
A Low-Cost Auditory Multi-Class Brain Computer Interface 
based on Pitch, Spatial and Timbre Cues

P300-based brain-computer interfaces (BCIs) are especially useful for people with illnesses, 

which prevent them from communicating in a normal way (e.g. brain or spinal cord injury). 

However, most of the existing P300-based BCI systems use visual stimulation which may not 

be suitable for patients with sight deterioration (e.g. patients suffering from amyotrophic 

lateral sclerosis). Moreover, P300-based BCI systems rely on expensive equipment, which 

greatly limits their use outside the clinical environment. Therefore, we propose a multi-class 

BCI system based solely on auditory stimuli, which makes use of low-cost EEG technology. 

We explored different combinations of timbre, pitch and spatial auditory stimuli (TimPiSp: 

timbre-pitch-spatial, TimSp: timbre-spatial, and Timb: timbre-only) and three inter-stimulus 

intervals (150ms, 175ms and 300ms), and evaluated our system by conducting an oddball 

task on 7 healthy subjects. This is the first study in which these 3 auditory cues are 

compared. After averaging several repetitions in the 175ms inter-stimulus interval, we 

obtained average selection accuracies of 97.14%, 91.43%, and 88.57% for modalities 

TimPiSp, TimSp, and Timb, respectively. Best subject’s accuracy was 100% in all modalities 

and inter-stimulus intervals. Average information transfer rate for the 150ms inter-stimulus 

interval in the TimPiSp modality was 14.85 bits/min. Best subject’s information transfer rate 

was 39.96 bits/min for 175ms Timbre condition. Based on the TimPiSp modality, an auditory 

P300 speller was implemented and evaluated by asking users to type a 12-characters-long 

phrase. Six out of 7 users completed the task. The average spelling speed was 0.56 

chars/min and best subject’s performance was 0.84 chars/min. The obtained results show 

that the proposed auditory BCI is successful with healthy subjects and may constitute the 

basis for future implementations of more practical and affordable auditory P300-based BCI 

systems.
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1. Introduction
 
1.1. Motivation
Brain-computer interfaces (BCIs) aim to develop computer systems capable of decoding  useful 
information directly from brain activity in real-time (see (Wolpaw, 2000) for a review). Their 
objective is to enable direct communication between the brain and computers, with potential 
applications ranging from medicine to general consumer electronics. Over the past two decades 
BCI research has explored a variety of approaches for collecting, analyzing, and interacting with 
brain activity data. In most cases, the information is encoded voluntarily by the user, either by 
performing some mental task producing a measurable signal to be used as a command, or by 
selectively attending to one of the presented stimuli to encode a choice. Selective attention is 
often detected by observing event related potentials (ERPs), in particular the P300 wave whose 
occurrence is related to the person’s reaction to a particular stimulus, and not to the physical 
attributes of the stimulus. P300 potentials, when recorded by electroencephalography (EEG), can 
be observed as a positive deflection in voltage with a latency (i.e. delay between the stimulus 
and the response) of roughly 250-500 milliseconds. They are usually elicited using the oddball 
paradigm,  in  which  low-probability target  stimuli  are  randomly mixed with  high-probability 
non-target ones.
 
One of the obvious applications of P300-based BCIs is as a communication system for people 
who suffer from severe motor disabilities (e.g. brain or spinal cord injury), which prevent them 
from communicating in a normal way.  However, most of the existing P300-based BCI systems 
rely on visual stimulation, which may not be suitable for patients with sight deterioration, such 
as patients suffering from Amyotrophic Lateral Sclerosis (ALS). In the case of patients who are 
unable to direct their gaze, adjust their focus or blink, an auditory P300-based interface might be 
a better alternative [2-9].  Furthermore, the use of auditory P300-based interfaces for patients 
with residual vision could allow visual stimuli to be used only as a feedback channel, therefore 
preventing interaction stimulation and feedback.
 
A second issue, if one wishes to improve the accessibility to BCI systems, and P300-based BCI 
systems in particular, is to reduce their cost. A limitation of P300-based systems is that they 
typically rely on expensive equipment with prices in the order of 30,000 USD or more, and are 
confined  to  experimental  laboratories,  which  can  be  intimidating  to  some  patients  such  as 
children  and  adults  with  cognitive  disorders.  In  addition,  setting  up  the  BCI  system at  the 
beginning of each session can take an experienced clinical professional up to an hour to place the 
electrodes  on  the  patient’s  scalp,  which  results  in  long  and  tedious  sessions.  Furthermore, 
typically such P300-based systems require the application of conductive gel in order to create a 
reliable  connection  between each electrode and the  patient’s  scalp.   The gel  attaches  to  the 
patient’s hair and can only be properly removed by washing the entire head at the end of each 
session. Recently, a number of low-cost EEG systems have been commercialized [28, 29]. They 
are  mainly  marketed  as  gaming  devices  and  provide  a  limited  solution  to  the  expensive 
equipment problems described above: they are wirelessly connected to an ordinary computer, 
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they require a short set-up time to adjust the electrodes to the user’s scalp,  and they do not 
require conductive gel. Recent research on evaluating the reliability of some of these low-cost 
EEG devices for research purposes has suggested that they are reliable for measuring visual and 
auditory evoked potentials [Duvinage, 2013; Debener, 2012; Badcock, 2013]. 
 
In this study, we propose a low-cost multi-class BCI system based solely on auditory stimuli. We 
explore different combinations of timbre, pitch and spatial auditory stimuli (TimPiSp: timbre-
pitch-spatial, TimSp: timbre-spatial, and Timb: timbre-only) and three Inter-Stimulus intervals 
(150ms, 175ms and 300ms), and evaluate our system by conducting an oddball task on 7 healthy 
subjects. Additionally an auditory P300 speller is implemented and evaluated by asking users to 
type a phrase containing 12 characters.

