
pyAffy: An efficient Python/Cython1

implementation of the RMA method for2

processing raw data from Affymetrix3

expression microarrays4

Florian Wagner1,2,*
5

1Graduate Program in Computational Biology and Bioinformatics, Duke University,6

Durham, NC, USA7

2Center for Genomic and Computational Biology, Duke University, Durham, NC, USA8

*Email: florian.wagner@duke.edu9

ABSTRACT10

Robust multi-array average (RMA) is a highly successful method for processing raw data from Affymetrix
expression microarrays. However, most of the work on microarray data processing predates the
widespread use of Python in scientific computing. Here, I describe pyAffy, an efficient implemen-
tation of the RMA method in Python/Cython. Using data from the MAQC project, I show that this
implementation produces virtually identical results compared to the RMA reference implementation in the
affy R package, while running more than five times faster and consuming significantly less memory. I
also show how individual steps of the RMA method affect the final expression estimates. The source
code for pyAffy is available from PyPI and GitHub (https://github.com/flo-compbio/pyaffy)
under an OSI-approved license. I intend to periodically revise this manuscript to ensure that it accurately
reflects the functionalities available in the pyAffy Python package.

11

12

13

14

15

16

17

18

19

20

Keywords: microarray, expression, transcriptomics, Affymetrix, RMA, normalization, Python, Cython21

INTRODUCTION22

The development of high-density DNA microarrays in the late 1990s represented a breakthrough in23

terms of the accuracy and the price at which expression levels could be measured on a genome-wide24

scale (Brown and Botstein 1999). In subsequent years, much work was carried out to develop, validate,25

and benchmark computational methods for deriving gene expression levels from microarray data, e.g.26

as part of the MAQC project (Shippy et al. 2006; Tong et al. 2006). However, since the emergence27

of next-generation sequencing and its adoption for expression profiling (Mortazavi et al. 2008), most28

computational method development has (sensibly) focused on accurately and efficiently estimating29

expression levels from RNA-Seq data (e.g., Pertea et al. 2015).30

Despite the dominance of RNA-Seq as the standard platform for expression profiling today, and the31

exciting prospects of even more powerful technologies currently under development, there is no reason32

to ignore the large amount of microarray expression data that has already been accumulated in public33

databases. The NCBI GEO database (Barrett et al. 2013) and the EBI ArrayExpress database (Kolesnikov34

et al. 2015) contain more than 40,000 and 7,000 microarray-based expression datasets, respectively (see35

Methods for how these numbers were ascertained). Some of the most commonly used microarray designs36

were manufactured by Affymetrix: In the GEO database, about 11,800 datasets (approx. 25%) relied on37

one of five Affymetrix array designs (see Table 1).38

While processed versions of these datasets (i.e., expression matrices) are often stored in the database39

alongside the raw data, there are many reasons for why one would want to download and process the raw40

data. The first and most obvious one is consistency: Different researchers have used different methods or41

different parameter settings to process their data, resulting in inconsistencies and systematic biases when42

different datasets are combined. Second, some researchers may also have chosen suboptimal methods43

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1790v1 | CC-BY 4.0 Open Access | rec: 27 Feb 2016, publ: 27 Feb 2016

https://github.com/flo-compbio/pyaffy

Microarray Design # Datasets
Affymetrix Human Genome U133 Plus 2.0 4,232
Affymetrix Mouse Genome 430 2.0 3,585
Affymetrix Mouse Gene 1.0 ST 1,651
Affymetrix Human Gene 1.0 ST 1,286
Affymetrix Human Genome U133A 1,043

Table 1. Number of datasets in the NCBI GEO database for various Affymetrix microarray designs (as
of 2/24/2016).

or otherwise inadvertantly introduced artifacts during processing of the raw data. A third concern is44

reproducibility: If the original software used to generate the expression values is no longer available,45

or if the version and parameters used are not fully documented in the database, it may be difficult46

or even impossible to reproduce the expression values from the raw data. Any conclusions based on47

such data would therefore be difficult to validate externally. Lastly, many processing methods involve48

transformations such as quantile normalization (B. M. Bolstad et al. 2003), which depend on the joint49

distribution of expression values in all samples. However, frequently only a subset of the samples in a50

study are of interest. In these cases, one would want to exclude the other samples before normalization,51

again making it necessary to process the raw data.52

Expression microarray technologies employed by Affymetrix and its competitors have been extensively53

reviewed in the literature (see e.g., Lipshutz et al. 1999; Bumgarner 2013). Briefly, Affymetrix expression54

microarrays are glass slides that typically contain more than one million probes. A probe is a cluster55

