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This study combines experimental and modeling approaches in order to investigate the
temporal dynamics of the human brain at rest. The dynamics of the neuronal activity is
modeled with FitzHugh-Nagumo oscillators and the blood-oxygen-level-dependent (BOLD)
time series is inferred via the Balloon-Windkessel hemodynamic model. The simulations
are based on structural connections that are derived from diffusion-weighted magnetic
resonance imaging measurements yielding anatomical probabilities between the
considered brain regions of interest. In addition, the length of the fiber tracks allows for
inference of coupling delays due to finite signal propagation velocities. We aim (i) to
investigate the network topology of our neuroimaging data and (ii) how randomization of
structural connections influence dynamics on top of it. The network characteristics of the
structural connectivity data are compared to density-matched Erdős-Rényi random graphs.
Furthermore, the neuronal and BOLD activity are modeled on both real and random
(Erdős-Rényi type) graphs. The simulated temporal dynamics on both graphs are
compared statistically to capture whether the spatial organization of these network affects
the modeled time series. Results supported that key topological network properties such
as small-worldness of our neuroimaging data are distinguishable from random networks.
Moreover, the simulated BOLD activity on real and random graphs are observed to be
dissimilar. The difference of the modeled temporal dynamics on the brain and random
graphs suggests that anatomical connections in the human brain together with dynamical
self-organization are crucial for the temporal evolution of the resting-state activity.
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ABSTRACT

This study combines experimental and modeling approaches in order to investigate the temporal dynamics
of the human brain at rest. The dynamics of the neuronal activity is modeled with FitzHugh-Nagumo os-
cillators and the blood-oxygen-level-dependent (BOLD) time series is inferred via the Balloon-Windkessel
hemodynamic model. The simulations are based on structural connections that are derived from diffusion-
weighted magnetic resonance imaging measurements yielding anatomical probabilities between the
considered brain regions of interest. In addition, the length of the fiber tracks allows for inference of
coupling delays due to finite signal propagation velocities. We aim (i) to investigate the network topology
of our neuroimaging data and (ii) how randomization of structural connections influence dynamics on top
of it. The network characteristics of the structural connectivity data are compared to density-matched
Erdős-Rényi random graphs. Furthermore, the neuronal and BOLD activity are modeled on both real
and random (Erdős-Rényi type) graphs. The simulated temporal dynamics on both graphs are compared
statistically to capture whether the spatial organization of these network affects the modeled time series.
Results supported that key topological network properties such as small-worldness of our neuroimaging
data are distinguishable from random networks. Moreover, the simulated BOLD activity on real and
random graphs are observed to be dissimilar. The difference of the modeled temporal dynamics on
the brain and random graphs suggests that anatomical connections in the human brain together with
dynamical self-organization are crucial for the temporal evolution of the resting-state activity.

Keywords: brain networks, functional and anatomical connectivity, hemodynamic model, resting
state, time-delayed oscillations

INTRODUCTION 1

Large-scale functional brain connectivity maps are networks of brain regions based on functional interac- 2

tions, i.e. co-activation between these regions (Biswal et al., 1995; Bressler and Menon, 2010; Damoiseaux 3

et al., 2006). In a typical functional magnetic resonance imaging (fMRI) experiment, functional connec- 4

tions are obtained from brain regions, whose corresponding time series of blood-oxygen-level-dependent 5

(BOLD) activity display significant correlations at low-frequencies (< 0.1 Hz). Well organized spatio- 6

temporal low-frequency fluctuations have been reported in BOLD-fMRI signals of a mammalian brain 7

at rest, i.e. in the absence of any stimulation-driven task (Biswal et al., 1995; Damoiseaux et al., 2006; 8

Vincent et al., 2007). Despite important progress over the past few years, the way how functional connec- 9

tivity arises from complex anatomical connectivity still remains poorly understood (Ghosh et al., 2008b; 10

Deco et al., 2009; Cabral et al., 2012, 2014; Vuksanović and Hövel, 2014). 11

Existing models of resting-brain dynamics hypothesize that functional interactions result from a 12

1
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complex interplay between intrinsic brain dynamics and underlying structural connections (Hagmann13

et al., 2008; Ghosh et al., 2008b; Rubinov et al., 2009; Deco and Jirsa, 2012; Vuksanović and Hövel,14

2016a,b). Previously, the neuronal dynamics have been modeled as coupled nonlinear oscillators (Wiener,15

1961; Lopes da Silva et al., 1997; Nunez, 1998, 2000; Poil et al., 2008), Hopf oscillators (Jirsa and16

McIntosh, 2007), Wilson-Cowan systems (Deco et al., 2009), FitzHugh-Nagumo systems (Ghosh et al.,17

