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OncoLnc: Linking TCGA survival data to mRNAs, miRNAs, and

lncRNAs

Jordan Anaya

OncoLnc is a tool for interactively exploring survival correlations, and for downloading

clinical data coupled to expression data for mRNAs, miRNAs, or lncRNAs. OncoLnc contains

survival data for 8,647 patients from 21 cancer studies performed by The Cancer Genome

Atlas (TCGA), along with RNA-SEQ expression for mRNAs and miRNAs from TCGA, and

lncRNA expression from MiTranscriptome beta. Storing this data gives users the ability to

separate patients by gene expression, and then create publication-quality Kaplan-Meier

plots or download the data for further analyses. OncoLnc also stores precomputed survival

analyses, allowing users to quickly explore survival correlations for up to 21 cancers in a

single click. This resource allows researchers studying a specific gene to quickly

investigate if it may have a role in cancer, and the supporting data allows researchers

studying a specific cancer to identify the mRNAs, miRNAs, and lncRNAs most correlated

with survival, and researchers looking for a novel lncRNA involved with cancer lists of

potential candidates. OncoLnc is available at http://www.oncolnc.org
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26 Abstract

27 OncoLnc is a tool for interactively exploring survival correlations, and for downloading clinical 

28 data coupled to expression data for mRNAs, miRNAs, or lncRNAs.  OncoLnc contains survival 

29 data for 8,647 patients from 21 cancer studies performed by The Cancer Genome Atlas (TCGA), 

30 along with RNA-SEQ expression for mRNAs and miRNAs from TCGA, and lncRNA 

31 expression from MiTranscriptome beta.  Storing this data gives users the ability to separate 

32 patients by gene expression, and then create publication-quality Kaplan-Meier plots or download 

33 the data for further analyses.  OncoLnc also stores precomputed survival analyses, allowing users 

34 to quickly explore survival correlations for up to 21 cancers in a single click.  This resource 

35 allows researchers studying a specific gene to quickly investigate if it may have a role in cancer, 

36 and the supporting data allows researchers studying a specific cancer to identify the mRNAs, 

37 miRNAs, and lncRNAs most correlated with survival, and researchers looking for a novel 

38 lncRNA involved with cancer lists of potential candidates.  OncoLnc is available at 

39 http://www.oncolnc.org.

40 Main article text

41 Introduction

42 The Cancer Genome Atlas (TCGA) provides researchers with unprecedented amounts of 

43 molecular data along with clinical and histopathological information 

44 (http://cancergenome.nih.gov/).  This data set has not only led to increases in our understanding 

45 of cancer (Ciriello et al. 2013; Hoadley et al. 2014), but its scale has also allowed for previously 

46 impossible projects such as a comprehensive cataloguing of the human transcriptome (Han et al. 

47 2014; Iyer et al. 2015).  However, the size and complexity of this unique data set makes it 

48 difficult for cancer researchers to access and fully utilize.

49 Multiple resources exist to help researchers download or explore TCGA data (Cerami et al. 

50 2012; Gyorffy et al. 2013; Koch et al. 2015).  Despite this, there is no simple tool that lets users 

51 explore the correlation of a gene's expression to survival in multiple cancers at once, provides 

52 users the ability to divide patients into any high expressing and low expressing groups for 

53 Kaplan-Meier analysis, allows for simple download of the survival data coupled to expression 

54 data, and uses modern gene definitions.

55 In addition, although the role of long noncoding RNAs (lncRNAs) in cancer is beginning to be 

56 appreciated (Yarmishyn & Kurochkin 2015), the Tier 3 TCGA mRNA files contain expression 

57 data for only the limited number of lncRNAs that were known at the initiation of the TCGA 

58 project.  As a result, tools for exploring TCGA data will not contain many lncRNAs currently 

59 being studied.  Although a platform has already been developed to fill this gap (Li et al. 2015), to 

60 help the scientific community study lncRNAs OncoLnc incorporates analyses and data for 
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61 MiTranscriptome beta lncRNAs, http://mitranscriptome.org/, in addition to Tier 3 TCGA 

62 mRNAs and miRNAs.

63 Materials and methods

64 Code, files, and software

65 All of the code necessary to reproduce Tables 1, 2, 3, S1, S2, and S3, and therefore the data in 

66 OncoLnc, along with a limited amount of raw data and intermediate files is located at 

67 https://github.com/OmnesRes/onco_lnc.  The rest of the raw data can be downloaded from 

68 https://tcga-data.nci.nih.gov/tcga/ and http://mitranscriptome.org/.  This code was run with 

69 Python 2.7.5, NumPy 1.7.1, and rpy2 2.5.6, and can require upwards of 6GB of RAM.  OncoLnc 

70 runs on Django 1.8.2, Python 2.7, matplotlib 1.2.1, NumPy 1.7.1, rpy2 2.5.6, uses the SQLite3 

71 database engine, and utilizes Bootstrap CSS and JavaScript, and Font Awesome icons.

