recently submitted 

manuscript (Whidden et al. 2013b) we gave the full details of this algorithm as applied to two 

multifurcating trees and proved that its running time remains bounded by O(2.42
k
n). However, 

by requiring that one tree be binary and applying edge protection our new MAF algorithm 

requires roughly the same time in practice to compute an MAF regardless of whether the other 825 

tree is multifurcating, as we demonstrated in Figure 5. 

Previous MAF Algorithm.—Our previous MAF algorithm (Whidden et al. 2010; Whidden 

et al. 2013a) takes two binary trees T1 and T2 as input along with a parameter k and returns an 

agreement forest with at most k+1 components (and thus k edge cuts) if and only if such an 

agreement forest exists. To find an MAF, we run this algorithm with increasing values of k from 830 

0 until an agreement forest is found. Since the running time of the algorithm scales exponentially 

with k, this entire procedure only takes a small constant factor more time than the invocation that 
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finds the MAF. Our algorithm proceeds in a bottom-up fashion from the leaves of T1. T1 remains 

a tree through this procedure but T2 may become a forest, denoted F2. We maintain a set of 

sibling pairs, sibling subtrees (a,c) in T1 such that identical subtrees a and c exist in F2. The 835 

algorithm examines each such sibling pair in turn and applies one of three cases:  

(1) If a and c are also siblings in F2, then the subtree rooted at their parent is 

identical in T1 and F2 and so becomes a candidate for membership in a sibling 

pair,  

(2) If a or c is a component of F2 then it must be cut off in T1,  840 

(3) We identify at most 3 sets of edges in F2 such that cutting one of these edge 

sets will lead to an MAF and try each edge set recursively in turn.  

 

 Case (3), which defines multiple edge sets to consider for cutting, requires detailed 

explanation. Assume that a is the deeper subtree of F2, if a and c are in the same component, and 845 

let b be the sibling of a in F2. If a and c are in separate components of F2 then cutting off a or c 

will lead to an MAF. If a and c are in the same component but only one subtree, b, is on the path 

between them then cutting off b will always lead to an MAF. Otherwise, cutting off a, c, or 

simultaneously cutting off all of the subtrees between a and c in F2 will lead to an MAF. Note 

that this last case is the worst case of our algorithm as it splits our computation into three 850 

branches cutting one, one, or at least two edges respectively. We previously showed in Whidden 

et al. (2010) that this last case bounds our running time of O(2.42
k
 n) with a recurrence relation 

analysis. 

New MAF Algorithm.—Our improved algorithm introduces the concept of edge protection 

to alleviate the bottleneck of the 3-way branching case of our previous MAF algorithm. Observe 855 

that if some MAF can be found by a recursive invocation of this case that cuts off subtree a in F2 

then an MAF will be found by this invocation. Thus, we can assume that cutting off subtree a 

does not lead to an MAF in the recursive invocation that cuts off subtree c, or we would have 
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already found it. We protect edge a in this search branch to denote this and ignore any recursive 

invocations that cut a protected edge. By ignoring these search paths we reduce the running time 860 

of the algorithm to O(2
k
n). The proof of this bound is highly technical, as it relies on showing 

that this edge protection either forces our best case, cutting subtree b without branching, or 

avoids enough search branches to achieve this bound and requires some additional boundary 

cases. In a forthcoming paper (Whidden and Zeh 2013) we will provide the full details of our 

algorithm and prove this bound. 865 

We have also developed a theory for MAFs of multifurcating trees to incorporate 

uncertainty in gene trees. In a recently submitted manuscript (Whidden et al. 2013b) we 

developed a general MAF algorithm for two multifurcating trees. This algorithm is based on our 

O(2.42
k
n) algorithm for binary trees and achieves the same running time but is significantly 

more complicated and requires many more cases. For the purposes of constructing SPR 870 

supertrees, however, we only need to allow that the gene trees be multifurcating; the supertree is 

binary. By requiring that T1 be binary in our MAF algorithm these extra cases disappear and we 

can use the same overall algorithm structure but with the ability to resolve multifurcations as 

well as cut edges. Our MAF algorithm when T2 is multifurcating still examines each sibling pair 

in turn and applies one of three cases:  875 

 

(1) if a and c are also siblings in F2, then either the subtree rooted at their parent is 

identical in T1 and F2 and so becomes a candidate for membership in a sibling 

pair or we resolve the multifurcation of their parent in F2 to separate them so 

that this occurs. 880 

(2) If a or c is a component of F2 then it must be cut off in T1. 