of identical, in-situ synthesized 25-mer single-stranded DNA oligonucleotides designed to hybridize to56

biotinylated cRNA (anti-sense RNA generated from cDNA by in-vitro transcription) with a complementary57

base sequence. The probe sequences are designed with the aim of matching transcript sequences of58

a single gene in the genome, and there are 11-20 probes for each gene present on the array, forming59

a so-called probe set. Once cRNA has been hybridized to the array, it can then be stained using a60

streptavidin-conjugated fluorescent dye, and a specialized scanner is used to measure the intensity of the61

fluorescent light emitted at the position of each feature.1 These intensity values contain information about62

the expression level of each gene in the original RNA extraction, and constitute the most important type63

of raw data produced by Affymetrix microarrays.64

Generally speaking, methods that attempt to derive accurate gene expression levels from raw microar-65

ray data must address several issues: First, some microarray designs were completed at a time when66

databases of gene transcript sequences contained inaccurate and/or redundant information. In those cases,67

the sequences of a significant fraction of probes may not match the genes they were supposed to target, or68

they may not be specific to that gene, resulting in undesired cross-hybridization effects. Such problems69

can be effectively addressed by re-mapping and re-annotating probe sequences, which has been done70

systematically for dozens of different array designs (Dai et al. 2005). These probe annotations are stored71

in custom CDF files, which can be downloaded from the Brainarray website2. A second issue is the72

fact that when scanned, expression microarrays exhibit certain amounts of background fluorescence. In73

other words, even for genes that are not expressed in a sample, the scanner is not expected to measure an74

intensity of zero. This requires each intensity value to be somehow corrected for the background (noise)75

level. Furthermore, the absolute signal intensities may vary systematically between individual arrays,76

making it necessary to adopt procedures that put all arrays in one study ”on the same scale”. Lastly, in77

order to obtain a single expression value per gene, the intensities of all probes in a probe set must be78

summarized in some way.79

One of the most successful methods for processing raw data from Affymetrix expression microarrays80

is the RMA method (Irizarry et al. 2003) which continues to be very actively cited (776 citations in81

2015 alone, according to Google Scholar3). Similarly, the affy R package (Gautier et al. 2004), which82

1For an overview of Affymetrix microarray design and protocols, see also:
http://www.ohsu.edu/xd/research/research-cores/gene-profiling-shared-resource/
project-design/array-technology/affymetrix-genechip-arrays.cfm

2http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/genomic_curated_
CDF.asp

3Source: https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=

2/11

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1790v1 | CC-BY 4.0 Open Access | rec: 27 Feb 2016, publ: 27 Feb 2016

http://www.ohsu.edu/xd/research/research-cores/gene-profiling-shared-resource/project-design/array-technology/affymetrix-genechip-arrays.cfm
http://www.ohsu.edu/xd/research/research-cores/gene-profiling-shared-resource/project-design/array-technology/affymetrix-genechip-arrays.cfm
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/genomic_curated_CDF.asp
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/genomic_curated_CDF.asp
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015

implements the RMA method and also supports the use of custom CDF files (see above), still enjoys great83

popularity, as evidenced by Bioconductor download statistics (a monthly average of about 4,500 distinct84

IP downloads from Bioconductor in 20154). It should be noted that the affy package provides many85

additional functionalities besides performing RMA, including alternative processing and normalization86

methods and tools for performing quality control. However, perhaps due to the aforementioned shift87

in attention to RNA-Seq data, software packages for efficiently processing microarray expression data88

do not appear to be readily available in other programming environments. In particular, I was unable89

to find a good replacement for the affy package in Python. I therefore set out to create an efficient90

implementation of the RMA algorithm in Python/Cython, resulting in the pyAffy package.91

RESULTS92

pyAffy expression values are nearly identical to those produced by affy93

To assess the fidelity of the pyAffy implementation of RMA, I downloaded the raw data for all Affymetrix94

U133 Plus 2.0 microarray samples from the MAQC study. This dataset comprises four different types95

of samples (A-D), assayed at six different sites (1-6). Each of the resulting 24 datasets (1A-D, 2A-D,96

etc.) is available in five replicates, for a total of 120 samples. To test whether expression values produced97

by pyAffy are identical to those produced by affy, I processed each of the 24 datasets independently98

with both packages. A comparison of the expression values generated by each package based on the first99

replicate from each dataset showed that both implementations produce nearly identical expression values100