 
1.2 Related work

P300 potentials can be observed as a positive deflection in voltage with a latency of roughly 
250-500 ms with respect to an event [16,17].  Normally,  P300 potentials  are triggered by an 
attended rare event, so they are typically elicited using the oddball paradigm, in which low-
probability target stimuli  are mixed with high-probability non-target ones. In the past, visual 
P300  responses  have  been  widely  investigated  for  implementing  BCIs  [e.g.  13,14],  and  in 
particular for creating speller applications [15,19–21]. Similarly, auditory P300 responses have 
been used for implementing speller applications, e.g. [22]. In this study , a matrix of characters is 
presented for reference purposes with its columns and rows marked by a spoken number that is 
presented to the subject. Subjects are instructed to attend to the spoken number, which identifies 
the character.  When the spoken number corresponding to  the row or column containing the 
character is produced, it elicits a P300 wave, which can be detected from the EEG. The selected 
letter is identified according to the row and column that give a P300 response. The evaluation of 
the system produced satisfactory results with performance reaching up to 100% for one subject. 
However, it is clear that auditory stimulation with spoken numbers is time consuming, reducing 
the information transfer rate (selection of a letter can take 3.6 minutes). 

In a more recent study [6], the spoken numbers were replaced by 6 natural sounds, which were 
mapped to rows and columns in an intuitive way allowing subjects to learn the mapping within a 
couple of sessions. Subjects were divided into two groups: one group was given auditory and 
visual stimulations while the other received only auditory stimulation. Although at the beginning 
of the experiment the accuracy of the auditory-only group was lower than the accuracy of the 
auditory-visual group, after 11 sessions their accuracy increased comparable to the the one of the 
auditory-visual group. Inter-Stimulus interval was 500 ms and the reported average ITR for the 
auditory modality was 1.86 bits/min.

Most oddball experiments use acoustic cues such as pitch, amplitude or length. However, other 
sound properties, such as spatial location of the stimulus, have been investigated. Teder-Sälejärvi 
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et  al.  [12],  conducted  an  oddball  experiment  in  which  an  array  of  seven  speakers  (with  a 
separation  among  them  of  9  degrees)  presented  targets  and  non-targets  in  random  order. 
Subject’s attention to a particular direction elicited P300 responses. Another study [23], explored 
the  use  of  virtual  spatial  localization  to  separate  targets  from  non-targets  through  stereo 
headphones. Non-targets were produced from a straight direction (i.e. zero degrees) while targets 
were  produced  from a  30  and  90  degrees  direction.  The  focus  of  this  study was  on  early 
mismatch  negativity  potentials  and not  in  P300 responses,  engaging  the  subjects  in  passive 
listening while they were watching a film. A similar study [24] was conducted using free-field 
speakers with 10 degrees spatial separation.

In a  more related study [7],  a multi  class BCI experiment,  which used spatially distributed, 
auditory cues was conducted. The stimulus set consisted of 8 stimuli,  different in pitch. The 
subjects were surrounded by 8 free field speakers, each of which was assigned to one of the 
stimuli. In the experiment, 10 subjects participated in an offline oddball task with the spatial 
location of the stimuli being a discriminating cue. The experiment was conducted in free field, 
with an individual speaker for each location. Different inter-stimulus intervals were investigated: 
1000,  300,  and  175  ms.  Average  accuracies  were  over  90%  for  most  conditions,  with 
corresponding information transfer rates up to an average of 17.39 bits/minute for the 175 ms 
condition (best  subject 25.20 bits/minute).  Interestingly,  when discarding the spatial  cues by 
presenting the stimuli  through a single speaker, selection accuracies dropped below 70% for 
most subjects. 

In a later study [8], the same authors implemented an auditory speller using the same stimuli 
presentation design, but reducing the set to 6 sounds. In order to optimize the spelling speed, a 
dynamic stopping method was introduced. This method minimized the number of repetitions 
required for each trial. Sixteen out of 21 subjects managed to spell a sentence in the first session. 
These subjects were selected for a second session where they were asked to type two sentences. 
In the second session an average of 5.26bits/min (0.94char/min) ITR was achieved, which sets 
the current state of the art in auditory P300 spellers.

A very similar auditory BCI system using spatially distributed, auditory cues is proposed by 
Käthner et al. [9]. The set of free field speaker is replaced by stereo headphones. Different ISIs 
of 560, 400, 320, 240 and 160 ms were evaluated in a P300 auditory speller  paradigm. An 
average of 2.76 bits/min was reported under the 400 ms ISI condition. Unfortunately the training 
of the classification process was performed only for the 560ms ISI. The acquired classifier was 
then  used  for  all  studied  ISIs.  This  resulted  to  the  conclusion  that  bigger  ISIs  give  better 
selection accuracy. The opposite results were obtained by Schreuder et al. [7], when a separate 
classifier was trained for each condition.