2008b; Vuksanović and Hövel, 2016a), and Kuramoto oscillators (Breakspear et al., 2010; Vuksanović18

and Hövel, 2014, 2016b). In particular, these models explore the range of conditions at which functional19

networks emerge from anatomical connections: the role of multiple time-scales in the formation of20

functional connectivity networks (Honey et al., 2007), time delays in the signal propagation between the21

network nodes as well as the system noise (Ghosh et al., 2008a,b), local network oscillations (Deco et al.,22

2009; Cabral et al., 2011), and structural disconnection (Cabral et al., 2012).23

Graph theory offers statistical tools to identify network structures, such as clustering coefficient and24

small-worldness property (Watts and Strogatz, 1998; Newman, 2010). Moreover, it introduces analytical25

or numerical methods to build random graphs, which are often referenced to characterize real-world26

networks. Random networks have been considered extensively as models of real-world networks of27

various types, extensively in ecological systems (May, 1972), in epidemiology (May and Lloyd, 2001;28

Kretzschmar and Morris, 1996), in metabolic pathways (Fell and Wagner, 2000), in social networks29

(Newman et al., 2001), and in neuronal networks of human brain (Watts and Strogatz, 1998; Bullmore and30

Sporns, 2009; Simpson et al., 2011). A well known construction of random networks dates back to the31

study of Paul Erdős and Alfred Rényi in 1959 (Erdős and Rényi, 1959) and these density-matched Erdős-32

Rényi type random graphs are well established. Furthermore, scale-free randomization (Barabási and33

Albert, 1999) and degree-preserving rewiring method citepmaslov2002specificity have been employed in34

last two decades.35

Our investigation provides a deeper insight into the relation between functional and anatomical brain36

connectivity: How is the dynamical process of brain’s functional connectivity shaped by its structural37

topology? The considered networks are constructed from (i) binarized anatomical connectivity (AC) maps38

and (ii) their corresponding randomized counterparts generated via the Erdős-Rényi method (Erdős and39

Rényi, 1959). The neuronal activity and the BOLD fluctuations are simulated on both empirical structural40

and randomized network types using the FitzHugh-Nagumo (FHN) model as proposed in (Ghosh et al.,41

2008a,b; Vuksanović and Hövel, 2015) and the Balloon-Windkessel hemodynamic model (Friston et al.,42

2000), respectively. As system parameters, we vary the network density and the strengths of the delayed43

coupling. The purpose of this study is to explore how the simulated temporal dynamics of brain networks44

differ from the dynamics based on their randomized versions.45

The rest of this paper is organized as follows: In Sec. Materials & Methods, we introduce the empirical46

data set of AC map, describe the construction scheme of brain graphs based on AC map and corresponding47

random graphs. The temporal dynamics of the network nodes emerge from the FHN model and the48

Balloon-Windkessel hemodynamic model for the neuronal dynamics and BOLD time series, respectively49

(FitzHugh, 1961; Friston et al., 2000). The section closes with a summary of the statistical approaches50

used to compare the empirical and simulated data sets. In Sec. Results & Discussion, we compare51

network characteristics of brain and random graphs. Then, we analyze the similarity between the modeled52

temporal dynamics on brain graphs and that on random networks. Finally, Sec. Conclusion summarizes53

the key findings.54

MATERIALS & METHODS55

The Brain Graph56

The AC map is taken from the original study of Iturria-Medina et al. (2008). It is obtained from57

diffusion-weighted magnetic resonance imaging (DW-MRI) measurements with graph-based tractography58

procedures out of 20 healthy subjects (Iturria-Medina et al., 2008). The obtained network is based on59

N = 90 cortical and sub-cortical regions (nodes) defined by automated anatomic labeling (AAL) method60

(Tzourio-Mazoyer et al., 2002). Within the AAL template, the indexes 1,2, . . . ,45 refer to the right61

hemisphere and regions labeled 46,47, . . . ,90 correspond to the left hemisphere (Table 1). The values in62

the AC matrix refer to the probability of two AAL regions being connected at least by a single nervous63

fiber, see Figure 1.64

The brain graphs considered in the present study are generated by binarizing the empirical AC map65

via thresholding, that is, we define a threshold value for the connection probability p of node pairs. Then,66
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Figure 1. Empirical anatomical connectivity (AC) map of human cortex obtained from
diffusion-weighted magnetic resonance imaging (DW-MRI) measurements (Iturria-Medina et al., 2008).
The color bar shows probability of structural connections of node pairs in the AC map. Node index of the
brain regions as in Table 1.

