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Abstract

Mycobacterium species have a complex cAMP regulatory network indicated by the high number
of adenylate cyclases annotated in their genomes. However the need for a high level of
redundancy in adenylate cyclase genes remains unknown. We have used semiquantitiative RT-
PCR to examine the expression of the eight Mycobacterium smegmatis cyclases with orthologs
in the human pathogen Mycobacterium tuberculosis, where cAMP has recently been shown to be
important for virulence. All eight cyclases were transcribed in the cell in all environments tested,
and only four demonstrated environmental-mediated changes in transcription. M. smegmatis
genes MSMEG_0545 and MSMEG_4279 were upregulated during starvation conditions while
MSMEG_0545 and MSMEG_4924 were downregulated in H,O, and MSMEG_3780 was
downregulated in low pH. Promoter fusion constructs containing M. tuberculosis H37Rv

promoters showed consistent regulation compared to their M. smegmatis orthologs. Overall our
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findings indicate that while low levels of transcriptional regulation occur, regulation at the
mRNA level does not play a major role in controlling cellular cyclase availability in a given

environment.

Introduction

Cyclic adenosine monophosphate (cAMP) is an important second messenger that is
produced by adenylate cyclase enzymes and controls a wide range of cellular responses in both
prokaryotic and eukaryotic cells (Botsford & Harman 1992; Peterkofsky et al. 1993; Tang &
Hurley 1998). cAMP signaling is critical for the regulation of virulence genes in several bacterial
pathogens such as Yersinia pestis and Pseudomonus aeruginosa, and recent evidence suggests
that cAMP also plays a role in the virulence of Mycobacterium tuberculosis, the causative agent
of tuberculosis (Rickman et al. 2005; Petersen & Young 2002; Smith et al. 2004; Agarwal et al.
2009). Deletion of the cAMP-controlled transcription factor, cAMP Receptor Protein (CRP),
from the Mtb genome causes attenuation of M. fuberculosis in a murine model and reduced
bacterial growth rates in vitro and within macrophages (Rickman et al. 2005; Akhter et al. 2008).
Additionally deletion of adenylate cyclase Rv0386 causes a loss of intramacrophage, bacterial-
derived cAMP, which leads to decreased bacterial survival during mouse infection (Agarwal et
al. 2009).

The classical model for cAMP regulation in prokaryotes is based on the well
characterized cAMP response in Escherichia coli (Botsford & Harman 1992). E. coli contains a
single class I adenylate cyclase which catalyzes the conversion of ATP to cAMP (Peterkofsky et
al. 1993). By comparison, the M. tuberculosis H37Rv genome contains 15 class III adenylate

cyclases (McCue et al. 2000), 10 of which have confirmed, biochemically distinct, activity
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(Castro et al. 2005; Linder et al. 2004; Linder et al. 2002; Reddy et al. 2001; Abdel Motaal et al.
2006; Cann et al. 2003; Shenoy & Visweswariah 2006; Guo et al. 2001; Sinha et al. 2005; Tews
et al. 2005). Along with the high number of adenylate cyclases in the mycobacterial genome,
there is also a wide diversity in their protein structure and domain compositions. Mycobacterial
cyclases include receptor, membrane bound, and soluble type family members, and two
(Rv1625¢ and Rv2435¢) belong to the mammalian type adenylyl cyclase grouping (McCue et al.
2000; Shenoy & Visweswariah 2006; Reddy et al. 2001). The high number and diversity of
mycobacterial cyclases suggests a large role for cAMP signaling in these species, and leads us to
reason that the cAMP signaling paradigm in mycobacteria is more complex than the classical E.
coli model. Besides M. tuberculosis, other mycobacterial species including the nonpathogenic M.
smegmatis, actinobacteria, alphaproteobacteria, and cyanobacteria also contain high numbers and
diversities of annotated adenylate cyclases signifying that the E. coli paradigm is not
transferrable to all prokaryotes (McCue et al. 2000; Shenoy et al. 2004).

With a high number of adenylate cyclases there is likely to be a high amount of
redundancy in mycobacterial cCAMP production. Enzymatic regulation of adenylate cyclases in
response to changing environments has been identified as a regulatory mechanism in M.
tuberculosis (Abdel Motaal et al. 2006; Linder et al. 2004; Cann et al. 2003; Linder et al. 2002).
However we hypothesize that it is unlikely for all cyclases to be present in the cell at the same
time. Instead we thought it more probable that regulation first occurs at the level of transcription
with unique cyclases transcribed and translated under specific environmental or growth
conditions. For instance, Dass et al. demonstrated that expression of MSMEG_3780 is
downregulated under low pH conditions and that downregulation is tied to decreased production

of cAMP in that environment (Dass et al. 2008). While Dass et al focused on characterizing the
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detailed regulation of one cyclase we have examined expression of all 8 Mtb cyclase orthologs
found in nonpathogenic M. smegmatis to determine the role transcriptional regulation may have

on the availability of cyclases in the cell.