(3) We identify at most 3 sets of edges in F2 such that cutting one of these edge 

sets will lead to an MAF and try each edge set recursively in turn.  
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We again assume that a is the deeper subtree of F2, if a and c are in the same component. 885 

Since F2 is multifurcating, a may now have multiple siblings and we represent them collectively 

by B which we call a pendant subtree. If a and c are in separate components of F2 then cutting off 

a or c will again lead to an MAF. If a and c are in the same component separated only by B then 

either cutting off c or resolving B separately from a and cutting the introduced edge will lead to 

an MAF. Otherwise, cutting off a, c, or resolving and cutting off all pendant subtrees of the path 890 

from a to c in F2 will lead to an MAF. We further apply edge protection to this last case as in our 

improved binary algorithm. Note that this procedure is essentially identical to our prior binary 

algorithm with the exception that our previous best case, where we could bring a and c together 

in F2 with a single cut now requires us to branch into two possibilities. Fortunately, cutting off c 

is never necessary when a’s parent is binary, that is, B is a single node b, so this has a negligible 895 

running time impact in practice, as we demonstrated in Figure 5. This does, however, preclude 

the argument we used to prove that edge protection reduces the running time of the binary MAF 

algorithm to O(2
k
n) so the running time of our MAF algorithm when one tree is multifurcating 

remains O(2.42
k
n) in the worst case. 

 900 

APPENDIX 2: LINEAR-TIME CLUSTER REDUCTION  

In this appendix we explain how to accelerate the computation of MAFs (and, thus, the 

SPR distance) using the Cluster Reduction of Linz and Semple (2011). This reduction partitions 

the input trees into pairs of subtrees, or clusters, that can be solved iteratively and reassembled 

into a full solution. The time required to solve these clusters with our MAF algorithms scales 905 

exponentially with the maximum number of components in an MAF of any cluster rather than 

the full MAF of the trees so this strategy greatly accelerates the recovery of MAFs in practice. 
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The Cluster Reduction as originally formulated is only suitable to compute an MAF variant, 

weighted MAFs, that cannot be computed with our algorithms. We first extend the Cluster 

Reduction to apply to ordinary MAFs and then show how to identify clusters in linear time, 910 

greatly improving on the previous cubic time algorithm.  

Linz and Semple defined a cluster of two trees T1 and T2 to be a pair of subtrees T1
e
 and 

T2
f
, for appropriate edges e in T1 and f in T2 such that both trees have the same set of labelled 

leaves. A cluster sequence of T1 and T2 is a sequence of tree pairs T = (T1
1
, T2

1
), (T1

2
, T2

2
), …, 

(T1
t
, T2

t
), (T1

ρ
, T2

ρ
) defined inductively as follows: if t = 0, then T1

ρ
 = T1 and T2

ρ
 = T2. If t > 0 915 

then (T1
1
, T2

1
) is a cluster of T1 and T2 with at least two taxa, the roots of T1

1
 and T2

1
 are labelled 

with a new label ρ1, and (T1
2
, T2

2
), …, (T1

t
, T2

t
), (T1

ρ
, T2

ρ
) is a cluster sequence of the two trees 

obtained from T1 and T2 by replacing the subtrees T1
1
 and T2

2
 with a single labelled leaf a1. This 

is illustrated in Figure A1. Clearly, ρ is the root of T1
 ρ
 and T2

 ρ
. An agreement forest F of T is the 

disjoint union of forests F = F1 ∪ F2 ∪ … ∪ Ft ∪ Fρ, where Fi is an agreement forest of T1
i
 and 920 

T2
i
, for all i in {1, 2, …, t, ρ}. The weight of F is defined to be w(F) = |F| - |{(pi, ai): pi and ai are 

singletons in F}| - t, where |F| denotes the number of trees in F. We say that F is an MAF of T if 

it has minimum weight among all agreement forests of T. The key result proved by Linz and 

Semple is that the weight of an MAF of any cluster sequence is exactly the number of 

components in an MAF of the original trees. They also provided a divide-and-conquer approach 925 

for computing an MAF of T: Process the clusters in order, for each i computing an agreement 

forest Fi of T
i
 and T2

i
. If F = F1 ∪ F2 ∪ … ∪ Fi-1 is the union of forests computed so far (for i=ρ, 

let i-1=t), then Fi is computed to be an agreement forest of T
i
 and T

i
 that minimizes w(Fi) = |Fi| - 

|{(
 
ρj, aj): ρj is a singleton in F and aj is a singleton in Fi}|. This weight corrects for the fact that 

we have cut the same edge twice; ρj and aj are nodes introduced by the cluster reduction to 930 
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represent the intersection of two clusters so the edge below ρj and above aj are the same edge. 