Other  researchers  have  investigated  the  feasibility  of  using  the  Emotiv  EPOC  device  for 
detecting auditory ERPs. Badcock et al.. [1] simultaneously recorded, using research and Emotiv 
Epoc devices, the EEG of 21 subjects while they were presented with 566 standard (1000 Hz) 
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and 100 deviant (1200 Hz) tones under passive and active conditions. For each subject, they 
calculated auditory ERPs (P1, N1, P2, N2, and P300 peaks) as well  as mismatch negativity 
(MMN) in both active and passive listening conditions. They restricted their analysis to frontal 
electrodes. Their results show that the morphology of the research and Emotiv Epoc EEG system 
late  auditory ERP waveforms were similar  across  all  participants,  but  that  the  research  and 
gaming EEG system MMN waveforms were only similar for participants with non-noisy MMN 
waveforms. Peak amplitude and latency measures revealed no significant differences between 
the size or the timing of the auditory P1, N1, P2, N2, P3, and MMN peaks. Based on these 
results they conclude that the Emotiv Epoc EEG system may be a valid alternative to research 
EEG systems for recording reliable auditory ERPs. 

In another study [31], Emotiv Epoc was combined with a standard infracerebral electrode cap 
with Ag/AgCl electrodes. The result was a low-cost portable EEG system that was tested in an 
auditory oddball paradigm under sitting and walking conditions. With an ISI of 1 second, the 
single trial accuracy was 77% for sitting and 69% for walking conditions. In a later study [32] 
-using the same EEG system-, the conclusion that a low-cost single trial portable EEG interface 
is feasible is enforced.
 
2. Materials and methods
 
2.1  Participants

All subjects taking part in the present study gave written informed consent to be involved in 
the research and agreed to their anonymized data to be analyzed. Procedures were positively 
evaluated by the Parc de Salut MAR - Clinical Research Ethics Committee, Barcelona, Spain, 
under the reference number: 2013/5459/I. Seven healthy adults (3 female, 4 male, mean age 42 
years) participated in a multi-class auditory oddball paradigm. Subjects reported to have normal 
hearing, and no difficulty with spatial localization of sounds in everyday situations.
 
2.2  Data Acquisition
 
The Emotiv EPOC EEG system [28] was used for acquiring the EEG data. It consists of 16 wet 
saline electrodes, providing 14 EEG channels, and a wireless amplifier (with a sample rate of 
128 Hz). The 16 electrodes are aligned with positions in the 10-20 system: AF3, F7, F3, FC5, 
T7, P7, O1, O2, P8, T8, FC6, F4, F8, FC4, M1, and M2. The electrode positioned at M1 acts as 
reference  electrode,  while  the  electrode  at  M2  is  used  for  reducing  external  electrical 
interferences. The EEG signals were sampled at 128 Hz, digitized with a resolution of 16 bits, 
and band-pass filter with a 4th order Butterworth 1-12Hz filter. 
We collected and processed the data  using the OpenViBE platform [10].  In  order  to  trigger 
virtual  instrument  sounds  through  the  OpenVibe  platform,  a  VRPN  to  midi  gateway  was 
implemented and used along with LoopBe virtual MIDI port1. Sound stimulus was then played 

1 "LoopBe1 - A Free Virtual MIDI Driver - Nerds.de." 2004. 11 Nov. 2013 
<http://www.nerds.de/en/loopbe1.html>
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back by Propellerhead Reason2 virtual instrument host application. MBOX low-latency sound 
card  was  used,  offering  17  ms  output  latency.  The  LoopBe  MIDI  port  used  introduced  an 
additional latency of 1 to 3 ms. Both data acquisition and on-line scenario were performed on a 
laptop with an Intel Core i5 2,53 Ghz processor with 4 GB of RAM, running windows 7 64-bit 
Operating System.
 
2.3.  Experiment Design

2.3.1 Auditory modality Experiment

In  all  sessions,  subjects  were  asked  to  sit  motionless  in  a  comfortable  chair  facing  two 
loudspeakers,  Roland  MA-150U placed  at  45  and  -45  degrees  with  respect  to  the  subject’s 
orientation. The speakers were placed 15cm below ear level and approximately at one meter 
from  the  subject  (see  Figure  1).  The  speakers  were  set  to  equal  loudness  intensity  of 
approximately 60 dB for every stimulus. Subjects were initially exposed to each stimulus in 
isolation  and  then  to  the  stimuli  mix  in  order  to  familiarize  them with  the  sounds.  At  the 
beginning  of  each  experiment,  subjects  were  asked  to  close  their  eyes,  minimize  their  eye 
movements and avoid moving during the experiment. All the experiments were designed as an 
auditory oddball task. The room was not electromagnetically shielded, and no extensive sound 
attenuating precautions were taken.

Three different ISI were explored: 300 ms and 175 ms and 150 ms. For the 300 ms and 175 ms 
conditions three different stimuli discriminating cues were examined: timbre only (Timb), timbre 
and spatial (TimSp), and timbre, pitch and spatial (TimPiSp). For the 150ms condition only the 
TimPiSp modality was studied. In all conditions the stimulus set consisted of 6 short sounds (of 
a  duration  of  100ms).  In  total  7  different  conditions  were  studied:  TimPiSp-150ms  ISI 
(TimPiSp150),  TimPiSp-175ms  ISI  (TimPiSp175),  TimPi-175ms  ISI  (TimPi175),  Timb175 
(Timb175),  TimPiSp-300ms  ISI  (TimPiSp300),  TimPi-300ms  ISI  (TimPi300),  Timb175 
(Timb300). 