the values greater and equal to p are set to 1 in the connectivity matrix and to 0 otherwise. This way, the 67

resulting binary adjacency matrix reflects the coupling topology of the brain graphs, which are treated 68

as undirected and unweighted networks. In other words, all existing edges are thought to be of uniform 69

weight and nodes interact both ways along an edge connecting them. 70

The Random Graph 71

In order to compare the effects of network structure of the brain graph with a generic network, we 72

construct reference networks with the same network density κ in the form of random graphs. This follows 73

a construction first discussed by Paul Erdős and Alfréd Rényi in their seminal paper (Erdős and Rényi, 74

1959). Given a total number of nodes N and total number of edges L, so-called Erdős-Rényi networks are 75

undirected graphs G(N,L), in which the presence of any edge between two nodes is realized with a fixed 76

probability of L/
(N

2

)
= 2L

N(N−1) (Newman, 2010). This results in a binomial distribution for the number of 77

edges per node, known as the degree. A particular graph G(N,L) is chosen uniformly random out of the 78

set of all potential graphs having N nodes and L edges, which means the same network density κ . 79

In this study, we denote brain graphs as RBG and Erdős-Rényi-type random graphs as RER for notational 80

convenience. For an analysis of these graphs, we use the NETWORKX software package implemented in 81

PYTHON (Hagberg et al., 2008). 82

Figure 2 illustrates an exemplary construction of adjacency matrices depicting the empirical connec- 83

tivity map (panel A) as well as an Erdős-Rényi random graph (panel B). The brain graph is derived from 84

the AC map seen in Figure 1 by applying a binarization threshold of p = 0.54. 85

The threshold range in this study is chosen to be in the 0.34≤ p≤ 0.82. The lower bound at p = 0.34 86

excludes extremely densely connected RBG, i.e. almost all nodes connected to every other node. The 87

upper limit is set to p = 0.82, when RBG becomes disconnected. 88

FitzHugh-Nagumo Model for Neuronal Activity Simulations 89

The theoretical model of choice for the neuronal activity is the FitzHugh-Nagumo (FHN) system that 90

phenomenologically describes physiological states of nerve membrane potential (FitzHugh, 1961; Nagumo 91

et al., 1962). The FHN model is used to compute time series of neural activity i.e. activity of the neural 92

populations placed in the regions of interest defined by AAL. 93

The local dynamics described by the FHN model consist of an activator variable x and an inhibitor
variable y. Following the notation of Ghosh et al. (2008a,b), it is given by the following nonlinear
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Figure 2. Construction of adjacency matrices: (A) The empirical AC map derived from DW-MRI data is
binarized at a connection probability value p = 0.54. The black squares represent 1’s indicating edges
between nodes, whereas the white squares represent 0’s implying no edge. The node index is chosen
according to Table 1 (see Appendix). (B) An Erdős-Rényi random graph of the same network density.

differential equations:

ẋ = τ

(
y+ γx− x3

3

)
(1a)

ẏ =−1
τ
(x−α +βy), (1b)

where τ denotes the time scale between the fast x- and slow y-variable, and γ , α , β are system parameters.94

x and y are considered to capture the dynamics of a neuronal population. The parameters in the FHN95

model are chosen such that solutions exhibit a damped oscillatory behavior for each node: α = 0.85,96

β = 0.2, γ = 1.0, and τ = 1.25 (Vuksanović and Hövel, 2016a). Thus, the fixed point of the system is a97

stable focus.98

In order to simulate the neuronal activity, the FHN units are coupled as described by the following set
of equations (Ghosh et al., 2008b; Vuksanović and Hövel, 2016a):

ẋi = τ

(
yi + γxi−

x3
i

3

)
− c

N

∑
j=1

ai jx j (t−∆ti j)+Dnx (2a)

ẏi =−
1
τ
(xi−α +βyi)+Dny, (2b)

where indexes i, j = 1, . . . ,N represent any node among the N = 90 AAL regions, c is the coupling99

strength, which scales the mutual time-delayed interactions, nx, ny represent Gaussian white noise sources100

with zero mean and unity variance and D is the noise strength. Here,
{

ai j
}

denotes the connectivity101

between nodes i and j in the adjacency matrix obtained from binarizing AC map at a specific connection102

probability (p) for the case of RBG, or its randomized version for the case of RER (see Figure 2). If nodes103

are connected in a given network, then we have ai j = 1, otherwise ai j = 0. ∆ti j is the time delay taking104

into account a finite signal propagation velocity v between the nodes. ∆ti j is calculated as ∆ti j = di j/ν105

(Ghosh et al., 2008a,b; Deco et al., 2009), where di j is the approximated fiber length between nodes i106

and j (Iturria-Medina et al., 2008) as shown in Figure 3. We consider a biophysically realistic velocity107

of v = 3 m/s (Ghosh et al., 2008a). The noise strength is fixed at D = 0.05 throughout this study, which108

yields subthreshold oscillations. Thus, the system does not settle down to the fixed point.109

The set of delay differential equations (2) is solved numerically using the PYTHON-module PYDE-110

LAY (http://pydelay.sourceforge.net) based on Bogacki-Shampine method (Bogacki and Shampine, 1989;111

Flunkert and Schöll, 2009). We simulate 7.5 minutes of neuronal activity, which corresponds to the length112

of the empirical BOLD measurement.113
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Figure 3. Distance matrix showing the approximated fiber lengths between node pairs di j(mm). Node
index of the brain regions as in Table 1.