Thus, for i ≠ p, we choose Fi to be an agreement forest of T1
i
 and T2

i
 that minimizes this weight 

and such that pi is a singleton, if possible, to capitalize on this correction. The final forest defined 

in this way is an MAF of T. 

We used the key observation of the cluster reduction, that it is best to cut the root edge of 935 

each cluster when possible, to modify this procedure to compute unweighted MAFs. We first 

compute the cluster sequence as above. We then apply a modification (described below) of our 

MAF algorithm that returns an MAF of the current cluster such that it has the root edge cut if and 

only if any MAF of the current cluster i has an isolated ρi. If the root edge, below ρi, was cut in 

this MAF then we separate the two clusters by simply cutting the edge above ai in its 940 

corresponding cluster and then removing a1 and ρ1 completely to avoid counting this double cut. 

If the root edge is not cut then we reattach the two clusters by cutting this root edge, removing 

ρ1, and then replacing a1 with the subtree formerly rooted by ρi (thereby removing this subtree 

from the agreement forest of the current cluster). We apply this procedure iteratively to the 

cluster sequence and then take the union of these forests as our MAF. We have removed each ρi 945 

and ai so this is an unweighted MAF. To see that this is indeed an MAF, observe that we apply 

the same procedure as Linz and Semple for each cluster other than our treatment of ρi and ai. If ρi 

is not isolated in a given cluster, then we remove one component from our forest by replacing ai, 

whereas the weighted algorithm applies a weight of -1 (from the –t factor) to compensate. If ρi is 

isolated in a given cluster then we remove ρi (equivalent to the -1 weight) and remove ai 950 

(equivalent to the singleton portion of the weight calculation, this reduces the weight by 1 if pi 

and ai are singletons in some weighted MAF). Thus, our computed forest has exactly as many 

components as the weight of some weighted MAF and is indeed an MAF. 
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We now explain how we modified our MAF algorithm to prefer MAFs with isolated roots. 

Recall that each recursive step of our algorithm identifies at most three edge sets to cut from the 955 

intermediate forests and tries each edge set in turn. If more than one of these edge set choices 

lead to an MAF then our algorithm arbitrarily chooses one of them. We simply modified our 

algorithm to instead select between these at most three MAFs by preferring MAFs with their root 

edge cut. Since our algorithm does not find all MAFs of the two trees, it is not immediately 

obvious that this change is sufficient to find one MAF where the root edge is cut if such an MAF 960 

exists. However, the correctness proof of our previous MAF algorithm (Whidden et al. 2013a) 

and our forthcoming correctness proofs start with an arbitrary agreement forest F and construct 

an agreement forest F’ from F that has no more components than F and such that our algorithms 

find F’. If we choose F to be an agreement forest where ρi is a singleton, then this construction 

ensures that F’ also contain ρi as a singleton. In other words, if there exists an MAF that has ρi as 965 

a singleton, our algorithms find one such MAF. 

Finally, we developed a linear-time algorithm for computing a cluster sequence, greatly 

improving on the naïve cubic algorithm. Let n be the number of leaves in T1 and T2. The cubic 

algorithm compares each of the subtrees of T1, starting at the leaves, to each subtree of T2 and 

appends each found cluster to the cluster sequence. There are O(n) subtrees in each tree and it 970 

takes O(n) time to compare two leaf sets so this procedure requires O(n
3
) time. We improve on 

this by using least common ancestors (LCAs). The LCA of two or more nodes in a tree is their 

common ancestor furthest from the root. Let s1 be a subtree of T1 with leaf set L1 and s2 be a 

subtree of T2 with leaf set L2. Observe that these subtrees have the same leaf set if and only if the 

LCA of L1 in T2 is s2 and the LCA of L2 in T2 is s1. Efficient least common ancestor (LCA) 975 

query structures exist (e.g., Bender and Farach-Colton 2000) that can be built in O(n) time and 
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that allow for constant time LCA queries of two nodes. We use such a structure to compute a 

mapping M of T1 subtrees to the LCAs of their leaf sets in T2. First, for each leaf x in T1, we set 