(see Figure 1).101

pyAffy outperforms affy in terms of speed and memory usage102

In order to compare the speed and memory usage of the RMA implementations in both affy and103

pyAffy, I used both packages to process one small (n = 5) and one large (n = 120) dataset. The small104

dataset consisted of the five MAQC replicates from site 2, sample type ”A” (MAQC-2A). The large dataset105

consisted of all MAQC datasets for sample types A-D (MAQC-all). The resulting run times and peek106

memory usage values are shown in Table 2. On both datasets, pyAffy processed the samples about five107

times faster than affy, while requiring significantly less memory, especially for the larger dataset (1 GB108

vs 5.4 GB).109

Dataset Number of
samples

affy run
time (s)

pyAffy run
time (s)

affy peak
memory

usage (MB)

pyAffy peak
memory

usage (MB)
MAQC-2A 5 108 23 415 140
MAQC-all 120 619 113 5,400 1,000

Table 2. Benchmark results pm am for processing MAQC data with affy and pyAffy. The
benchmark results for the affy package do not include the time required for creating a custom CDF R
package using makecdfenv.

The effects of individual steps in the RMA algorithm110

The RMA algorithm can be understood as a series of individual decisions and procedures:111

1. Before any processing is done, all data from mismatch (MM) probes is discarded. In contrast to the112

primary, so-called perfect match (PM) probes, these probes harbor a single-nucleotide mismatch113

when compared to their intended gene target. They were originally intended to control for cross-114

hybridization artifacts, but Irizarry et al. (2003) demonstrated that ignoring MM intensities resulted115

in more accurate expression measures than previously adopted expression measures that attempted116

to take the intensities of MM probes into account.117

2. The RMA model for correcting intensities for background noise (Irizarry et al. 2003; Bolstad 2004)118

is applied to each sample.119

9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
4Source: http://bioconductor.org/packages/stats/bioc/affy.html

3/11

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1790v1 | CC-BY 4.0 Open Access | rec: 27 Feb 2016, publ: 27 Feb 2016

https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
https://scholar.google.com/scholar?hl=en&as_sdt=5%2C34&sciodt=0%2C34&cites=9621984605976884670&scipsc=&as_ylo=2015&as_yhi=2015
http://bioconductor.org/packages/stats/bioc/affy.html

Figure 1. Comparison of RMA expression values produced by affy and pyAffy. Each plot shows
the result of an independent analysis, in which raw data from the same set of five replicates was processed
with both packages. Shown are scatter plots of the log-scale expression values (blue) of all genes in the
first replicate of each analysis. The horizontal (x) axis in each plot represents the affy values, and the
vertical (y) axis the pyAffy values. The gray line indicates the identity function. All plots show the
entire range of expression values. Axis scales are adjusted separately for each plot.

3. The entire probe-by-sample intensity matrix is subjected to quantile normalization (B. M. Bolstad120

et al. 2003).121

4. All intensity values are log2-transformed.122

5. Probes are grouped according to the gene (probe set) they belong to. For each gene, a sub-matrix123

containing only the intensities of probes of that gene is generated. Then, median polish (Tukey124

1977) is applied to this sub-matrix, resulting in estimates for row effects, column effects, and an125

overall effect. The expression values of the gene then correspond to the column effects plus the126

overall effect. Here, the median polish procedure serves to summarize the data from different127

probes for each gene.128

I decided to again use the five replicates from the MAQC-2A dataset (see above) to better understand129

how some of the key steps of the RMA algorithm affect the final expression values. I first compared the130

RMA-based expression levels produced by pyAffy to expression levels obtained directly from the raw131

4/11

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1790v1 | CC-BY 4.0 Open Access | rec: 27 Feb 2016, publ: 27 Feb 2016

data with minimal processing. In this analysis, the intensities of MM probes are not discarded (Step 1),132

the background correction model is not applied (Step 2), quantile normalization is not performed (Step133

3), and median polish is not used to summarize probe-level data (Step 5). Instead of median polish, the134

median intensity value across probes is used. As can be seen from Figure 2 (top row), omitting all these135

steps of the RMA algorithm results in a very different global distribution of expression values, as well as136

a significant amount of variation at the gene level (r ≈ 0.93).137

Figure 2. Effects of individual steps of the RMA algorithm (as implemented in pyAffy) on final gene
expression levels. Each row shows the expression levels obtained with a modified version of the RMA
algorithm compared to the standard version, for all five replicates of the MAQC-2A dataset. Gene
expression levels and the identity function are shown as in Figure 1. All plots are shown on the same
scale, and numbers indicate Pearson correlation coefficients.