In the Timb conditions, all stimuli were generated with different timbre but with fixed pitch 
(130.81 Hz) and spatial location (center); in the TimSp conditions, stimuli were generated with 
different  timbre  and  spatial  location  but  fixed  spatialization;  and  in  TimPiSp conditions  all 
timbre,  pitch  and  spatialization  were  differentiated  (see  Table  1).  Blocks  of  the  different 
conditions  were  mixed  to  prevent  time  biases.  For  each  condition,  a  training  session  was 
followed by an online session. This resulted in 14 sessions for every subject. The collected EEG 
data of each training session were used for acquiring a spatial filter and a Linear Discriminant 
Analysis Classifier, used in the on-line classification process. Both the training and the on-line 
sessions consisted of ten trials. In the 300ms condition each trial consisted of 90 sub-trials, 15 
for each stimuli, while in the 175 and 150ms conditions each trial consisted of 150 sub-trials, 25 

2 "Reason - Complete music making, music production ... - Propellerhead." 11 Nov. 2013 
<http://www.propellerheads.se/products/reason/>
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for each stimulus. This resulted in 900 sub-trials per session (150 of which target) in the 300ms 
condition and 1500 sub-trials per session (250 of which target) in the 175 and 150ms conditions. 

Before each trial a random stimulus was selected as the target stimulus and was played back to 
the subject  (see figure 2). A trial can be divided into N repetitions (where N is 15 for the 300ms  
conditions and 25 for the 175 and 150ms conditions). A repetition consists of a random sequence 
of all 6 stimuli. An example of a repetition’s stimuli presentation for the TimPiSp175 condition 
is shown in figure 3. Stimuli were randomized in a way that the same stimulus never appeared 
consecutively. The subjects were instructed to tap on the desk every time the target stimulus 
appeared and mentally count its occurrences. In the on-line session, 1.9 seconds after each trial,  
the stimulus  detected as target  was played back to the subject followed by an interval  of 3 
seconds before presenting the target stimulus of the next trial.
  

2.3.2 Speller Experiment

In the speller experiment the subjects were asked to spell a 12-characters phrase in Spanish 
(“HOLA QUE TAL”). The speller experiment was very similar to the BCI experiment: speakers 
were positioned in the same way, the random sequence stimuli presentation was identical, and 
during a trial the subject was asked to keep their eyes closed. However, in the speller experiment 
only the TimPiSp150 and TimPiSp175 conditions was examined (depending on the performance 
of each user for each condition). At the beginning of each experiment, subjects were asked to 
become familiar with the speller interface, i.e. the mapping of stimuli into letters in the alphabet 
(see figure 6). Then while stimuli were played in a random order, subjects were asked to switch 
their attention to each of the 6 stimuli. This process lasted until each subject could quickly 
switch his or her attention to all 6 stimuli (about 10 minutes). The reason for that task was that in 
the case of the speller the target sound is not played back to the users before each trial, so the 
task of focusing on the target stimulus becomes more difficult.

Before the spelling session, one more training session -identical to the one described in the 
auditory modality experiment- was conducted in order to acquire the spatial filter and LDA 
classifier to be used in the spelling session. In the spelling session, the speller interface was used 
to select letters in two selection steps. First a group of letters was selected by selecting a column 
in the speller interface, i.e. by focusing attention on the stimulus corresponding to the column to 
be selected. In the second step, a particular letter was selected from the groups of letters 
previously selected, by focusing attention on the stimulus corresponding to the row containing 
the letter. One stimulus was reserved to specify the “undo” action used to return the subject to 
the first selection step (organ sound).  In the case of a misspelled character, the users had to 
select the backspace character in order to delete it. The speller interface, the text to be written, 
and the subject’s progress were presented visually. After each trial the detected sound stimulus 
was played back to the user and the user’s progress was updated.  Between the trials, six of the 
users were instructed orally on what the next target sound should be. One user was sufficiently 
familiar with the interface in order to complete the task without any oral instructions.
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2.4 Analysis

2.4.1. Training Session

The recording of the training sessions were analyzed in order to acquire a spatial filter and a two 
class (target,  non-target)  LDA classifier  (see figure 5). First,  the signal was preprocessed by 
applying a band pass filter in the range of 1 to 12 Hz, and down-sampled to 32 Hz. Given the  
noisy nature of the EEG signal, a xDawn spatial filter was applied in order to enhance the P300 
response.  The  xDAWN  algorithm [26]  allows  the  estimation  of  a  set  of  spatial  filters  for 
optimizing the signal to signal-plus-noise (SSNR) ratio. The xDAWN method assumes that there 
exists  a  typical  response  synchronized  with  the  target  stimuli  superimposed  on  an  evoked 
response to all the stimuli, and that the evoked responses to target stimuli could be enhanced by 
spatial filtering. A window of 250 to 750 ms after the stimuli presentation was applied to train 
the xDAWN algorithm in order to acquire a 14 to 3 channels spatial filter. This resulted in a 
matrix of 48 features. No additional artifact rejection method was applied. All epochs were used 
in the training and classification process.
The features produced by the xDAWN filter were used to train a classifier of the form:
 
   f(Fs([t+250,t+750])) → {target, non-target}
 
where t is the stimulus presentation time, Fs([t+250,t+750]) is the feature set generated by the 
spatial filter, and target and non-target are the classes to be discriminated. Classification was 
performed by applying linear discriminant analysis  (LDA) to the training data.  LDA finds a 
linear combination of features, which separates two or more classes of objects or events. The 
resulting combination may be used as a linear classifier.

 2.4.2 Online session

During the online session, the 48 features vector for each epoch were fed to the obtained LDA 
classifier (figure 6), whose output consisted of the vector distance to the hyper-plane (negative 
value for targets and positive for non-targets). These values were fed into a voting classifier. 
When the corresponding number of repetitions is reached, the voting classifier sums up the 
hyper-plane distances for all the repetitions of each stimuli. The stimulus with minimum sum is 
selected as the predicted target for that trial. 