Materials and Methods

Bacterial culture

M. smegmatis mc¢*155 was grown in Tryptic Soy Broth (TSB) supplemented with 0.05% Tween-
80. Cultures were grown in ambient air or 5% CO, at 37°C in 25cm” tissue culture flasks rocking
with gentle agitation. For gene regulation assays, late log phase cultures were exposed to low pH
(TSB adjusted to pH 5.5 with 0.1 M HCI), starvation (incubation in Phosphate Buffered Saline),

hydrogen peroxide (5 mM), or nitric oxide (10 mM DETA) for 4 hours and gene expression was

compared to non-exposed cultures.

RNA preparation

Late log phase culture of M. smegmatis mc’155 was pelleted and resuspended in RNase free
water. Cells were mechanically disrupted using a bead beater (BioSpec Products) for 4 rounds of
beating on high for 1 minute each, in a mixture of 0.1 mm zirconia-silica beads (BioSpec
Products) 45% TRIzol (Invitrogen), 45% acid phenol, and 10% chloroform-isoamyl alcohol
(24:1). RNA was precipitated with isopropanol/3 M sodium acetate (pH 5.2) and resuspended in
RNase free water. RNeasy Mini Kit and RNase-free DNAse (Qiagen) were used to remove

contaminating DNA following manufacturer specifications.
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Semiquantitiative RT-PCR

cDNA was prepared from 0.5 pg of RNA following iScript cDNA synthesis kit specifications
(BioRad). PCR was run using a series of cDNA dilutions (0 — 1:1000) as templates to ensure
reactions chosen for quantitation were in the linear range of the PCR (Table 1 for primers).
Reactions were performed at 94°C for 1 min, 57°C for 1 min and 72°C for 1 min followed by a
10 min extension at 72°C. Control reactions were performed against 16S rDNA using cDNA
diluted 10™. PCR products were separated on agarose gels and band densities quantified using
Imagel software (Abramoff et al. 2004). The 16S PCR products from all growth conditions were
normalized to one another before quantitation of individual genes, to ensure equal levels of
starting RNA in each reaction. 16S RNA PCR was also performed using total RNA without

reverse transcription to ensure the absence of DNA contamination.

Gene reporter construction and assay

Promoter:GFP reporter strains were generated for gene expression analysis of M. tuberculosis
promoter regions in a M. smegmatis background. The intergeneic DNA sequences of the
adenylate cyclase genes were amplified by PCR (Table 1 for primer sequences) and amplified
DNA was cloned into pGFPoriM, which carries a promoterless gfpmut2 gene as previously
described (Purkayastha et al. 2002; Florczyk et al. 2003). Constructed plasmids were
electroporated into M. smegmatis mc*155 at 2500 mV (Eppendorf 2510 Electroporator). GFP
fluorescence from cultured cells was detected using GloMax Multi+ Detection System

(Promega) and normalized to 10° bacteria based on ODgqp.

Results and Discussion
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Regulation of M. smegmatis adenylate cyclases

The genome of M. smegmatis contains ten annotated adenylate cyclases, eight of which
have orthologs in pathogenic M. tuberculosis (Kapopoulou et al. 2011). In order to determine the
role of gene expression in adenylate cyclase availability we systematically examined
transcription of all eight orthologs using semi-quantitative RT-PCR. Gene expression was
examined with a focus on M. tuberculosis orthologs, and in a variety of environments chosen
based on those known to be relevant for M. tuberculosis infection, due to the recent connection
between cAMP production and M. tuberculosis virulence. Conditions examined include
starvation, low pH, oxidative and nitrosative stress and 5% CO, (Smith 2003). Expression under
control conditions (growth in TSB + Tween-80) indicated that all 8 adenylate cyclase genes are
transcribed at the same time in the cell, albeit with varied levels of transcription (Figure 1). Out
of all conditions tested the greatest level of regulation was observed during starvation and
oxidative stress (H,O, exposure), while no difference in expression of any genes was seen during
nitrosative stress or the presence of CO,. Two genes (MSMEG_0545 and MSMEG_4279) were
upregulated 2-3 fold after 4 hrs of starvation while one gene (MSMEG_3780) was observed to
be downregulated approximately 2 fold in each of starvation and low pH. Additionally two genes
(MSMEG_0545 and MSMEG_4924) were downregulated approximately 2 fold under oxidative
stress (Figures 1 and 2).