Balloon-Windkessel Model for BOLD Activity Simulations 114

From the simulated neuronal activity, we infer the BOLD signal observed in the fMRI data via the 115

Balloon-Windkessel hemodynamic process (Friston et al., 2000). In short, the Balloon-Windkessel model 116

uses the neuronal time series as an input signal (Seth et al., 2013) and computes hemodynamic oscillations 117

analogous to the BOLD signal, which is modeled as a function of changes in cerebral blood flow, cerebral 118

blood volume and cerebral metabolic rate of oxygen consumption. Most importantly, this model acts 119

as a low-pass filter on the high-frequency neuronal input. The neuronal signal in the current study is 120

the normalized time series of the activator variables of FHN model. We simulate 7.5 minutes of BOLD 121

activity and discard transients of 20 s. 122

Comparing Brain Graphs to Random Graphs 123

The comparison of network measures between real-networks and random graphs have been already done 124

in previous studies Bassett and Bullmore (2006); Humphries and Gurney (2008); Bullmore and Bassett 125

(2011); Cabral et al. (2012), and our results are consistent with them (cf. Figure 4 and Appendix). In this 126

study, we aim to compare the simulated functional connectivities (obtained from FHN network model 127

and BOLD activity simulations) based on the brain graph RBG and random graph RER. We quantify this 128

comparison with Bhattacharya coefficients (Bhattacharyya, 1943), which is a statistical method broadly 129

utilized in image processing (Goudail et al., 2004), speaker recognition (You et al., 2009) and phone 130

clustering (Mak and Barnard, 1996). 131

Here, for all combinations of connectivity threshold p and coupling strength c, a functional connectivity
matrix based on RBG and RER is obtained for the modeled neuronal activity and BOLD activity. The
connectivity matrices are calculated via the Pearson’s correlation coefficient ρi j,

ρi j =

〈
ui(t)u j(t)

〉
−
〈
ui(t)

〉〈
u j(t)

〉
σ(ui(t))σ(u j(t))

, (3)

where ui(t) denotes the modeled time series (simulated FHN or BOLD activity) of the node i, σ stands 132

for standard deviation and
〈
·
〉

represents the temporal average. This yields a 90×90 correlation matrix 133{
ρi j
}

, which is referred to as simulated functional connectivity (FCs). 134

Since the position of the nodes in the brain graph RBG and its randomized versions RER, the Pearson’s 135

correlation method is not a good measure for comparison of the functional connectivity. To quantify 136

the similarity of modeled temporal activity - FCs maps - on RBG and RER, we calculate Bhattacharya 137

coefficients instead. This follows a widely used statistical approach to measure the dissimilarity between 138

histogram distributions (Bhattacharyya, 1943). 139

Let us denote the histogram of simulated correlation ρi j-values in FCs obtained from RBG by HBG
and that from RER by HER. Then, the Bhattacharya coefficient d (HBG,HER) is given by the following
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equation:

d (HBG,HER) =

√
1− 1√

HBG HERN2 ∑
i

√
HBG(i)HER(i), (4)

where H denotes the mean of the histogram H (Bhattacharyya, 1943). d (HBG,HER) is scaled between 0140

and 1. A high d (HBG,HER) value indicates a small overlap of HBG and HER, whereas a low d (HBG,HER)141

value expresses a high degree of similarity. For an exemplary histogram comparison with this method, see142

Figure 7 in Appendix.143

RESULTS & DISCUSSION144

The structural organization in the brain, the topology of anatomical-connectivity maps, affects the temporal145

evolution of the simulated neuronal activity and BOLD signal. Moreover, they were different from the146

modeled BOLD signals based on density-matched Erdős-Rényi type networks (Figure 5). Our findings147

suggested that only very weak coupling strengths result in similar distributions of functional correlations148

(Figure 6B). This would imply that low coupling strengths cannot effectively capture the time-delay149

effects of FitzHugh-Nagumo systems. However, it was possible to capture distinctive temporal dynamics150

between the real neuronal network and density-matched Erdős-Rényi type random graph over a wide151

range of parameters (Figure 5, Figure 6A). Therefore, the systematic hierarchical structure of human152

brain contributes to the evolution of its temporal dynamics at the resting-state.153