M(x) to the corresponding leaf x of T2. Then, for any node n of T1 with children c1 and c2 such 

that the mapping M(c1) and M(c2) have been defined, we compute M(n) = LCA(M(c1), M(c2)). 980 

We apply this procedure again with T1 and T2 reversed to compute the mapping M
-1

 of T2 

subtrees to the LCAs of their leaf sets in T1. Finally, for each subtree s1 of T1 in a bottom-up 

postorder traversal we check if s1 is a cluster by checking if M
-1

(M(s1)) = s1
 
and, if so, appending 

s1 and M(s1) to the cluster sequence.  
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Supplemental Table 1: List of 244 bacterial genomes included in this work. 

Class Taxon 

Actinobacteria 
Acidimicrobium ferrooxidans DSM 10331 

 

Acidothermus cellulolyticus 11B 

 

Amycolatopsis mediterranei U32 

 

Arcanobacterium haemolyticum DSM 20595 

 

Arthrobacter aurescens TC1 

 

Arthrobacter sp. FB24     

 

Beutenbergia cavernae DSM 12333    

 

Bifidobacterium adolescentis ATCC 15703    

 

Bifidobacterium animalis subsp. lactis AD011   

 

Bifidobacterium animalis subsp. lactis Bl-04   

 

Bifidobacterium longum NCC2705     

 

Bifidobacterium longum subsp. infantis ATCC 15697  

 

Bifidobacterium longum subsp. longum JDM301   

 

Catenulispora acidiphila DSM 44928    

 

Cellulomonas flavigena DSM 20109    

 

Clavibacter michiganensis subsp. michiganensis NCPPB 382  

 

Corynebacterium aurimucosum ATCC 700975    

 

Corynebacterium efficiens YS-314     

 

Corynebacterium glutamicum ATCC 13032 DSM 20300  

 

Corynebacterium glutamicum R     

 

Corynebacterium jeikeium K411     

 

Corynebacterium kroppenstedtii DSM 44385    

 

Corynebacterium pseudotuberculosis FRC41     

 

Corynebacterium urealyticum DSM 7109    

 

Cryptobacterium curtum DSM 15641    

 

Eggerthella lenta DSM 2243    

 

Frankia alni ACN14a     

 

Gardnerella vaginalis 409-05     

 

Geodermatophilus obscurus DSM 43160    

 

Gordonia bronchialis DSM 43247    

 

Jonesia denitrificans DSM 20603    

 

Kribbella flavida DSM 17836    
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Kytococcus sedentarius DSM 20547    

 

Leifsonia xyli subsp. xyli str. CTCB07  

 

Mobiluncus curtisii ATCC 43063    

 

Mycobacterium avium 104     

 

Mycobacterium avium subsp. paratuberculosis K-10   

 

Mycobacterium bovis AF2122/97     

 

Mycobacterium bovis BCG str. Pasteur 1173P2  

 

Mycobacterium bovis BCG str. Tokyo 172  

 

Mycobacterium gilvum PYR-GCK     

 

Mycobacterium leprae Br4923     

 

Mycobacterium leprae TN     

 

Mycobacterium marinum M     

 

Mycobacterium smegmatis str. MC2 155   

 

Mycobacterium sp. KMS     

 

Mycobacterium tuberculosis F11     

 

Mycobacterium tuberculosis H37Ra     

 

Mycobacterium tuberculosis H37Rv     

 

Mycobacterium vanbaalenii PYR-1     

 

Nakamurella multipartita DSM 44233    

 

Nocardia farcinica IFM 10152    

 

Nocardioides sp. JS614     

 

Propionibacterium acnes KPA171202     

 

Propionibacterium freudenreichii subsp. shermanii CIRM-BIA1   

 

Rhodococcus erythropolis PR4     

 

Rhodococcus jostii RHA1     

 

Rothia mucilaginosa DY-18     

 

Salinispora arenicola CNS-205     

 

Salinispora tropica CNB-440     

 

Sanguibacter keddieii DSM 10542    

 

Segniliparus rotundus DSM 44985    

 

Slackia heliotrinireducens DSM 20476    

 

Stackebrandtia nassauensis DSM 44728    

 

Streptomyces avermitilis MA-4680     

 

Streptomyces griseus subsp. griseus NBRC 13350  

 

Streptomyces scabiei 87.22     
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Streptosporangium roseum DSM 43021    