To study the effect of individual steps in the RMA algorithm in isolation, I repeated the previously138

described anlaysis while only omitting a single step at a time. Not excluding MM probes had the most139

dramatic effect (see Figure 2, second row), affecting both the global distribution and introducing gene-140

level variation. In contrast, omitting the background normalization step only changed the distribution,141

but did not introduce gene-level variation (third row). This was expected based on the details of how the142

RMA background correction model is designed (see Methods). Somewhat surprisingly, the omission143

of quantile normalization did not affect expression levels much, introducing only minimal amounts of144

gene-level variation (fourth row). One reason for this might have been that all samples in each analysis145

were technical replicates, and were therefore expected to exhibit the same distribution of expression146

values. If the datasets analyzed had been more heterogeneous, the application of quantile normalization147

could have had a much more pronounced effect. Finally, the omission of median polish introduced small148

but noticeable amounts of gene-level variation, especially for lowly expressed genes (bottom row).149

5/11

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1790v1 | CC-BY 4.0 Open Access | rec: 27 Feb 2016, publ: 27 Feb 2016

DISCUSSION150

Current limitations of pyAffy151

Currently, pyAffy has a number of limitations which I intend to address in future work:152

• pyAffy’s CEL file parser cannot handle CEL files in ”Command Console” format (all MAQC153

CEL files were in ”Version 3” or ”Version 4” formats. (This is an important limitation that I will154

address first.)155

• pyAffy is ignorant of missing data: Individual probes on microarrays can be masked as ”outliers”,156

either automatically by the Affymetrix image processing software, or manually by the researcher.157

Currently, pyAffy treats all data as ”present”, ignoring all information about outliers etc.158

• Working with compressed (gzip’ed) CEL files is only supported on Unix and Unix-like platforms159

(i.e., Linux and Mac OS).160

• pyAffy has not been tested on microarray designs other than the Human Genome U133 Plus 2.0.161

Given these and other limitations, it is clear that pyAffy does not yet provide the same range of162

features and functionalities as the affy R package. The goal of the work described here was to provide163

an efficient implementation of the RMA method that produces highly similar values compared to the164

implementation found in affy. pyAffy therefore represents an alternative to researchers who either165

prefer to use a Python package or simply want to benefit from the shorter processing time and smaller166

memory footprint for this particular task. Studying the literature in combination with analyzing the affy167

and preprocessCore source code also proved to be an illuminating experience that facilitated a more168

thorough understanding of the RMA method, as well as the relationship between the processed and the169

raw data.170

Practical considerations in comparing expression microarray to RNA-Seq data171

For large datasets, the RMA implementation presented here processes microarray data in under one second172

per sample (see Table 2). In my experience, this is roughly 50 times faster than a RNA-Seq processing173

pipeline that uses efficient tools for read mapping and expression quantification (Kim, Langmead, and174

Salzberg 2015; Pertea et al. 2015). In combination with the significantly smaller file sizes, this can make175

microarray data much easier to work with than RNA-Seq data. For example, when the same experiment176

has been carried out using both platforms, and both datasets are stored in a database like NCBI GEO, a177

researcher might choose to work with the microarray data initially, simply because it takes much less time178

to download and process the raw data. Indeed, it might be useful to incorporate a feature in the pyAffy179

package that would allow researchers to automatically download and process arbitrary datasets based on180

GEO series accession number.181

METHODS182

NCBI GEO and EBI ArrayExpress statistics183

All statistics were collected on 2/24/2016. The current number of microarray expression studies in184

the NCBI GEO database was obtained from the summary page (http://www.ncbi.nlm.nih.185

gov/geo/summary/), under ”Expression profiling by array”. The current number of microarray186

expression studies in the EBI ArrayExpress database was obtained from the ArrayExpress browser187

(https://www.ebi.ac.uk/arrayexpress/browse.html), by using the ”experiment type”188

filters ”RNA assay” and ”array assay” in combination, and selecting ”ArrayExpress data only”.189

Efficient parsing of Affymetrix CEL and CDF files190

The first challenge in processing Affymetrix expression data is to implement an efficient parser for the191

CEL files containing the intensity values. CEL files come in three different formats (one plain-text192

and two binary), which are well-documented by Affymetrix5. My initial implementation of a CEL file193

parser in Python was decidedly too slow, taking approximately 50 times longer than the current Cython194

implementation. Cython as a programming language is a superset of Python, and the Cython compiler195

generates C code that makes calls to the Python C-API in order to work with Python objects Behnel et al.196

2011. Importantly, Cython also provides an interface for the efficient manipulation of NumPy arrays. All197

5See: media.affymetrix.com/support/developer/powertools/changelog/gcos-agcc/cel.html