The AC map was binarized at several connection probability values in the range of 0.34≤ p≤ 0.82.154

The resulting adjacency matrices at each p-value were further used to build the brain graphs RBG. This155

way, the cortical and sub-cortical AAL regions were denoted as nodes, and the thresholded anatomical156

connectivity probabilities were represented by edges yielding unweighted networks. In order to investigate157

the hierarchical arrangement of the anatomy in the human brain, we compared the standard statistical158

network measures of RBG to that of the randomized networks. Here, we manipulated the adjacency159

matrices via Erdős-Rényi-type randomization and constructed their corresponding graphs RER. In fact,160

several randomization procedures have been performed for this study, e.g. configuration model or partial161

randomization (see Appendix, Figure 8), but we decided to draw our conclusions based on density-162

matched Erdős-Rényi random graph comparisons, since they are well established and have often been163

studied previously (Erdős and Rényi, 1959; Bullmore and Bassett, 2011).164

The standard topological properties of the brain graph RBG and random graph RER are illustrated165

in Figure 4. Note that the network density κ , average clustering coefficients C, and small-worldness166

S of each network were calculated and visualized in dependence on the binarization threshold p. For167

formal definitions of C and S, see Appendix. Figure 4A shows that κ of RBG is preserved in RER, as168

expected from the definition of Erdős-Rényi-type randomization. κ decreases sigmoidally with increasing169

p. Figure 4B indicates that the nodes in RBG tend to cluster more more than in RER. Therefore, the local170

information transfer is expected to be more efficient in RBG. Moreover, RBG exhibits clearly small-world171

network characteristics with its highly clustered nodes and short characteristic pathways compared to RER172

(Figure 4C). In fact, the small-worldness measure S provides the clearest distinction between RBG and RER,173

indicating that the real networks are both highly segregated and integrated (Humphries and Gurney, 2008).174

Here, the term segregation points to a specialized information processing, whereas integration refers to a175

distributed one (Bassett and Bullmore, 2006). Our findings concerning the hierarchy in the anatomical176

connectivity are in agreement with previous studies of Bassett and Bullmore (2006); Humphries and177

Gurney (2008); Bullmore and Bassett (2011) as well as the studies performed on cat and macaque monkey178

(Sporns and Zwi, 2004; Sporns et al., 2004). Furthermore, we extended the analysis of non-random179

topological characteristics of human anatomical connectivity into its temporal dynamical properties. Our180

aim was to investigate whether the modeled temporal activity of real neuronal networks would differ181

from that of density-matched Erdős-Rényi random graphs. For this purpose, we simulated both RBG and182

RER with previously reviewed resting-state neuronal and BOLD activity models. Then, we statistically183

compared the simulated functional connectivity (FCs) matrices based on RBG and RER.184

The neuronal activity of each node in RBG and RER was simulated with the FitzHugh-Nagumo (FHN)185

network dynamics as given in equations (2a) and (2b), which drives nodes from their equilibrium state186

to oscillatory behavior because of the Gaussian white noise term and the coupling (Hövel, 2010). The187

FHN system has been studied in detail to analyze neuronal systems (Schöll et al., 2009; Hövel et al.,188
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Figure 4. Statistical network characteristics of RBG (black curves) and RER (red dots): (A) Network
density κ , (B) cluster coefficient C and (C) small-worldness coefficient S. Note that the S-value is defined
as a ratio of network measures of RBG to RER, see Appendix. S is only shown in the range, where the
network is connected. Green lines correspond to the network measures in the range of 0.34≤ p≤ 0.82.

Figure 5. Statistical comparison of brain graphs RBG and random graphs RER in terms of their modeled
temporal dynamics: (A) FHN network model (parameters: α = 0.85, β = 0.2, γ = 1.0, τ = 1.25, and
v = 3 m/s) and (B) modeled BOLD activity. The heat map represents the degree of similarity
d (HBG,HER) between histogram distributions of simulated functional connectivity of RBG and RER.
Large d (warm colors) represents low similarity, low d (cold colors) refers to high degree of similarity.
Dashed circle (p = 0.54, c = 0.03) and solid circle (p = 0.54, c = 0.01) are chosen to display different
and similar histogram distributions in Figure 6.