72 Cox models

73 The multivariate model run for each cancer and each data type is listed at the top of Tables S1, 

74 S2, and S3, and the code for running all of the Cox regressions is present in the GitHub 

75 repository.  In general only primary solid tumors were included in analyses, and this is 

76 implemented by only using samples with "01" in the patient barcode.  The exceptions are 

77 LAML, which is a blood derived cancer, and therefore has the designation "03", and SKCM, 

78 which contains primarily metastatic tumors, and therefore designations "01" and "06" were 

79 allowed for SKCM analyses.  It is possible for a patient to have more than one sequencing file, 

80 and in these cases the counts were averaged.  The TCGA data was downloaded on January 5th 

81 and 6th, 2016, and miRBase version 21 was used.  More info can be found in the GitHub 

82 repository and in the text below.

83 Results

84 Overview of OncoLnc

85 OncoLnc stores over 400,000 analyses, which includes Cox regression results as well as mean 

86 and median expression of each gene.  For the Cox regression results, in addition to p-values, 

87 OncoLnc stores the rank of the correlation.  Different cancers contain very different p-value 

88 distributions (Anaya et al. 2016; Yang et al. 2014), and it is unclear what causes this difference.  

89 As a result, using one p-value cutoff across cancers is not possible, and the rank of the 

90 correlation is a simple way to measure the relative strength of the correlation.  The rank is 

91 calculated per cancer, per data type.  Tables 1-3 contain information about how many genes there 

92 are for each cancer and each data type.

93 The mRNA and miRNA identifiers used by TCGA are out of date, and the identifiers in 

94 OncoLnc have been manually curated using NCBI Gene: http://www.ncbi.nlm.nih.gov/gene, and 
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95 recent miRBase definitions: http://www.mirbase.org/.  Over 2,000 mRNA symbols were 

96 updated, and these are listed in Table S4.  Genes which have had their Entrez Gene ID removed 

97 from NCBI Gene, or could not be confidently mapped to a single identifier, are not included in 

98 OncoLnc but are still included in Table S1.

99 Using OncoLnc is very straightforward.  The preferred method of using OncoLnc is to submit a 

100 gene at the home page, and this submission is not case sensitive.  If a user submits a gene not in 

101 the database they will be notified and provided with links to all the possible gene names and IDs.  

102 Submission of a valid gene identifier will return correlation results for up to 21 cancers for 

103 mRNAs and miRNAs, or 18 cancers for MiTranscriptome beta lncRNAs (Fig. 1).  If a gene does 

104 not meet the expression cutoff for the analysis, it will not be present in the database, and 

105 therefore a user may receive less than the maximum possible number of results.  For users using 

106 OncoLnc on smaller devices, it is possible to perform a single cancer search.  The link for this 

107 search is on the home page, and the user must submit the TCGA cancer abbreviation along with 

108 the gene of interest.

109 At the results page is a link to perform a Kaplan-Meier analysis for each cancer (Fig. 1).  The 

110 user will be asked how they would like to divide the patients.  Patients can be split into any non-

111 overlapping upper and lower slices, for example upper 25 percent and lower 25 percent.  Upon 

112 submission users will be presented with a PNG Kaplan-Meier plot, a logrank p-value for the 

113 analysis, and text boxes with the data that was plotted (Fig. 2).  If a user simply wants all the data 

114 for that cancer and that gene, the user can submit 100 for "Lower Percentile", and 0 for "Upper 

115 Percentile".

116 Users then have the option to either go to a PDF of the Kaplan-Meier plot, or download a CSV 

117 file of the data plotted.  In both cases the file name will be the cancer, gene ID, lower percentile, 

118 upper percentile, separated by underscores.  Gene ID had to be used instead of gene name 

119 because there are multiple HUGO gene symbol conflicts between TCGA Tier 3 mRNAs and 

120 MiTranscriptome beta, as well as between TCGA mRNA HUGO gene symbols and updated 

121 mRNA HUGO gene symbols.  In the case that a user performs a search for a name with a 

122 conflict, OncoLnc presents a warning message and instructs the user how to proceed.