6/11

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1790v1 | CC-BY 4.0 Open Access | rec: 27 Feb 2016, publ: 27 Feb 2016

http://www.ncbi.nlm.nih.gov/geo/summary/
http://www.ncbi.nlm.nih.gov/geo/summary/
http://www.ncbi.nlm.nih.gov/geo/summary/
https://www.ebi.ac.uk/arrayexpress/browse.html
media.affymetrix.com/support/developer/powertools/changelog/gcos-agcc/cel.html

portions of the Cython code that do not require Python C-API calls run extremely fast. This makes the198

Python/Cython a very attractive choice for implementing bioinformatics tools, which can often benefit199

enormously from the combination of high-level programming with flexible data structures in Python on200

the one hand, and the runtime efficiency obtained with Cython on the other. The Cython CEL file parser201

relies on file reading and string manipulation routines from the C standard library, and also makes use of202

named pipes6 to efficiently unzip any gzip-compressed CEL files in the background.203

Another parsing task is to read the custom CDF files from the Brainarray website. These are plain-text204

files in ”Windows INI”-style format (complete with Windows-style \r\n newlines). Again, the CDF205

file format is well-documented by Affymetrix7. I initially used a Python implementation based on the206

configparser package8 for parsing, but this was again much too slow compared to the Cython-based207

implementation in use now. The current implementation supports reading only perfect match (PM) probes208

(the default), only mismatch (MM) probes, or all probes. The parser uses the following criterion to209

determine whether a probe (corresponding to a row in the CDF file) represents a PM or an MM probe: If210

the CBASE attribute (eigth column) matches the TBASE attribute (ninth column), the probe is considered211

an MM probe. Otherwise, it is considered a PM probe. Based on the validation results (see Figure 1), I212

believe that this is the correct assignment, even though I did not find this information in the documentation.213

Implementation of the RMA algorithm in Python/Cython214

To create a faithful implementation of the RMA algorithm, I primarily relied on three sources: First, the215

well-known RMA paper by Irizarry et al. (2003), which describes the general methodology. Second,216

the PhD dissertation thesis by Bolstad (2004), which contains a derivation of the formula that is used217

to calculate the background-corrected signal, and goes into more detail regarding the way parameters218

are estimated. Finally, I analyzed relevant parts of the source code of the affy (version 1.48.0),219

preprocessCore (version 1.32.0), and stats (version 3.1.1) R packages. The affy package220

provides the ReadAffy and expresso functions that serve as front-ends for reading the data and221

applying the RMA method, respectively. The background correction and quantile normalization steps222

are implemented in C as part of the preprocessCore package, and the median polish algorithm is223

implemented in the stats package. While a detailed line-by-line analysis of the relevant portions of224

code in those packages is beyond the scope of this manuscript, I will summarize some similarities and225

differences between the implementations in affy and pyAffy in the following paragraphs.226

The RMA background correction model (Irizarry et al. 2003) assumes that each sample (microarray)227

exhibits a certain average background level βi (here, i is the sample index). Irizarry et al. 2003 suggested228

that a “naive” approach would be to simply substract βi from all intensity values on array i, but that this229

would fail since some intensity values would become negative. However, rather than simply setting such230

values to zero (or perhaps 1, to obtain zero values after log-transformation), they proposed to treat the231

observed probe intensities PMi j (j is the probe index) as realizations of a random variable that represents232

the sum of a background intensity variable bi with a truncated normal distribution, and an exponentially233

distributed signal variable si, with bi and si independent. Why this particular model with these particular234

distributions was chosen is not completely clear; according to Bolstad (2004, p. 21) (who is not an author235

of Irizarry et al. (2003)), it is “motivated by looking at the distribution of probe intensities“. This is curious236

insofar as the probability density function of an exponential distribution is strictly decreasing, while the237

probability of an intensity representing true signal should generally increase for higher intensities. As238

further described in Bolstad (2004, p. 21), the RMA method relies on an ”ad-hoc” approach for estimating239

the parameters of the normal and exponential distributions. The mode of the kernel density estimate of240

the probe intensities is used as the normal (noise) mean µ , and the “lower tail“ of the density is used241

to estimate the normal (noise) standard deviation σ . Finally, “an exponential is fitted to the right tail to242

estimate α”, the parameter of the exponential (signal) distribution. The adjusted signal intensity is then243

given by the conditional expectation E(X | S = s)9. I visualized the net effect of the RMA background244

correction model on MAQC data, and found that it retains a certain fraction of the signal (i.e., the intensity245

value) that generally increases with probe intensity, except for very low intensities, where the model246

6See: https://en.wikipedia.org/wiki/Named_pipe
7See: http://media.affymetrix.com/support/developer/powertools/changelog/gcos-agcc/

cdf.html
8https://docs.python.org/3/library/configparser.html
9see (Bolstad 2004, p. 20f) for the formula.