 

Thermobifida fusca YX     

 

Thermobispora bispora DSM 43833    

 

Thermomonospora curvata DSM 43183    

 

Tropheryma whipplei TW08/27     

 

Tsukamurella paurometabola DSM 20162    

 

Xylanimonas cellulosilytica DSM 15894    

Alphaproteobacteria 
Bradyrhizobium sp. BTAi1     

 

Candidatus Hodgkinia cicadicola Dsem    

 

Candidatus Pelagibacter ubique HTCC1062    

 

Ehrlichia canis str. Jake    

 

Ehrlichia chaffeensis str. Arkansas    

 

Erythrobacter litoralis HTCC2594     

 

Gluconacetobacter diazotrophicus PAl 5    

 

Mesorhizobium loti MAFF303099     

 

Ochrobactrum anthropi ATCC 49188    

 

Parvularcula bermudensis HTCC2503     

 

Rickettsia akari str. Hartford    

 

Rickettsia canadensis str. McKiel    

 

Rickettsia peacockii str. Rustic    

 

Rickettsia rickettsii str. Sheila Smith   

 

Wolbachia endosymbiont of Culex quinquefasciatus Pel  

Aquificae 
Aquifex aeolicus VF5     

 

Hydrogenobacter thermophilus TK-6     

 

Hydrogenobaculum sp. Y04AAS1     

 

Persephonella marina EX-H1     

 

Sulfurihydrogenibium azorense Az-Fu1     

 

Sulfurihydrogenibium sp. YO3AOP1     

 

Thermocrinis albus DSM 14484    

Bacilli 
Bacillus anthracis str. Sterne    

 

Bacillus cereus 03BB102     

 

Bacillus cereus AH187     

 

Bacillus cereus ATCC 10987    

 

Bacillus cereus G9842     

 

Bacillus cereus Q1     
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Bacillus clausii KSM-K16     

 

Bacillus thuringiensis BMB171     

 

Bacillus thuringiensis str. Al Hakam   

 

Enterococcus faecalis V583     

 

Exiguobacterium sibiricum 255-15     

 

Exiguobacterium sp. AT1b     

 

Geobacillus sp. WCH70     

 

Lactobacillus acidophilus NCFM     

 

Lactobacillus casei ATCC 334    

 

Lactobacillus casei str. Zhang    

 

Lactobacillus crispatus ST1     

 

Lactobacillus reuteri JCM 1112    

 

Lactobacillus rhamnosus Lc 705    

 

Lactobacillus salivarius UCC118     

 

Lactococcus lactis subsp. cremoris MG1363   

 

Leuconostoc kimchii IMSNU 11154    

 

Listeria monocytogenes HCC23     

 

Listeria monocytogenes serotype 4b str. CLIP 80459 

 

Listeria monocytogenes serotype 4b str. F2365  

 

Staphylococcus aureus RF122     

 

Staphylococcus carnosus subsp. carnosus TM300   

 

Staphylococcus lugdunensis HKU09-01     

 

Streptococcus gordonii str. Challis substr. CH1  

 

Streptococcus mitis B6     

 

Streptococcus mutans NN2025     

 

Streptococcus pneumoniae 670-6B     

 

Streptococcus pneumoniae JJA     

 

Streptococcus pyogenes MGAS10270     

 

Streptococcus pyogenes MGAS10394     

 

Streptococcus pyogenes MGAS10750     

 

Streptococcus pyogenes NZ131     

 

Streptococcus pyogenes str. Manfredo    

 

Streptococcus suis 98HAH33     

 

Streptococcus thermophilus LMD-9     

Betaproteobacteria 
Azoarcus sp. BH72     
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Bordetella parapertussis 12822     

 

Burkholderia ambifaria MC40-6     

 

Burkholderia sp. 383     

 

Burkholderia vietnamiensis G4     

 

Candidatus Accumulibacter phosphatis clade IIA str. UW-1 

 

Gallionella capsiferriformans ES-2     

 

Methylibium petroleiphilum PM1     

 

Methylobacillus flagellatus KT     

 

Methylotenera mobilis JLW8     

 

Methylotenera sp. 301     

 

Nitrosomonas europaea ATCC 19718    

 

Ralstonia pickettii 12D     

 

Ralstonia solanacearum CFBP2957     

 

Thiobacillus denitrificans ATCC 25259    

Clostridia 
Acetohalobium arabaticum DSM 5501    

 