123 mRNAs

124 Table 1 contains information about the patients for each Tier 3 mRNA study included in 

125 OncoLnc, and how many gene analyses are present in OncoLnc for each study.  Tier 3 

126 RNASeqV2 was used for all 21 cancers, and expression was taken from the 

127 "rsem.genes.normalized_results" files.  As a result, the expression data in OncoLnc for Tier 3 

128 mRNAs is in normalized RSEM values.  Table 1 contains different numbers of genes for the 

129 different cancers because an expression cutoff was used to determine if a gene would be included 

130 in the analysis.  For mRNAs this cutoff was a median expression greater than 1 RSEM, and less 

131 than a fourth of the patients with an expression of 0.
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132 The results of every Tier 3 mRNA Cox regression performed are included in Table S1.  The Tier 

133 3 expression files contain both a HUGO gene symbol and Entrez Gene ID for each gene, but 

134 these IDs and gene symbols are not current.  To update the gene symbols I downloaded every 

135 human gene from NCBI Gene, and updated any symbol for which the Entrez Gene ID was still 

136 current.  For genes that had deleted or changed Entrez Gene IDs I had to manually curate the 

137 Gene IDs and gene symbols.  Genes which I could not confidently assign to a modern ID are not 

138 included in OncoLnc, but are still included in Table S1.  Table S1 includes the original TCGA 

139 IDs and symbols along with the updated names and symbols, and Table S4 lists genes which had 

140 either the symbol or ID changed.  OncoLnc allows users to search mRNAs using either an 

141 updated HUGO gene symbol or Entrez Gene ID.

142 miRNAs

143 Table 2 contains information about the patients for each Tier 3 miRNA study included in 

144 OncoLnc, and how many gene analyses are present in OncoLnc for each study.  Tier 3 

145 miRNASeq was used for every cancer except GBM, which only had microarray data available.  

146 The results of every Cox regression performed are included in Table S2.  Many of the miRBase 

147 IDs, or possibly read counts, present in Table S2 and OncoLnc will be different from the IDs and 

148 read counts in TCGA data files and available at other data portals for TCGA data.  This is 

149 because I went through each expression file and updated the IDs and read counts.

150 The "isoform.quantification" files contain both miRBase IDs as well accession numbers.  In 

151 these files the 5p and 3p arms of miRNAs are referred to with the same ID, for example hsa-let-

152 7b-5p and hsa-let-7b-3p would both be listed as hsa-let-7b.  In order to update the names and 

153 read counts for the Tier 3 miRNAs I used the read counts assigned to each accession number to 

154 obtain reads per million miRNAs mapped for each accession number, and updated the ID with 

155 the current miRBase ID.  When an accession number was not available I used the genomic 

156 coordinates provided to identify the accession number, and therefore ID.  GBM names were 

157 updated using the "aliases" file from the miRBase FTP site, and if an alias could not be 

158 confidently identified the miRNA was not included in OncoLnc, but is still in Table S2.

159 As a result, all expression values in Table S2 and in OncoLnc are reads per million miRNA 

160 mapped for every cancer except GBM, which are microarray normalized values.  The numbers of 

161 miRNAs in Table 2 differ because the miRNA may not have been in the expression files for that 

162 cancer, or may not have met the expression cutoff.  An expression cutoff of a median of .5 reads 

163 per million miRNA mapped, and less than one fourth of the patients with 0 expression was used.  

164 OncoLnc allows users to search for miRNAs with either a miRBase version 21 mature accession 

165 number or ID.

166 lncRNAs

167 Table 3 contains information about the patients for each MiTranscriptome beta lncRNA analysis, 

168 along with how many lncRNAs are included in OncoLnc for each cancer.  Normalized lncRNA 
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169 counts were downloaded from http://mitranscriptome.org/, and these were mapped to patient 

170 barcodes using the library information provided.  MiTranscriptome beta contains over 8,000 of 

171 the most differentially expressed lncRNAs in the entire MiTranscriptome dataset, but the actual 

172 number of lncRNAs in OncoLnc for each cancer is far fewer due to the expression cutoff used:   

173 a median of .1 normalized counts, and less than a fourth of patients with 0 expression.  Table S3 

174 contains every lncRNA Cox regression performed, and these are all included in OncoLnc.  

175 OncoLnc allows users to search for MiTranscriptome beta lncRNAs using either a name or 

176 transcript ID.