Interestingly only four of the eight adenylate cyclase genes showed changes in expression
in any environments examined. While statistical, these observed changes were not drastic shifts
in expression, leading only to 2-3 times higher or lower levels of mRNA in any given

environment. Combined with the result that all eight genes were transcribed at various levels in
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all environments tested we conclude that our results counter our hypothesis and indicate that
transcriptional regulation plays only a minor role in controlling the availability of various
adenylate cyclases in the cell. Three of the four genes that did demonstrate transcriptional
regulation encode for soluble adenylate cyclase proteins suggesting that transcriptional
regulation may play a larger role in the availability of soluble cyclases as opposed to the
membrane associated and multi-domain structures. It is likely that biochemical regulation of
various protein domains has the dominant role in regulation of cAMP production by the

redundant cyclases.

Regulation of M. tuberculosis adenylate cyclases

Eight of the ten M. smegmatis cyclases are orthologs of adenylate cyclases in M.
tuberculosis, representing just over half of the annotated cyclases in H37Rv (Kapopoulou et al.
2011). Promoter regions of each ortholog pair, represented by the 500 nucleotides upstream of
the ATG start site of each gene, were compared for sequence similarities using the sequence

alignment program T-Coffee (http://www.ebi.ac.uk/Tools/msa/tcoffee/) (Notredame et al. 2000).

Percent identities ranged from 51.94% to 82.08% (Table 2), indicating enough similarity to
hypothesize that regulation would be similar between orthologs.

In order to determine if regulation in M. smegmatis was similar to that of the pathogenic
orthologs we generated GFP:promoter fusions using the intergenic regions amplified from
H37Rv chromosomal DNA. Overall, regulation between species orthologs was very similar.
Rv1359 showed similar regulatory patterns of upregulation in starvation and downregulation in
oxidative stress as did MSMEG_0545 (Figure 3). Interestingly Rv1359 is one of five H37Rv

annotated adenylate cyclases that has not been shown to have biochemical activity and is
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predicted to be enzymatically inactive (Shenoy et al. 2004). Transcriptional regulation of this
gene indicates that even if it is not a functional adenylate cyclase, it is transcribed and likely has
an unidentified function in the cell. Additionally Rv1647 showed similar regulatory patterns of
downregulation in both starvation and low pH similarly to MSMEG_3780, supporting the
observation by Dass et al (Dass et al. 2008) who reported similar regulation (Figure 3).

The last regulatory similarity observed was the oxidative stress regulation of both
MSMEG_4924 and the Rv1320c promoter region. MSMEG_4924 has three predicted orthologs
in Mtb, Rv1318c, Rv1319c and Rv1320c. Rv1319c and Rv1320c are predicted to be an operon
with only 13 nucleotides between the two genes, thus both genes are represented by the Rv1320c
promoter region. The regulatory similarity of MSMEG_4924 to Rv1320c and not Rv1318c
correlates with the higher percent similarity to the Rv1320 promoter (82.08%) than the Rv1318c

promoter (54.6%) (Table 2).

Conclusions

Mycobacterial species contain a high number of functional adenylate cyclases when
compared to E. coli, the typical prokaryotic model system. The high level of cyclase redundancy
led us to hypothesize that only specific cyclases would be expressed in the cell under any given
condition. However, the results in this study counter that hypothesis, indicating that all eight M.
smegmatis cyclases are transcribed in the cell at one time. Observed changes in transcription
levels in response to varying environments was minor, but conserved between mycobacterial
orthologs, validating the use of M. smegmatis as a model system for studying the complex

mycobacterial adenylate cyclase/cAMP network. While cAMP has been shown to be important
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for M. tuberculosis pathogenesis, adenylate cyclase transcriptional regulation does not appear to

have a major role in regulating the availability of cyclases in the cell.
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291