2.4.3 Information Transfer Rate

The  information  transfer  rate  (ITR)  [27],  i.e.  the  amount  of  information  carried  by  every 
selection, can be computed as follows:
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,where ITR is the number of bits per minute, S represents the number of selections per minute, N 
represents the number of possible targets, and P represents the probability that they are correctly 
classified. Note that increasing S by decreasing the number of repetitions would not necessarily 
increase the ITR because the accuracy of the classifier (i.e. P) will decrease. Thus, there is a 
tradeoff between S and P, and the choice of which is more important depends on the type of BCI 
application. 

4. Results and Discussion

4.1. Auditory Modality Experiment
4.1.1. Accuracy and ITR

We  distinguish  between  two  accuracy  measures:  classification  and  selection  accuracy. 
Classification accuracy refers to the percentage of sub-trials that is correctly identified as target 
or non-target. Selection accuracy refers to the percentage of trials in which the target stimulus is 
correctly identified. Given that we are interested in detecting target stimuli, in the following we 
report on selection accuracy.
In order to investigate the system’s accuracy for different number of repetitions, the voting 
classifier object in OpenVibe platform was modified to keep a log of the hyper-plane distances’ 
sums of each stimulus for any number of repetitions. 

Tables 2,3 and 4 provide the online accuracy of all subjects and conditions along with the 
number of repetitions in the on-line sessions. Figure 7 shows the average accuracy and ITR 
(among subjects) for different number of repetitions. The ITR is considered to be zero, if the 
average accuracy is less than 70%.

The maximum accuracy is found in the TimPiSp175 condition (97.1%), followed by the 
TimPiSp150 (92.86%), TimbSp 175 (91.4%), Timb175 (88.57%), TimPiSp300 (88.57%), 
TimbSp300 (84.3%) and Timb300 condition (80%).

The average accuracy exceeds 70% in all conditions after 10 repetitions and 80% after 15 
repetitions, while after around 18 repetitions the online accuracy does not improve significantly 
in all conditions (see figure 7). For a given number of repetitions, the 300 ms condition does not 
seem to provide better accuracy than the 175 ms and 150 ms conditions and as a result gives 
lower ITR. The maximum average ITR is achieved with around 10-15 repetitions for all 
conditions. In the TimPiSp175 condition the average accuracy is more than 90% after 19 
repetitions. 
The maximum average ITR is found In the TimPiSp150 condition (14.85 bits/min, with an 
average of 9.43 iterations). The best subject’s performance was in the Timb175 condition (39.96 
bits/min, accuracy 80% with 2 repetitions).
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4.1.2 Physiological Response

For each condition and every subject, the training and on-line session EEG recordings were 
merged into one dataset and analyzed in Matlab using EEGlab [30] and ERP toolbox3. This 
resulted in 3000 sub-trials (500 targets) for the 300 ms modality and 1800 sub-trials (300 targets) 
for the 175 and 150 ms modalities, for each subject and condition. A window of 200 ms before 
the stimulus presentation was used for baseline removal. In all conditions a threshold of ±150μV 
was used for rejecting epochs with artifacts. The percentage of rejected epochs for each 
condition is shown in tables 1, 2 and 3.  Since during the experiment, subjects remained still and 
with their eyes closed, the high artifact rejection rate between sessions (raging from 0% to 
74.4% for the same user) is due to noise introduced by the Emotiv Epoch. Although the signal 
was always checked before every session, some EEG channels became noisy in the middle of a 
session. 

Initially a grand average for all 7 conditions was created for each subject, and its P300 peak 
amplitude in the interval 250 and 650 ms was computed for all EEG channels for the target 
epochs. For each subject, the EEG channel with the highest P300 peak values was selected for 
further analysis. Tables 2, 3 and 4 show the averaged P300 amplitude and latency for all 
conditions and users. figures 8 and 9 show the averaged target and non-target responses of each 
user’s  selected channel for all the 175 and 300 ms ISI conditions, respectively. In all plots, the 
red line corresponds to target epochs and the black line to non-target epochs. Α periodicity of 
175 ms can be observed in the  175 ms condition and a periodicity of 300 ms in the case of 300 
ms condition. As expected, this periodicity aligns with the stimuli presentation periodicity (see 
figure 3).

Figures 10, 11 and 12 show the average of all users’ target and non-target responses for all 
300ms ISI conditions of 10 EEG channels. When comparing the 3 modalities, it is observed that 
while the target ERP responses are equally strong in all modalities, the TimPiSp gives the 
weakest non-target ERP responses, followed by the TimPi and the Timb modalities. This results 
in a stronger mismatch negativity value. This is also reflected in the selection accuracies of each 
of these modalities: 88.5%, 84.3% and 80% for the TimPiSp, TimSp and Timb modality 
respectively.

4.2. Speller Results

Table 5 shows the results of the speller experiment. Six out of seven subjects completed the task. 
Best subject’s ITR is 4.37 bits per minute, while average ITR was 3.04 bits/min. This resulted in 
an average spelling speed of 0.56 chars/min (best performance 0.84 chars/min). The non-linear 
correlation between the ITR and spelling speed is due to the fact the subjects should delete and 
retype the misspelled characters. The average on-line selection accuracy for the subjects that 
successfully completed the task was 82.45%.  As predicted by Kübler et al.. [25], a selection 
accuracy of 70% is required for a useful BCI and all 6 subjects with an accuracy of more than 
70% managed to spell all 12 characters, while one subject with accuracy 63.41% managed to 

3 "ERPLAB Toolbox Home — ERP Info Home Page." 2008. 12 Nov. 2013 <http://erpinfo.org/erplab>
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spell only 7 characters before abandoning the task after 44 minutes. Table 5 summarizes the 
results for all 6 subjects that completed the task.