2010; Panchuk et al., 2013). Here, we used the notations of Ghosh et al. (2008a,b) and Vuksanović and 189

Hövel (2016a), which were designed to capture the empirical resting-state FC by modeling the empirical 190

AC map of non-human primate (macaque) and human, respectively. It was shown that the simulated 191

FC obtained at weak coupling strengths c was in a high agreement with the empirical FC (Ghosh et al., 192

2008a,b; Vuksanović and Hövel, 2016a). In order to obtain biologically plausible temporal dynamics on 193

our neuroimaging data, we restricted our c-values in a similar range that was justified physiologically. The 194

modeled FHN time series were in high frequency ranges beyond 20 Hz. Therefore, a modulation of these 195

neuronal time series was done by applying the standard Balloon-Windkessel hemodynamic model, which 196

acted as a low-pass filter, and therefore resulted in ultra slow frequency below 0.1 Hz in the simulated 197

BOLD time series (Friston et al., 2000). 198

At each (p,c)-value, an FCs matrix was calculated via Pearson’s correlation coefficients for the 199

neuronal and BOLD activity simulations, separately. Figure 5 compares these simulated temporal 200

dynamics on the brain graph RBG and the random graph RER for the FHN network model and the Balloon- 201

Windkessel model in panels (A) and (B), respectively. Since the topology of the nodes were not identical 202

in RBG and RER, the standard Pearson’s correlation method was not used to compare their FCs matrices. 203

Instead, the comparisons were quantified using another statistical tool, namely Bhattacharya coefficients 204

d(HBG,HER) given by color bars, where HBG and HER refer to the histogram of the FCs matrices of 205
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Figure 6. Two exemplary histograms chosen from red color from the cold color in Figure 5 exhibiting
differences (c = 0.03, panel (A), see dashed circle in Figure 5) and similarity (c = 0.01, panel (B), see
solid circle in Figure 5). Parameters as in Figure 5.

simulations on RBG and RER, respectively.206

In Figure 5, the hot colors indicated a difference between the distributions of ρi j-values, namely HBG207

and HER, whereas the cold colors represented the similarity of the histograms. The FCs based on the208

neuronal time series modeled by the FHN equations on network RBG can be clearly distinguished from209

that of RER, Figure 5A. d(HBG,HER) is small at very weak coupling strengths and thus, the histograms210

are similar. The nodes in the adjacency matrix of the AC map tend to have more connections intra-211

hemispherically (see ai j-values clustering for right-right and left-left combinations of nodal pairs in the212

top left and bottom right quadrant of the adjacency matrix depicted Figure 2A), implying that the fiber213

lengths di j taken into account for FHN network dynamics were mostly shorter (Figure 3). On the other214

hand, connections among nodes in RER were distributed more homogeneously (Figure 2B), and thus215

long di j-values were employed as often as short di j-values in the FHN network model. Therefore, the216

density-matched Erdős-Rényi random graph had much longer time-delays ∆ti j than RER. This effect217

causes a dissimilarity between our modeled neuronal dynamics on RBG and RER. However, at low c-values,218

the effect of time-delays vanishes.219

Figure 6 illustrated exemplary histograms based on the simulated BOLD time series for RBG, which220

were constructed on an adjacency matrix obtained at p = 0.54, and for a corresponding random graph221

RER. The distribution of ρi j-values in RBG and RER was single-peaked and almost symmetric to zero for222

c = 0.03 (panel A) and c = 0.01 (panel B). The peaks at ρ = 1.0 in each graph corresponded to self-paired223

nodes, i.e. ρi j = 1.0. However, for c = 0.03 the distribution in RER was broader than for RBG, that was,224

the presence of both correlated and anti-correlated node pairs is more dominant for RER. In contrast, the225

distributions became very similar and narrow for c = 0.01, there are mostly no correlations among the226

modeled BOLD signals in both network types (panel B).227

Cabral et al. (2012) previously studied effects of a pathological disconnection, i.e. potentially228

leading to schizophrenia, by randomly pruning anatomical connections, that means, the links in the229
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original anatomical network were removed randomly by changing connection strengths of nodes. Their 230

results demonstrated that disconnected anatomical networks have lower small-worldness and clustering 231

coefficients and moreover, the structural disconnection causes dramatical alterations in their corresponding 232

simulated functional networks (Cabral et al., 2012). In our study, we disputed the AC map by rewiring 233

the links while keeping the network density fixed. Despite of different randomization techniques, i.e. 234

rewiring versus removing edges, our study illustrates similar findings with Cabral et al. (2012): The 235

functional connectivity in brain emerges mainly through the interplay between the long distance brain 236

connectivity and the local dynamics. The dominant long-range intra-hemispheric connections in the 237

original AC map was lost in the Erdős-Rényi type random networks, and the local dynamical properties 238

such as clustering coefficient of nodes decreased gradually in RER. The loss of hierarchy in the anatomical 239

structure provokes a discriminative FCs. However, when the coupling strengths in the modeled temporal 240

dynamics are too weak, then the FCs based on both the RBG and RER tends to be random (Figure 6B). 241

