
Judging a Commit by Its Cover
or Can a Commit Message Predict Build Failure?
Eddie Antonio Santos1 and Abram Hindle1
1Department of Computing Science, University of Alberta

ABSTRACT

Developers summarize their changes to code in commit messages. When a message seems “unusual”, however, this puts
doubt into the quality of the code contained in the commit. We trained n-gram language models and used cross-entropy as an
indicator of commit message “unusualness” of over 120 000 commits from open source projects. Build statuses collected from
Travis-CI were used as a proxy for code quality. We then compared the distributions of failed and successful commits with
regards to the “unusualness” of their commit message. Our analysis yielded significant results when correlating cross-entropy
with build status.

Keywords: commit message; n-gram language model; build status build failure; open source project; kneser-
ney smoothing

1 INTRODUCTION
Commit messages are summaries written by developers describing the changes they have made during the
development process. Our experience working within the open source community has given the impression that
developers tend to use a fairly limited vocabulary and restricted structure when writing commit messages. Alali
et al. Alali et al. (2008) provide empirical evidence for this observation reporting that over 36% of all commit
messages contained the word “fix” and over 18% contained the word “add”. Thus, developers may regard short,
terse, and to-the-point messages such as “Add test for visibility modifiers”1 to be usual when browsing the
commit log of a code repository.

When a developer reads an unusual commit message that defies their expectations, such as “Cargo-cult
maven”2, they may ask themselves a number of questions. “Why did they write ‘cargo cult maven’?” “What
changes could have prompt-ed this cryptic commit message?” “Should I trust the code behind this commit
message?” Such unusual messages may induce suspicion; a developer reading this message may question the
commit’s quality.

Should developers trust their instinct? This paper seeks to answer the question: Are unusual commits hiding
bad code? We break this down into the following research questions:

RQ1: How can the unusualness of a commit message be measured?
RQ2: Is the unusualness of a commit message related to the quality of the code committed?

2 METHODOLOGY
In natural language processing, n-gram language models are used to answer questions about frequency, surprise,
and unusualness. We use the cross-entropy of a commit message with respect to a language model in order to
quantify its unusualness. To determine the quality of a commit, we use its build status as provided by Travis-CI,3
a continuous integration service popular among open source projects. The build status of any commit can then
be evaluated with respect to the unusualness of its message as measured by cross-entropy.

To ensure that the commits indeed come from software development projects, we employed a number of
strategies described in Section 2.1. We describe how commit quality is determined using data from Travis-CI in
Section 2.2. In Section 2.3, we describe how each commit message was tokenized so that they could be used as
input for the n-gram language models. Finally, in Section 2.4, we describe how the tokenized commit messages

1https://github.com/astefanutti/metrics-cdi/commit/bde563637902237aca2fc6a7e49b4b57099b11b1
2https://github.com/1000Memories/photon-core/commit/f6e0fe6f8a4bf03a044c83dd691517ac1edfc35c
3https://travis-ci.org/

1
PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1771v1 | CC-BY 4.0 Open Access | rec: 23 Feb 2016, publ: 23 Feb 2016

were used to train language models, and how these language models were used to calculate each commit’s
unusualness via cross-entropy.

2.1 How were commits chosen?
To obtain commit messages applicable for this study, we used Boa Dyer et al. (2013) to query the September
2015 GitHub dataset. The Boa query and its results are available online.4 This query used the following criterion
to establish if a given project was to be considered in the study.

1. Boa must have parsed abstract syntax trees of the projects. As of this writing, Boa only parses Java code,
meaning that only projects that contained parsable Java code were obtained. Thus, repositories that are
unlikely to be used for software development are pruned.

2. The project must have more than 200 abstract syntax tree nodes. This filters out stub projects.
3. The project must have more than 6 commits, to avoid personal and other stub projects, following the

recommendations given in “The Promises and Perils of Mining GitHub” Kalliamvakou et al. (2014).
4. Finally, the project must have a file named .travis.yml, indicating that project uses Travis-CI to track

per-commit build status.

From each project that passed the above criteria, commits were chosen only if the commit had an associated
Travis-CI status (described in Section 2.2), and if it was not a merge. Merge commits were excluded due to their
messages being automatically generated by Git by default. Auto-generated merge commits are identifiable by
their message starting with “Merge branch”, “Merge pull request”, or “Merge remote.” The message text was
used to detect merge commits since commit parent information is not available in Boa. Were this data available,
merges would be detectable if the commit has more than one parent.

After filtering, 120 822 commits from 26̃79 projects fit the criteria described above and were subsequently
used in the following analysis.