4.3 Discussion

We propose a new experimental paradigm for a low-cost P300 based auditory BCI. For the first 
time the significance -in an auditory P300 paradigm- of the 3 most important perceptual auditory 
discriminating cues is studied: Timbre, Pitch and Spatialization, under three possible ISI 
conditions (300, 175 and 150 ms). The results of our study indicate that the best results are given 
when the stimuli are different in all three perceptual modalities, while shorter ISI results in 
higher ITR.

As seen in figures 8 and 9 all subjects have clear EPR responses in both the 175 and 300 ms 
conditions, although they vary in intensity and shape. The mean latency of the P300 peak for all 
7 conditions is 468 ms, while no significant differences in the P300 peak amplitude and latencies 
are observed between the different conditions (see tables 2, 3, 4).  Although the signal quality 
was checked at the beginning of each session, high epoch rejection rate was observed in some 
sessions. This might be due to the unstable behavior of saline water electrodes. 

The channels with the strongest average P300 peak for all conditions were located in the frontal 
area for all subjects. When looking at the occipital channels though (figures 10, 11, 12), we can 
see an early positive deflection about 220 ms after the target stimuli presentation. This aligns 
with the results of Schreuder et al. [7], where it is concluded that in the short 175 ms condition 
“class difference has shifted toward the frontal areas when compared to the longer 1000 ms ISI 
condition”.

Despite using a low-cost EEG device, the performance of the proposed system is comparable to 
state-of-the-art performance. In the TimPiSp150 condition the average selection accuracy 
obtained is 92.86% with 17.1 repetitions and the average ITR is 14.85 bits/min with 9.43 
repetitions. These results compare well with the state-of-the-art results reported by Schreuder et 
al.. [7]  (selection accuracy 94%, with 11.6 repetitions; maximum ITR of 17.39 bits/min, with 
5.6 repetitions, PitchSpatial 175ms ISI).  As it is seen in table 6, the average ITR achieved in the 
spelling paradigm is just below the state-of-the-art results, reported by Schreuder et al.. [8]. 
However, Schreuder et al.. use a dynamic stopping method used, which minimizes the number of 
repetitions per trial.  The shorter ISI (150 ms), and the use of 3 auditory discriminating cues 
might have compensated the noisier signal acquired by a low-cost EEG system, resulting in a 
comparable ITR value.

The maximum average selection accuracy is found in the TimPiSp175 condition (97.1%), 
followed by the TimPiSp150 (92.86%), TimbSp175 (91.4%), Timb175 (88.57%), TimPiSp300 
(88.57%), TimbSp300 (84.3%) and Timb300 condition (80%). The 300ms ISI conditions though 
were studied for a maximum of 15 repetitions, while the 175 and 150 ms ISI conditions were 
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studied for a maximum of 25 repetitions. Looking at figure 7, we can see that for the same 
number of repetitions, the average accuracy is close for the 300 and 175 ms ISI conditions. The 
ITR though is much lower in the case of 300ms ISI conditions, as more time is required for the 
same number of repetitions. Thus, it is concluded that there is no reason for using long ISIs in 
auditory P300 based BCIs. In order to get a significantly stronger P300 response, When 
comparing the TimPiSp175 with TimPiSp150 conditions, we see that although the first one gives 
better selection accuracy (97.1% versus 92.86%), the second one achieves higher ITR (14.85 
versus 10.1 bits/min). In the future, the ISI’s limits should be studied in order to determine the 
minimum ISI to maximize ITR. 

In both 300 and 175 ms ISI conditions, the order of the conditions in terms of selection accuracy 
is: TimPiSp, TimSp, Timb. Thus, it is clear that the performance of the system improves as more 
discriminating cues are added. This is also concluded when observing the averaged ERP 
responses of these conditions (figure 12). Although the target stimuli responses have the same 
intensity in all conditions, the non-target stimuli responses become weaker as more modalities 
are added in the stimuli design. This results in higher mismatch negativity values and thus, 
higher selection accuracy.

Schreuder et al.. emphasized the importance of sound spatialization in stimuli presentation. 
However, in their case stimuli differed only in pitch and spatialization. In their study, selection 
scores went down below 70% for most subjects when the spatialization modality was removed. 
Our results imply that when stimuli are different in timbre, the spatialization still affects the 
selection accuracy, but not so drastically. In the 300ms ISI conditions, the average accuracy of 
TimSp modality is 84.3% while in the Timbre modality the accuracy is 80%. In the 175 ms ISI 
conditions, the average accuracy of TimSp modality is 91.4% and the accuracy of the Timbre 
modality is 88.57%.

As seen in table 5, the online accuracy in the Speller experiment is 82.45%, while for the same 
conditions and subject the average in the auditory modality experiment was 96.67%. This lower 
performance of the speller, compared to the online performance, was also reported by Schreuder 
et al. [7, 8], where the average accuracy in the BCI experiment was 94%, while in the speller the 
average accuracy is 77.4%, resulting in a lower ITR.  This difference can be explained by three 
reasons. Firstly, in the speller experiment, the target sound is not played back to the users, so the 
users have to memorize the sound stimulus. Secondly, the auditory speller consists of a much 
bigger amount of trials. This might lead to loss of concentration due to tiredness. 