177 Discussion

178 Depending on the researcher, OncoLnc should be used in different ways.  If a researcher is 

179 studying a specific gene and looking for a cancer association, they should go to 

180 http://www.oncolnc.org and perform a search with their gene of interest.  Instead of focusing on 

181 p-values, I would focus more on the rank of the correlations for the different cancers, and also on 

182 the sign of the Cox coefficients.  A positive Cox coefficient indicates high expression of the gene 

183 increases the risk of death, while a negative Cox coefficient indicates the opposite.  A gene with 

184 a high rank in multiple cancers (indicated by a low number, 1 being the best), and Cox 

185 coefficients with the same sign could be very interesting.  It is also important to look at the level 

186 of expression of the gene.  Different genes obviously require different levels of expression to 

187 exert their effects, but genes with expression near 0 should be dealt with caution.  In addition, 

188 users can investigate the range of expression of the gene at the Kaplan-Meier plotting page.  

189 Genes that have large fold increases from the low expression to high expression group could be 

190 interesting candidates.

191 A researcher studying a specific cancer should download Tables S1, S2, and S3 to see which 

192 mRNAs, miRNAs, and lncRNAs are most correlated to survival for their cancer.  Once they 

193 identify some genes of interest they can go to http://www.oncolnc.org to perform further 

194 analyses such as checking the range of expression of the gene, or if it is associated with survival 

195 in other cancers.  Similarly, bioinformaticians looking to perform large scale analyses of 

196 prognostic genes can use these tables as a starting point, or if a user wants to change the Cox 

197 models they can use the GitHub code to alter the models.

198 The importance of the ability to perform survival correlations with lncRNAs must be 

199 emphasized.  There are multiple techniques for identifying protein coding genes that are involved 

200 in cancer because mutations that occur in protein coding genes can result in missense mutations, 

201 and methods have been developed for identifying which of these mutations are drivers as 

202 opposed to simply passengers (Carter et al. 2009; Kaminker et al. 2007; Youn & Simon 2011).  

203 In contrast, because it is unclear how mutations will affect lncRNA function, methods to identify 

204 lncRNAs involved in cancer must rely on lncRNA expression.  As a result, OncoLnc is one of 

205 the few resources available for finding lncRNAs involved in cancer, and if a lncRNA researcher 

206 is searching for a novel lncRNA to study, Table S3 would be a good place to start.
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207 When using OncoLnc it important to remember that the correlations observed, regardless of p-

208 value, are still only correlations.  Perhaps the largest limitation of OncoLnc is that the Cox 

209 models do not account for intra-cancer subtypes.  For example, GBM and BRCA both have well-

210 established subtypes (Brennan et al. 2013; Perou et al. 2000).  If the expression of a gene 

211 correlates with cancer subtypes, and those subtypes correlate with survival, subtype would be a 

212 confounding variable.  As subtype definitions for the different cancers improve a future version 

213 of OncoLnc may be able to incorporate the subtypes in the Cox models.

214 An analysis is only as good as the data available, and the Tier 3 TCGA RNA-SEQ analyses were 

215 performed with outdated software and transcript information.  There have been some attempts to 

216 reanalyze both the TCGA mRNA RNA-SEQ data and miRNA-SEQ data (Kuo et al. 2015; 

217 Rahman et al. 2015).  In the event that TCGA or the scientific community releases a gold 

218 standard analysis of TCGA data, a future version of OncoLnc could incorporate this data.

219 Current data portals for TCGA data only allow users to view the results for one cancer at a time, 

220 may or may not offer Cox regression results, do not allow for complete control over separating 

221 patients during Kaplan-Meier analysis, and do not allow for download of the data used in the 

222 analysis.  To my knowledge OncoLnc is the only online resource for TCGA data that includes 

223 these features, is the only resource that uses modern gene definitions for TCGA mRNA and 

224 miRNA data, and is the only resource for survival analysis of MiTranscriptome beta lncRNAs.  

225 In addition, current methods for survival analysis rely on a p-value cutoff of .05 for significance, 

226 which may lead to either the study of genes not actually correlated with survival or missing 

227 genes that are correlated with survival depending on the cancer.  By storing the results of the 

228 correlation for every gene, OncoLnc can provide a context for the significance of a correlation.  

229 As a result, used correctly OncoLnc can not only increase the sensitivity of finding genes 

230 involved in cancer, but also the specificity.  This combination of ease of use, results for complex 

231 analyses, and tools for exploring and downloading data make OncoLnc an invaluable resource 

232 for cancer researchers.
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Table 1(on next page)

Characteristics of the Tier 3 mRNA datasets in OncoLnc

Age at diagnosis is in years, and is an average. The events indicate the number of deaths in

the dataset. Median survival is in days and could not be calculated for COAD, KIRP, OV, READ,

and UCEC.
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Cancer Patients Male/Female