7/11

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1790v1 | CC-BY 4.0 Open Access | rec: 27 Feb 2016, publ: 27 Feb 2016

https://en.wikipedia.org/wiki/Named_pipe
http://media.affymetrix.com/support/developer/powertools/changelog/gcos-agcc/cdf.html
http://media.affymetrix.com/support/developer/powertools/changelog/gcos-agcc/cdf.html

retains a majority of the signal (see Figure 3). However, this inconsistency does not appear to significantly247

affect the data in practice (see Figure 2, third row).248

Figure 3. The effect of the RMA background correction model. For one sample from the MAQC study,
kernel density estimtates of the distributions of the PM and MM probe intensities are shown in gray (the
MM probes are not used for parameter estimation and are only shown for refernce). For each intensity
level, the fraction of signal retained after applying RMA background correction is shown in blue (c.f.
Figure 2, third row). The unexpected rise of the fraction of signal retained for very low intensities can be
explained by the choice of an exponential distribution to model the true signal, which has its maximum
density at x = 0. However, this effect does not appear to have a noticeable impact on the data in practice.

The affy package relies on C code in the preprocessCore package to implement this procedure.249

Specifically, the parameter values are estimated by the function rma bg parameters (line 216 in250

rma_background4.c10), which itself calls the functions get sd to estimate σ and get alpha to251

estimate α . Three implementation details appear noteworthy: First, in the course of estimating the three252

parameters (µ , σ , and α), three different kernel density estimations are performed (lines 227, 237, and253

196), each one using an Epanechnikov kernel with a bandwidth estimated according to Silverman’s rule254

of thumb11. Second, the estimate of σ appears to get arbitrarily scaled by a factor of
√

2 (line 216).255

Third, the estimate of α is set to the mode of a kernel density estimated based on the probes with original256

intensity values larger than µ . However, this estimate is obtained after substracting µ from the intensity257

values of these probes (line 193). It is unclear how this procedure is useful for fitting “an exponential [...]258

to the right tail [of the distribution of probe intensities] to estimate α”. Due to the L-shaped distribution259

of probe intensity values to the right side of µ , this procedure must result in values close to zero — since260

after substracting µ , most intensity values will be close to zero, and so the mode of the density estimate261

will be close to zero as well. After all parameters are estimated, the probe intensity values are adjusted by262

the function rma bg adjust (line 300).263

The RMA implementation in pyAffy optimizes the procedure implemented in the preprocessCore264

package for speed, while attempting to obtain highly similar parameter estimates. Concretely, for esti-265

mating µ , I decided to replace two kernel density estimation steps with a simple histogram calculation266

(with a fixed bin width of 4.0), using the bin with the largest number of probes as a substitute for the267

mode of the density estimate12. I left the estimation of σ (given µ) unchanged and retained the scaling268

factor of
√

2. Finally, based on the observations described above, I decided to simply set α to a fixed269

value value close to zero (0.03). I determined this value empirically, by testing which value would270

result in experssion values that appeared most similar to those produced by affy. Even though this271

procedure of estimating the three parameter appeared radically simplified compared to the one performed272

in preprocessCore, it resulted in highly similar expression values in practice (see Figure 1) while273

10See https://github.com/Bioconductor-mirror/preprocessCore/blob/release-3.2/src/rma_
background4.c.

11See https://github.com/Bioconductor-mirror/preprocessCore/blob/release-3.2/src/
weightedkerneldensity.c#L799 and https://stat.ethz.ch/R-manual/R-devel/library/stats/
html/bandwidth.html.

12More precisely, µ is set to mean of the two edge values of that bin.

8/11

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1790v1 | CC-BY 4.0 Open Access | rec: 27 Feb 2016, publ: 27 Feb 2016

https://github.com/Bioconductor-mirror/preprocessCore/blob/release-3.2/src/rma_background4.c
https://github.com/Bioconductor-mirror/preprocessCore/blob/release-3.2/src/rma_background4.c
https://github.com/Bioconductor-mirror/preprocessCore/blob/release-3.2/src/weightedkerneldensity.c#L799
https://github.com/Bioconductor-mirror/preprocessCore/blob/release-3.2/src/weightedkerneldensity.c#L799
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/bandwidth.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/bandwidth.html

avoiding all three time-consuming kernel density estimation steps.274

Both quantile normalization and median polish are relatively simple algorithms. For quantile nor-275

malization, pyAffy relies on the implementation of quantile normalization from the genometools276

Python package that is also authored by me13. I also implemented median polish using code from the R277

stats package as a template.278

Benchmarking of the affy R package279

In order to process the MAQC microarrray data with using accurate probe annotations, I downloaded the280

corresponding custom CDF file from the Brainarray website14 and used the makecdfenv R package281

to create an annotation package (termed hgu133plus2hsentrezgcdf) for use with affy. I then282

wrote two R scripts to benchmark the affy package: One for the the MAQC-2A dataset, and one for the283