Table 1.Primers used throughout this study

RT-PCR Promoter:Reporter Fusions
Gene Sequence® Gene Sequence
MSMEG_0545 F-GATCGAGCCGAAGAACTGTG Rv1264  F-NNNNGGATCCGACGATGTCGACGTAGTTGT
R-ATTGAGGGCGATCAAGTGAG R-NNNNGGTACCGCGCACGTGGTCTGTCAC
MSMEG_3578 F-CGATCGTCAACAAACTGGTG Rv1318c F-NNNNGGATCCAGATGCCCGAGGTCCAAG
R-CAGGTATCCGTTGTGCAGTG R-NNNNGGTACCGTGCTCTTGGCCGACAT
MSMEG_3780 F-CATACTCTTGCGCCTGTGAA Rv 1359 F-NNNNGGATCCGGAGGTTCGCCACAAGATT
R-CCCTGAGGTCTTTCGTGCT R-NNNNGGTACCCGATACCTTCCGGCTAAGCA
MSMEG_4279 F-CGACCTGTCGGATTTCACC Rv1647  F-NNNNGGATCCAGCGGGAACCGCTAGGG
R-CATCTGATGCCGCAGAACT R-NNNNGGTACCGTAGGTGGTGCGGGCTGAG
MSMEG_4477 F-AGCCTGGCGTATCAGCTCT Rv1900c F-NNNNGGATCCACCGGATCGATCACTTGC
R- ACGGTCCAGAACAATTCGAC R-NNNNGGTACCATGGTCGAGGCGGATCAC
MSMEG_4924 F-GTGACGCTGGAGAACCTGAC Rv2212  F-NNNNGGATCCGCAGATTGGTGATGCTCAGA
R-AAGATGAAGCCGAACACCAG R-NNNNGGTACCGACCATAGCAGGACGTCACC
MSMEG_5018 F-ATCCAGCCACTCCTGGAAG Rv2435¢ F-NNNNGGATCCGTCTGAGTGCGTCGTCGTT
R-TGAGCAGCCAGTTGATCAGT R-GGTACCTACCGAGTCCAGTGCCTCAC
MSMEG_6154 F-CCTGCTCAACGAGTTCTTCC Rv3645  F-NNNNGGATCCAATCACCACGATCTGCCAGT
R-GCGTCACCCTGGAACTTGT R-NNNNGGTACCGCATGCTCAGCGAGAACAG
16S rDNA F-GCGATACGGGCAGACTAGAG tuf F-NNNNGGATCCGTGCGGAAGTAGAACTGCGG
R-CCTCCTCCTGATATCTGCGCATT R-NNNNGGTACCAGGAAGTTGAGATCGTCGGC
sigA F-TCGAGGACGAGGAAGAAGAA
R-CCTCCAGCAGATGGTTTTTG
292  *F - forward primer, R — reverse primer
293
294
295
296
297
298
299
300
301
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302  Table 2. Percent identity between Mtb and M. smegmatis ortholog promoters”

MSMEG H37Rv Percent

gene gene Identity®
0545 Rv1359 57.02
3578 Rv2435 46.3
3780 Rv1647 51.94
4279 Rv2212 78.97
4477 Rv1900 54.42
4924 Rv1318c 54.6
Rv1319c/
4924 Rv1320c 82.08
5018 Rv1264 54.01
6154 Rv2645 69.28

303 * Promoter region defined as the 500 nucleotides upstream of translation start site

304  ° Determined with T-Coffee multi-sequence alignment
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313
314
315
316
317
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Figure 1. Regulation of M. smegmatis adenylate cyclase genes under starvation conditions.
Semi-quantitative RT-PCR was used to compare adenylate cyclase mRNA levels between late-
log phase cultures incubated for 4 hours in mycomedia (control) or PBS (starvation). (A) A
representative depiction of PCR amplified cDNA separated using agarose gel electrophoresis.
(B) Data obtained from ImageJ quantifying the band densities observed on the depicted agarose
gel comparing the cDNA levels under control (black bars) and starvation (white bars) conditions.
(C) Average of three different experiments represented as fold differences of starvation
compared to control expression. * indicates statistically significant difference between

expression in control and starvation for an individual gene (p<0.05)
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329  Figure 2. Regulation of M. smegmatis adenylate cyclase genes under low pH and oxidative

330  stress. Semi-quantitative RT-PCR was used to compare adenylate cyclase mRNA levels between
331 late-log phase cultures incubated for 4 hours in mycomedia (control, black bars) , mycomedia
332 adjusted to pH 5.5 (low pH, hatched bars), and mycomedia containing H,O, (H202, grey bars).
333  Results are the average of three independent experiments and are expressed in fold difference
334  comparing experimental condition to control. * indicates conditions with statistically significant

335  differences in expression compared to control for an individual gene (p<0.05)
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Figure 3. Regulation of M. tuberculosis adenylate cyclase genes. GFP: promoter fusions

containing M. tuberculosis promoters were electroporated into M. smegmatis and used to
examine adenylate cyclase expression in late log phase cultures after 4 hour incubation in
mycomedia (control, black bar), PBS (starvation, white bar), mycomedia adjusted to pH 5.5 (low
pH, hatched bars), and mycomedia containing H,O, (H202, grey bars). Fluorescence was
normalized to 10° cells and represented as the average of three independent experiments. *
indicates conditions with statistically significant differences in expression compared to control
for an individual gene (p<0.05)
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