5. Conclusions

We have presented a multi-class BCI system based solely on auditory stimuli, which makes use 
of low-cost EEG technology. We have explored timbre-pitch-spatial, timbre-spatial, and timbre-
only combinations of timbre, pitch and spatial auditory stimuli and three inter-stimuli intervals 
(150ms, 175ms and 300ms). We evaluated the system by conducting an oddball task on 7 
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healthy subjects. The maximum accuracy is found in the TimbPiSp175 condition (97.1%), 
followed by the TimPiSp150 condition (92.86%), TimbSp175 condition (91.4%), Timb175 
condition (88.57%), TimPiSp300 condition (88.57%), TimbSp300 condition (84.3%) and 
Timb300 condition (80%). The maximum average ITR is found in the 150ms ISI, TimPiSp 
condition (14.85 bits/min, with 9.43 iterations). Lower Inter-Stimulus Intervals lead to higher 
ITR, while as more discriminating cues are added the selection accuracy and ITR increases.  
Based on the TimPiSp modality, an auditory P300 speller was implemented and evaluated by 
asking users to type a 12-characters-long phrase. Six out of 7 users completed the task. The 
average spelling speed was 0.56 chars/min and best subject’s performance was 0.84 chars/min. 

In this study we made use of an EEG device which is valued at about 50-100 times less costly 
than medical/research quality devices. However, interestingly our results are comparable to those 
achieved by medical devices. The obtained results show that the proposed auditory BCI is 
successful with healthy subjects and may constitute the basis for future implementations of more 
practical and affordable P300-based BCI systems. However, the high amount of noise introduced 
during some of the sessions (high epoch rejection rate in off-line analysis) affects the accuracy of 
the system, and thus for crucial BCI applications a more robust and stable EEG device should be 
used. 
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Figure 1

Experiment setup

For all experiments two loudspeakers were used to spatialize the stimuli.
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Figure 2

A session of the 175 ms ISI condition

Each session consisted of 10 trials. Before each trial, a random stimulus was played 

back as the target stimulus. In the case of 175ms ISI conditions a trial consisted of 25 

repetitions of all stimuli in a random order and lasted for 26.25secs. In the case of 

300ms (15 repetitions) and 150ms (25 repetitions) ISI conditions each trial lasted 27 

and 22.5 seconds, respectively. In the on-line sessions, the detected target stimulus 

was played-back after each trial.
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Figure 3

Stimuli presentation of a repetition for the TimPiSp175 condition and averaged ERP 

response.

The averaged ERP response shown is measured in the F3 channel of all users for the 

TimPiSp175 condition. The red line corresponds to the target epochs and the black 

line corresponds to the non-target epochs. The ERP responses follow the periodicity 

of the stimuli presentation.
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Figure 4

Mapping of stimuli into letters

For selecting a particular letter, first the column containing the letter is to be selected 

(by attending to the corresponding stimulus) and then the row containing the letter is 

to be selected.
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Figure 5

Acquiring a Spatial filter and a two class LDA Classifier.

After band-pass filtering (1-12Hz) and down-sampling from 128 to 32Hz, a xDawn 

algorithm is used to obtain a 14 to 3 channels spatial filter. For each sub-trial a 250 to 

750ms after stimulus presentation epoch was created in order to obtain a 48-features 

vector. The training data consisted of 900 sub-trials (150 target) in the 300ms condition 

and 1500 sub-trials (250 target) in the 175 and 150ms conditions. Using these data a 2 

class LDA classifier was trained to discriminate target from non-target epochs.
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Figure 6

Voting Classifier

Similarly to the training session, the online session consists of 10 trials. For every 

sub-trial, the obtained LDA classifier outputs a hyper-plane distance value. At the end 

of each trial, a Voting Classifier outputs as target the stimulus that has the minimum 

sum of Hyper-plane distances over the N number of sub-trials (where N is 15 for the 

300ms condition and 25 for the 175 and 150ms conditions).
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Figure 7

On-line performance and ITR for all number of repetitions

(a,b) Averaged on-line performance and ITR of all subjects for the 175 and 150ms conditions 

for different number of repetitions. (c,d) Averaged on-line performance and ITR of all subjects 

for the 300ms conditions for different number of repetitions.
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Figure 8

175ms ISI Gran Average
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Figure 9

300 ms ISI Gran Average
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Figure 10

300msTPS condition all subjects 10 electrodes average
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Figure 11

300msTS condition all subjects 10 electrodes average
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Figure 12

300msT condition all subjects 10 electrodes average
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Table 1(on next page)

Cue properties in the different conditions
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Timb TimSp TimPiSp

Pitch (Hz) Stimuli Pitch Stimuli Spatial Pitch Stimuli Spatial

130.81 Bell 130.81 Bell -45 23.123 Bell -45

130.81 Snare Drum 130.81 Snare Drum -27 51.91 Cello -27

130.81 Hi Hat 130.81 Hi Hat -9 116.541 Organ -9

130.81 Guitar 130.81 Guitar 9 261.626 Guitar 9

130.81 Kalimba 130.81 Kalimba 27 587.330 Kalimba 27

130.81 Claps 130.81 Claps 45 1318.51 Bali bell 45

 
Table 1: Cue properties in the different conditions.
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Table 2(on next page)

Results for Timbre Pitch Spatial (TimPiSp) modality

For each condition and each user is given: (i) the Selection Accuracy and in 

parenthesis the Number of Repetitions Required, (ii) the Maximum ITR achieved and in 

parenthesis the Number of Repetitions that maximize it, under the constraint that at 

least a 70% of accuracy is achieved, (iii) the Amplitude in V and (iv) the Latency in msμ  

of the P300 peak in the (v) given position and finally (vi) the percentage of rejected 

epochs during the off-line analysis.
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M30 100 (7) 23,3 (3) 7,28 479 F8 4,2 100 (12) 15,9 (5) 5,24 639 F8 3,8 100 (11) 13.32 (7) 3.55 427 F8 1.2