MAQC-all dataset. Both scripts use the ReadAffy function to read compressed (gzip’ed) CEL files284

from the MAQC study (GEO accession: GSE5350), and the expresso function to process the data.285

Specifically, the commands used were:286

dataset <- ReadAffy(
widget=FALSE,
filenames=cel_files,
sampleNames=samples,
celfile.path=cel_dir,
compress=TRUE,
cdfname=’hgu133plus2hsentrezgcdf’

)

eset <- expresso(
dataset,
bgcorrect.method=’rma’,
normalize.method=’quantiles’,
pmcorrect.method=’pmonly’,
summary.method=’medianpolish’

)

write.exprs(eset, file = output_file)

The benchmarking was performed for affy version 1.44.0, using R 3.1.1. Execution time was287

measured by calling the Sys.time() function at the beginning and end of the script and calculating288

the time difference. Memory consumption was measured by monitoring the output of the top Linux289

program (column ”RES”).290

Benchmarking of the pyAffy Python package291

pyAffy does not require preprocessing of the custom CDF annotations, and was directly provided with292

the custom CDF file contained in the Brainarray zip file (see above). The benchmark was performed293

from within a Jupyter notebook, with exact same CEL files as input as for the affy benchmark. The294

commands used were:295

from pyaffy import rma
genes, samples, X = rma(cdf_file, sample_cel_files)
E = ExpMatrix(genes, samples, X)
E.write_tsv(output_file)

The benchmarking was performed for pyAffy version 0.2.0 and genometools version 1.2.2, using296

Python 2.7.9. Execution time was measured by calling the time.time() function at the beginning and297

end of the script and calculating the time difference. Memory consumption was measured as in the affy298

benchmark.299

13See https://pypi.python.org/pypi/genometools.
14Source: http://mbni.org/customcdf/20.0.0/entrezg.download/HGU133Plus2_Hs_ENTREZG_20.0.

0.zip.

9/11

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1790v1 | CC-BY 4.0 Open Access | rec: 27 Feb 2016, publ: 27 Feb 2016

https://pypi.python.org/pypi/genometools
http://mbni.org/customcdf/20.0.0/entrezg.download/HGU133Plus2_Hs_ENTREZG_20.0.0.zip
http://mbni.org/customcdf/20.0.0/entrezg.download/HGU133Plus2_Hs_ENTREZG_20.0.0.zip

Applying RMA with individual processing steps omitted.300

The rma function in the pyAffy takes optional parameters (with default value True) that allow301

individual steps of the RMA algorithm to be skipped (if False is specified). To obtain the ”raw data”302

expression levels shown in the top row of Figure 2, the following command was used:303

rma(
cdf_file, sample_cel_files,
pm_probes_only = False, # no exclusion of MM probes
bg_correct = False, # no background correction
quantile_normalize = False, # no quantile normalization
medianpolish = False # no median polish

)

ACKNOWLEDGMENTS304

I would like to thank Dr. Sandeep Dave for his support.305

REFERENCES306

Barrett, Tanya et al. (2013). “NCBI GEO: archive for functional genomics data sets–update”. In: Nucleic307

Acids Research 41 (Database issue), pp. D991–995. DOI: 10.1093/nar/gks1193.308

Behnel, Stefan et al. (2011). “Cython: The Best of Both Worlds”. In: Computing in Science and Engg.309

13.2, pp. 31–39. DOI: 10.1109/MCSE.2010.118. URL: http://dx.doi.org/10.1109/310

MCSE.2010.118 (visited on 02/10/2015).311

Bolstad (2004). “Low-level analysis of high-density oligonucleotide array data: background, normalization312

and summarization”. PhD thesis. University of California, Berkeley. URL: http://bmbolstad.313

com/Dissertation/Bolstad_2004_Dissertation.pdf (visited on 02/08/2016).314

Bolstad, B. M. et al. (2003). “A comparison of normalization methods for high density oligonucleotide315

array data based on variance and bias”. In: Bioinformatics (Oxford, England) 19.2, pp. 185–193.316

Brown, P. O. and D. Botstein (1999). “Exploring the new world of the genome with DNA microarrays”.317

In: Nature Genetics 21.1, pp. 33–37. DOI: 10.1038/4462.318

Bumgarner, Roger (2013). “Overview of DNA microarrays: types, applications, and their future”. In:319

Current Protocols in Molecular Biology / Edited by Frederick M. Ausubel ... [et Al.] Chapter 22, Unit320