CONCLUSION 242

In this study, we have simulated resting-state functional connectivity in the human brain based on 243

empirically derived structural networks and their randomized topologies. Our aim was to explore the 244

network topology of our anatomical neuroimaging data and moreover to investigate how the temporal 245

dynamics modeled on brain networks differs from the dynamics on random networks. We have addressed 246

the topological characteristics of brain graphs, which were built on structural connectivity data, as 247

well as density-matched Erdős-Rényi type random graphs. Moreover, the difference between brain 248

and randomized brain structural connectivity has been analyzed by comparing their modeled temporal 249

dynamics; the FHN network model for the neuronal activity and the Balloon-Windkessel model for the 250

BOLD activity. We have demonstrated that the simulated neuronal time series of brain graphs are clearly 251

distinguishable from that of random networks at relatively low coupling strengths and at the network 252

density range of 0.14 ≤ κ ≤ 0.22. This holds additionally for the simulated BOLD signal diversity 253

between two network types. 254
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Vuksanović, V. and Hövel, P. (2014a). Functional connectivity of distant cortical regions: Role of remote 370

synchronization and symmetry in interactions. NeuroImage, 97:1–8. 371
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APPENDIX386

Network Characterizations387

A network can be statistically described in terms of its topology, i.e. solely in terms of its connectivity388

and independently of spatial positions of nodes and edges. In this work, it is aimed to characterize the389

topology of the brain graph RBG and its randomized versions RER.390

Network Density The average degree 〈k〉 of a network is proportional to the ratio of total number of
edges L to total number of nodes N in a graph,

〈k〉= 2L
N

. (5)

The density κ of a network is formulated as the ratio between L and maximum number of possible
edges

(N
2

)
,

κ =
2L

N(N−1)
. (6)

The measure of network density can be referred to as the total wiring cost of the network (Rubinov391

and Sporns, 2010). The degree of an individual node ki, average degree 〈k〉 and network density κ are key392

scalar measures to characterize the topology of a network.393

Average Clustering Coefficient The average clustering coefficient C of a network is calculated through
individual clustering coefficients Ci of single nodes,

C =
1
n ∑

iεN
Ci =

1
n ∑

iεN

2ti
ki(ki−1)

, (7)

where ti is the number of triangles around node i (Watts and Strogatz, 1998). The clustering coefficient394

Ci of a node i is a measure of local connectivity and is highly correlated with the local efficiency of the395

information transfer (Latora and Marchiori, 2001). The average clustering coefficient C is a normalized396

version of Ci for the whole network, yielding now a global property. C is a measure of segregation, that397

is, the ability for specialized processing to occur within densely interconnected groups of brain regions398

(Rubinov and Sporns, 2010). It reveals how the individual nodes in a graph cluster together; how many399

neighbors of a node are neighbors of each other.400

Small-Worldness A small world network is both highly segregated and integrated, a measure of small
worldness S was proposed to capture this effect in a single statistic,

S =
C/Crand

l/lrand
with l =

1
n ∑

iεN
li =

1
n ∑

iεN

∑
jεN, j 6=i

si j

n−1
, (8)

where C and Crand are clustering coefficients, l and lrand are characteristic path lengths of the original and401

random network respectively (Humphries and Gurney, 2008). The random network here is constructed402

with Erdős-Rényi method, which has the same number of nodes and links as the reference graph. l is403

calculated through the shortest path length si j between nodes i and j, a basis for measuring integration404

(Rubinov and Sporns, 2010).405

Bhattacharya Coefficient406

Figure 7A represents the histogram of a Gaussian distribution HA, the dashed red curve is its probability407

density function with mean µ = 15 and standard deviation σ = 1.0. Figure 7B displays the histogram408

distribution of a Gaussian mixture in a bimodal shape HB, the red dashed curve is its Kernel density409

estimation, the peaks are centered at µl = 11 and µr = 19. The Bhattacharya coefficient between HA and410

HB is found to be d(HA,HB)=0.63, indicating that two distributions are dissimilar. However, once HA is411

compared with itself, then d(HA,HA)=0.03 indicating an analogy. Note that there still remains a small,412

finite value d(HA,HA) 6= 0, since the values chosen to be random distributions fitting to a Gaussian curve.413
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Figure 7. (A) Gaussian histogram distribution with µ = 15 and σ = 1.0 and (B) bimodal histogram
distribution of two Gaussian mixtures centered at µl = 11 and µr = 19.