M46 80 (13) 3,59 (13) 0,13 659 F4 0,2 90 (21) 11,5 (5) 2,36 478 F4 2,1 100 (23) 7.85 (16) 3.64 484 F4 0.7

M36 70 (8) 4,2 (8) 6,95 458 F4 0,9 100 (14) 13,4 (8) 6,99 505 F4 1,4 90 (10) 15.54 (6) 6.66 378 F4 41.5

M28 100 (15) 5,83 (8) 0,079 613 AF4 2,9 100 (25) 5,75 (10) 2,76 597 AF4 2,9 90 (24) 15.54 (6) 4.02 559 AF4 4.2

F28 100 (15) 8,97 (7) 3,53 433 F4 2,7 100 (17) 13,4 (8) 3,14 615 F4 1,9 100 (15) 11.5 (15) 3.07 648 F4 6.3

F58 90 (15) 4,8 (7) 5,18 436 F3 22,6 100 (25) 5,91 (25) 1,79 449 F3 6,9 70 (14) 6.66 (14) 1.42 391 F3 20.4

F57 80 (13) 3,59 (13) 1,25 503 F7 13,4 90 (20) 5 (16) 2,3 248 F7 1,6 100 (23) 33.57 (2) 2.09 267 F7 2.7

Mean 88,5 (12.3) 7,75 (8.4) 3,49 511 6,7 97,1 (19.1) 10,1 (11) 3,51 504 2,94 92.86 (17.1) 14.85 (9.43) 3.49 450.57 11.00
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Table 3(on next page)

Results for Timbre Spatial modality (TimSp)

Fields as in table 1. The ITR is not computed when the limit of 70% accuracy is not reached
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m30 100 (4) 33.5 (1) 6.61 519 F8 11.9 100 (9) 28.7 (2) 4.8 606 F8 1.6
m46 100 (7) 16.7 (2) 7.4 426 F4 0.1 90 (20) 6.15 (13) 5.13 466 F4 0.5
m36 60 (13) - 9.03 369 F4 74.4 100 (9) 15.98 (5) 7.58 388 F4 0.5
m28 100 (6) 14.36 (6) 2.37 602 AF4 2.6 100 (7) 15.98 (5) 2.22 621 AF4 18.3
f28 80 (13) 3.59 (13) 4.83 443 F4 3.3 100 (17) 26.64 (3) 4.1 441 F4 0.7
f58 60 (13) - 1.83 390 F3 12.7 80 (23) 3.47 (23) 2.77 296 F3 40
f57 90 (15) 4.8 (7) 1.57 245 F7 0.8 70 (10) 5.75 (10) 3 258 F7 2.5

Mean 84.3 (10.1) 10.4 (4.1) 4.8 428 15.1 91.4 (13.6) 14.7 (8.71) 4.2 439 9.16
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Table 4(on next page)

Results for the Timbre modality. Fields as in table 1
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m30 100 (5) 20,93 (3) 6,29 589 F8 0,4 100 (24) 9.99 (8) 0,19 649 F8 3,2
m46

70 (12) 2,8 (12) 5,45 546 F4 5,9 70 (14)
4.11 
(14) 4,48 421 F4 7,8

m36
60 (14) - 4,6 403 F4 4,9 100 (5)

39.96 
(2) 8,62 341 F4 0

m28 80 (7) 6,66 (7) 2,05 551 AF4 1,5 90 (17) 9.99 (8) 2,59 559 AF4 1,2
f28

90 (14) 6,71 (5) 4,17 415 F4 4,7 90 (14)
19.18 

(3) 5,22 382 F4 1,1
f58 80 (7) 6,66 (7) 8,37 392 F3 28,9 90 (17) 9.99 (8) 8,9 641 F3 15,9
f57

80 (10) 4,8 (7) 1,84 316 F7 1,5 80 (20)
4,43 
(13) 2,44 409 F7 1,8

Mean
80 (9.9)

6,94 
(5.86) 4,68 458,86 6,83

88.57 
(15.86)

13.95 
(8) 4,63 486,00 4,43
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Table 5(on next page)

Auditory Speller Experiment results
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Subject Total 
Time(minutes)

Condition 
Used

Online 
Accuracy 
(speller)

Expected 
Accuracy 
(auditory 
modality 
experiment
)

Chars/min ITR 
(bits/min)

M30 14.24 TimPiSp15
0

93.33% 100% 0.84 4.37

M46 35 TimPiSp17
5

76% 100% 0.4 2.59

M36 16.16 TimPiSp15
0

88.23% 90% 0.74 3.76

M28 25.64 TimPiSp15
0

81.48% 90% 0.47 3.08

F28 19 TimPiSp15
0

85% 100% 0.63 3.42

F57 43.7 TimPiSp15
0

70.65% 100% 0.27 2.17

Average 27.55 82.45 % 96.67% 0.56 3.23
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Table 6(on next page)

Summarizing the results of proposed auditory P300 Spelling paradigms

The optimal number of repetitions columns clarifies whether the reported ITR is 

acquired when computing the optimal number of repetitions to maximize the ITR, 

when maintaining a selection accuracy of at least 70%
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Discriminating 
Cues

Optimal 
Number of 
Repetitions

Number of 
Subjects

ISI (ms) Average 
ITR 
(bits/min)

Schreuder
et al, 2011

Pitch,
Spatial

Yes 16 175 5.26

Current 
Study

Timbre, Pitch, 
Spatial

No 7 150, 175 3.23

Käthner et
al, 2012

Pitch, Spatial No 20 420 2.76

Klobassa et
al, 2009

Timbre, Pitch No 5 500 1.86

Furdea et
Al, 2009

Speech No 13 625 1.54
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