Acidaminococcus fermentans DSM 20731    

 

Ammonifex degensii KC4     

 

Caldicellulosiruptor obsidiansis OB47     

 

Caldicellulosiruptor saccharolyticus DSM 8903    

 

Caldicelulosiruptor becscii DSM 6725    

 

Clostridiales genomosp. BVAB3 str. UPII9-5   

 

Clostridium acetobutylicum ATCC 824    

 

Clostridium botulinum A str. ATCC 19397  

 

Clostridium botulinum B str. Eklund 17B  

 

Clostridium botulinum Ba4 str. 657   

 

Clostridium botulinum E3 str. Alaska E43  

 

Clostridium cellulovorans 743B     

 

Clostridium difficile CD196     

 

Clostridium kluyveri DSM 555    

 

Clostridium kluyveri NBRC 12016    

 

Clostridium perfringens ATCC 13124    

 

Clostridium perfringens SM101     

 

Clostridium tetani E88     

 

Clostridium thermocellum ATCC 27405    

 

Coprothermobacter proteolyticus DSM 5265    
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Desulfotomaculum acetoxidans DSM 771    

 

Eubacterium rectale ATCC 33656    

 

Finegoldia magna ATCC 29328    

 

Halothermothrix orenii H 168    

 

Heliobacterium modesticaldum Ice1     

 

Natranaerobius thermophilus JW/NM-WN-LF     

 

Pelotomaculum thermopropionicum SI     

 

Syntrophothermus lipocalidus DSM 12680    

 

Thermincola potens JR     

 

Thermoanaerobacter mathranii subsp. mathranii str. A3  

 

Thermoanaerobacter tengcongensis MB4     

 

Thermosediminibacter oceani DSM 16646    

 

Veillonella parvula DSM 2008    

Deferribacteres 
Deferribacter desulfuricans SSM1     

 

Denitrovibrio acetiphilus DSM 12809    

Deltaproteobacteria 
Anaeromyxobacter dehalogenans 2CP-1     

 

Anaeromyxobacter sp. Fw109-5     

 

Bdellovibrio bacteriovorus HD100     

 

Desulfotalea psychrophila LSv54     

 

Desulfovibrio desulfuricans subsp. desulfuricans str. G20  

 

Desulfovibrio salexigens DSM 2638    

 

Desulfovibrio vulgaris str. Miyazaki F   

 

Desulfurivibrio alkaliphilus AHT2     

 

Geobacter bemidjiensis Bem     

 

Geobacter lovleyi SZ     

 

Geobacter uraniireducens Rf4     

 

Lawsonia intracellularis PHE/MN1-00     

 

Pelobacter carbinolicus DSM 2380    

 

Pelobacter propionicus DSM 2379    

 

Sorangium cellulosum So ce 56   

Epsilonproteobacteria 
Arcobacter nitrofigilis DSM 7299    

 

Campylobacter concisus 13826     

 

Campylobacter jejuni subsp. doylei 269.97   

 

Campylobacter jejuni subsp. jejuni 81116   

 

Campylobacter jejuni subsp. jejuni NCTC 11168  
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Helicobacter acinonychis str. Sheeba    

 

Helicobacter hepaticus ATCC 51449    

 

Helicobacter mustelae 12198     

 

Helicobacter pylori B38     

 

Helicobacter pylori HPAG1     

 

Helicobacter pylori J99     

 

Helicobacter pylori Shi470     

 

Nautilia profundicola AmH     

 

Nitratiruptor sp. SB155-2     

Gammaproteobacteria 
Acinetobacter baumannii AB0057     

 

Acinetobacter baumannii ATCC 17978    

 

Actinobacillus pleuropneumoniae serovar 3 str. JL03  

 

Escherichia coli BW2952     

 

Escherichia coli HS     

 

Francisella tularensis subsp. tularensis FSC198   

 

Pseudomonas fluorescens Pf-5     

 

Shewanella halifaxensis HAW-EB4     

 

Shigella flexneri 2a str. 2457T   

 

Xanthomonas albilineans      

 

Xenorhabdus bovienii SS-2004     

 

Yersinia pestis Antiqua     

 

Yersinia pestis CO92     

Nitrospirae 
Candidatus Nitrospira defluvii     

 

Thermodesulfovibrio yellowstonii DSM 11347    
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Thermotoga petrophila RKU-1     
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a) LGT heatmap b) LGT affinity graph
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