Random Network Types 414

Several randomization procedures have been followed for this study (see Figure 8), but only the results 415

based on RER have been published. The κ of all random graphs has been fixed to the network density of 416

the brain graph based on the empirical AC map at each binarization level. 417

Double-edge swap (DES) method removes randomly chosen edges between node pairs u-v and x-l 418

and creates new edges u-x and v-y which keeps the node degrees fixed (Hagberg et al., 2008). 419

Configuration model (CM) generates a random graph with a given degree sequence. The direct 420

implementation of this model is to assign edges to the nodes randomly until the desired degree sequence 421

is matched. The resulting random graph is expected to be a node-index-shuffled version of the original 422

graph. However, these algorithms are non-trivial due to the occurrence of self-loops, when a node is 423

connected to itself, and parallel edges, that is, multiple edges connecting two nodes (Newman, 2003; 424

Hagberg et al., 2008). In this study, we used configuration model by checking parallel edge and self-loop 425

occurrences, and applying the algorithm repeatedly, if they were the case. 426

Preserved degree distribution (PDD) tool searches for rewirable edge pairs for a user defined fraction 427

of rewiring (rather than trying to rewire edge pairs at random) and generates a graph with the same degree 428

distribution as in the input adjacency matrix (Rubinov and Sporns, 2010). 429

Partial randomization method takes adjacency matrices A and B and attempts to randomize matrix 430

A by performing user defined number of rewirings, the rewirings avoid any spots where matrix B is 431

nonzero (Rubinov and Sporns, 2010). Here we used the AC map for matrix A and an empirical functional 432

connectivity map for matrix B, which was obtained from 1000 Functional Connectome Project website 433

http://www.nitric.org/ according to the procedure described in Vuksanović and Hövel (2014). 434

Automated Anatomical Labeling 435

Table 1 shows the Automated Anatomical Labeling (AAL) for the cortical and sub-cortical brain regions 436

(Tzourio-Mazoyer et al., 2002). The brain is partitioned into N = 90 regions symmetrically. AAL regions 437

with index n = 1,2, . . . ,45 lie on the right R hemisphere, whereas n = 46,47, . . . ,90 on the left L. The 438

middle column of table describes the position of AAL regions anatomically in the cortex, and the last 439

column corresponds to abbreviations. 440
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Table 1. Anatomical Description of Brain Nodes

Index R/L Anatomical Description Label
1/46 Precentral PRE
2/47 Frontal Sup F1
3/48 Frontal Sup Orb F10
4/49 Frontal Mid F2
5/50 Frontal Mid Orb F20
6/51 Frontal Inf Oper F30P
7/52 Frontal Inf Tri F3T
8/53 Frontal Inf Orb F30
9/54 Rolandic Oper RO
10/55 Supp Motor Area SMA
11/56 Olfactory OC
12/57 Frontal Sup Medial F1M
13/58 Frontal Mid Orb SMG
14/59 Gyrus Rectus GR
15/60 Insula IN
16/61 Cingulum Ant ACIN
17/62 Cingulum Mid MCIN
18/63 Cingulum Post PCIN
19/64 Hippocampus HIP
20/65 ParaHippocampal PHIP
21/66 Amygdala AMYG
22/67 Calcarine V1
23/68 Cuneus Q
24/69 Lingual LING
25/70 Occipital Sup O1
26/71 Occipital Mid O2
27/72 Occipital Inf O3
28/73 Fusiform FUSI
29/74 Postcentral POST
30/75 Parietal Sup P1
31/76 Parietal Inf P2
32/77 Supra Marginal Gyrus SMG
33/78 Angular AG
34/79 Precuneus PQ
35/80 Paracentral Lobule PCL
36/81 Caudate CAM
37/82 Putamen PUT
38/83 Pallidum PAL
39/84 Thalamus THA
40/85 Heschi HES
41/86 Temporal Sup T1
42/87 Temporal Pole sup T1P
43/88 Temporal Mid T2
44/89 Temporal Pole Mid T2P
45/90 Temporal Inf T3

14/15

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1784v1 | CC-BY 4.0 Open Access | rec: 25 Feb 2016, publ: 25 Feb 2016



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

C

 

 

R
BG

R
ER

R
DES

R
CM

R
PDD

R
PR

0 0.2 0.4 0.6 0.8 1
0

5

10

15

p

S

 

 

R
BG

R
ER

R
DES

R
CM

R
PDD

R
PR

Figure 8. C- and S-values of brain graph RBG and random graphs generated with different methods.
Abbreviations stand for the resulting graphs from several randomization methods used: Erdős-Rényi-type
RER, double-edge-swap method RDES, configuration model RCM , preserved degree distribution model
RPDD, partial randomization tool PPR. The S-value is always calculated with respect to a corresponding
Erdős-Rényi graph.
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