Age at 

Diagnosis Events

Median 

Survival

Genes 

in 

OncoLnc

BLCA 403 296/107 68.03 177 1008 16339

BRCA 1006 11/995 58.34 135 3941 16602

CESC 264 0/264 48.23 59 4086 16330

COAD 440 235/205 66.58 85 NA 16378

ESCA 144 126/18 60.51 59 801 16790

GBM 152 99/53 59.84 27 1426 16783

HNSC 497 364/133 61.24 207 1732 16614

KIRC 523 341/182 60.56 167 2764 16638

KIRP 285 210/75 61.45 44 NA 16399

LAML 151 81/70 54.40 92 577 15227

LGG 510 282/228 43.02 124 2835 16781

LIHC 360 244/116 59.41 126 1694 15824

LUAD 492 225/267 65.32 176 1492 16748

LUSC 489 362/127 67.23 169 2224 16942

OV 294 0/294 59.19 42 NA 16893

PAAD 175 96/79 64.37 92 607 17177

READ 159 88/71 64.58 22 NA 16472

SARC 259 118/141 60.71 98 1991 16197

SKCM 459 284/175 58.14 215 2454 16030

STAD 379 247/132 65.49 146 1043 16885

UCEC 541 0/541 63.95 90 NA 16670

1
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Table 2(on next page)

Characteristics of the Tier 3 miRNA datasets in OncoLnc

Age at diagnosis is in years, and is an average. The events indicate the number of deaths in

the dataset. Median survival is in days and could not be calculated for COAD, KIRP, READ,

and UCEC.
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Cancer Patients Male/Female

Age at 

Diagnosis Events

Median 

Survival

Genes 

in 

OncoLnc

BLCA 404 297/107 68.02 177 1036 512

BRCA 988 11/977 58.35 131 3941 479

CESC 267 0/267 48.27 59 4086 501

COAD 426 226/200 66.48 84 NA 476

ESCA 144 125/19 60.61 59 801 494

GBM 561 343/218 57.94 67 2648 507

HNSC 501 363/138 61.30 208 1732 514

KIRC 506 331/175 60.48 165 2764 448

KIRP 286 210/76 61.52 44 NA 430

LAML 164 88/76 54.05 100 518 374

LGG 506 278/228 43.07 123 2660 486

LIHC 362 248/114 59.41 125 1791 485

LUAD 490 226/264 65.35 175 1492 493

LUSC 467 346/121 67.43 160 2224 519

OV 470 0/470 59.85 92 3128 467

PAAD 175 96/79 64.37 92 607 494

READ 154 84/70 64.23 22 NA 495

SARC 259 119/140 60.85 98 1991 455

SKCM 438 271/167 58.01 207 2470 535

STAD 400 260/140 65.54 155 1043 495

UCEC 534 0/534 63.91 87 NA 518
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Table 3(on next page)

Characteristics of the MiTranscriptome beta analyses in OncoLnc

Age at diagnosis is in years, and is an average. The events indicate the number of deaths in

the dataset. Median survival is in days and could not be calculated for COAD, KIRP, and

UCEC.
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Cancer Patients Male/Female

Age at 

Diagnosis Events

Median 

Survival

Genes 

in 

OncoLnc

BLCA 120 86/34 67.37 61 706 4322

BRCA 766 8/758 58.03 111 3941 4708

CESC 106 0/106 48.22 26 3046 4493

COAD 117 52/65 69.64 24 NA 3302

GBM 144 94/50 59.56 24 1426 4524

HNSC 288 211/77 61.40 133 1762 4314

KIRC 457 299/158 60.75 156 2764 5191

KIRP 73 51/22 59.78 17 NA 4627

LAML 20 15/5 54.75 10 580 3940

LGG 217 123/94 42.82 65 2660 4875

LIHC 65 40/25 60.97 41 1005 3610

LUAD 320 148/172 65.72 118 1357 4636

LUSC 330 244/86 67.16 112 2284 4979

OV 369 0/369 59.63 69 3128 4901

READ 42 22/20 66.67 8 1581 3310

SKCM 255 159/96 56.82 148 2192 3893

STAD 148 93/55 65.72 56 940 4619

UCEC 274 0/274 63.12 39 NA 3706
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1

Example of OncoLnc search results

The Cox coefficient and p-value are from the gene term in precomputed multivariate Cox

regressions. The FDR correction is performed per cancer analysis per data type, and in this

example the correction would have involved around 16,000 genes for each cancer. The rank

is also performed per cancer per data type. In this example DONSON is the 3rd most highly

correlated gene in KIRC.
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2

Example of OncoLnc Kaplan-Meier results

A) Submitting non-overlapping percentiles will return a logrank p-value for the analysis and a

PNG image with the option to generate a PDF of the plot.B) Below the Kaplan-Meier image

will be the data that was plotted along with an option to download a csv file.
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