22.1. DOI: 10.1002/0471142727.mb2201s101.321

Dai, Manhong et al. (2005). “Evolving gene/transcript definitions significantly alter the interpretation of322

GeneChip data”. In: Nucleic Acids Research 33.20, e175. DOI: 10.1093/nar/gni179.323

Gautier, Laurent et al. (2004). “affy–analysis of Affymetrix GeneChip data at the probe level”. In: Bioin-324

formatics (Oxford, England) 20.3, pp. 307–315. DOI: 10.1093/bioinformatics/btg405.325

Irizarry, Rafael A. et al. (2003). “Exploration, normalization, and summaries of high density oligonu-326

cleotide array probe level data”. In: Biostatistics (Oxford, England) 4.2, pp. 249–264. DOI: 10.1093/327

biostatistics/4.2.249.328

Kim, Daehwan, Ben Langmead, and Steven L. Salzberg (2015). “HISAT: a fast spliced aligner with low329

memory requirements”. In: Nature Methods 12.4, pp. 357–360. DOI: 10.1038/nmeth.3317.330

Kolesnikov, Nikolay et al. (2015). “ArrayExpress update–simplifying data submissions”. In: Nucleic331

Acids Research 43 (Database issue), pp. D1113–1116. DOI: 10.1093/nar/gku1057.332

Lipshutz, R. J. et al. (1999). “High density synthetic oligonucleotide arrays”. In: Nature Genetics 21.1,333

pp. 20–24. DOI: 10.1038/4447.334

Mortazavi, Ali et al. (2008). “Mapping and quantifying mammalian transcriptomes by RNA-Seq”. In:335

Nature Methods 5.7, pp. 621–628. DOI: 10.1038/nmeth.1226. URL: http://www.ncbi.336

nlm.nih.gov/pubmed/18516045 (visited on 01/11/2012).337

Pertea, Mihaela et al. (2015). “StringTie enables improved reconstruction of a transcriptome from RNA-338

seq reads”. In: Nature Biotechnology. DOI: 10.1038/nbt.3122.339

Shippy, Richard et al. (2006). “Using RNA sample titrations to assess microarray platform performance340

and normalization techniques”. In: Nature Biotechnology 24.9, pp. 1123–1131. DOI: 10.1038/341

nbt1241.342

10/11

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1790v1 | CC-BY 4.0 Open Access | rec: 27 Feb 2016, publ: 27 Feb 2016

http://dx.doi.org/10.1093/nar/gks1193
http://dx.doi.org/10.1109/MCSE.2010.118
http://dx.doi.org/10.1109/MCSE.2010.118
http://dx.doi.org/10.1109/MCSE.2010.118
http://dx.doi.org/10.1109/MCSE.2010.118
http://bmbolstad.com/Dissertation/Bolstad_2004_Dissertation.pdf
http://bmbolstad.com/Dissertation/Bolstad_2004_Dissertation.pdf
http://bmbolstad.com/Dissertation/Bolstad_2004_Dissertation.pdf
http://dx.doi.org/10.1038/4462
http://dx.doi.org/10.1002/0471142727.mb2201s101
http://dx.doi.org/10.1093/nar/gni179
http://dx.doi.org/10.1093/bioinformatics/btg405
http://dx.doi.org/10.1093/biostatistics/4.2.249
http://dx.doi.org/10.1093/biostatistics/4.2.249
http://dx.doi.org/10.1093/biostatistics/4.2.249
http://dx.doi.org/10.1038/nmeth.3317
http://dx.doi.org/10.1093/nar/gku1057
http://dx.doi.org/10.1038/4447
http://dx.doi.org/10.1038/nmeth.1226
http://www.ncbi.nlm.nih.gov/pubmed/18516045
http://www.ncbi.nlm.nih.gov/pubmed/18516045
http://www.ncbi.nlm.nih.gov/pubmed/18516045
http://dx.doi.org/10.1038/nbt.3122
http://dx.doi.org/10.1038/nbt1241
http://dx.doi.org/10.1038/nbt1241
http://dx.doi.org/10.1038/nbt1241

Tong, Weida et al. (2006). “Evaluation of external RNA controls for the assessment of microarray343

performance”. In: Nature Biotechnology 24.9, pp. 1132–1139. DOI: 10.1038/nbt1237.344

Tukey, John Wilder (1977). Exploratory Data Analysis. Addison-Wesley Publishing Company. 714 pp.345

11/11

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1790v1 | CC-BY 4.0 Open Access | rec: 27 Feb 2016, publ: 27 Feb 2016

http://dx.doi.org/10.1038/nbt1237