2.2 Establishing commit quality: Travis-CI
To establish the quality of a commit, we mined Travis-CI. Travis-CI.org is an online continuous integration service
that is free for use by open source projects. When a commit is pushed to any branch on GitHub—be it the main
branch, a derivative branch, or a pull request—Travis-CI will clone, build, and test that project’s commit in a
clean virtual machine or Linux container. It sets up the machine by installing the project’s dependencies, and
populates test databases, if any. This is the install phase. The script phase follows, in which the project is built
(compiled) and its test suites are run. A Travis-CI build may result in the following three statuses:5

errored An error occurred in the install phase. For example, a Java project using the Maven build system6

may error due to a mis-configured pom.xml file.
failed An error occurred in the script phase. This usually means the project either failed to build or was

successfully built, but failed its test suite.
passed The project built successfully and passed its tests.

A build may also be manually cancelled by a developer, but such commits were omitted from our analysis.

2.3 Tokenization
The n-gram language models used in this paper take tokens as input. A token is an indivisible unit of meaning
that makes up a commit message. The process of tokenization transforms raw text—a series of Unicode code
points— into a series of tokens which can then be used with a language model. To avoid undue surprise, tokens
fed to the language model must accurately represent the notion of “unusualness” defined in this paper. Thus,
the following steps were performed to tokenize each commit message.

1. First, the message text is normalized using Unicode Normalization Form C dav (2015) to ensure character
sequences that “look the same” are compared equal.

2. The message text is transformed into lower-case.
3. The text is then split on whitespace and separating punctuation.

4http://boa.cs.iastate.edu/boa/?q=boa/job/public/30188.
5https://docs.travis-ci.com/user/customizing-the-build#Breaking-the-Build
6https://maven.apache.org/

2/6
PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1771v1 | CC-BY 4.0 Open Access | rec: 23 Feb 2016, publ: 23 Feb 2016

NFC Normalized Updating Manifest.txt. Related
to f75a283 (#495)

Lower-cased updating manifest.txt. related to
f75a283 (#495).

Split updating manifest.txt
related to f75a283 #495

Substitutions updating file-pattern

related to git-sha
issue-number

Table 1. Each step of the tokenization process

Substitution Meaning Examples

issue-number GitHub Issue num-
bers8

#22 , #34

file-pattern Filenames and globs README.md ,
**/*.jpg

method-name Method names build_indexes()
version-numberVersion numbers9 2.2 ,

2.1.0-rc.1 , 0.1-SNAPSHOT

git-sha SHA1 commit hashes d670460

Table 2. Examples of semantic substitutions

4. Tokens with similar meaning are substituted with generic tokens. Upon manually observing over 2500
commit messages, a number of patterns were observed in their text. For example, one commit would
read “Update README.md”; another would read “Update pom.xml”. Such messages are not unusual, yet
the amount of individual variety may be immense, due to the amount of different filenames possible. To
capture this and other regularities, tokens that were obviously similar were substituted with a generic token
such as file-pattern . Many such semantic substitions were defined and employed, as demonstrated in
Table 2.

Table 1 shows the tokenization applied to the message, “Updating Manifest.txt. Related to f75a283 (#495).”7

2.4 Training the n-gram language model
For each project in the dataset, an n-gram language model was trained on the commit messages of all other
projects in the dataset. This is called the “leave-one-out” method. Excluding each project from its training set
ensures that commit messages from the current project are not already “known” to the language model, thus
biasing their “unusualness” score. The order or n of the n-gram model was set to three. n-gram models with
an order of 3 are also known as trigram models. A trigram model was chosen because predictive performance
on English text does not significantly improve for larger values of n Hindle et al. (2012).

The n-gram implementation used was MITLM Hsu and Glass (2008), which implements modified Kneser-
Ney smoothing to interpolate probabilities in the very likely case of data sparsity. With Kneser-Ney smoothing,
the model is not “infinitely surprised” when it encounters a trigram it has never seen before—a trigram that is
actually composed of one or more bigrams (2-gram) or unigrams (a single token) that it has seen before. Instead,
Kneser-Ney smoothing interpolates the probability with a penalty—that is, the model is surprised, but not too
surprised.

7https://github.com/sparklemotion/nokogiri/commit/f60f78dff19043c09dc3c6ff7bd975edfff0730f
8https://help.github.com/articles/autolinked-references-and-urls/#issues-and-pull-requests
9According to Semantic Versioning: http://semver.org/

3/6
PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1771v1 | CC-BY 4.0 Open Access | rec: 23 Feb 2016, publ: 23 Feb 2016

0

1000

2000

3000

4000

0 5 10 15
Cross−Entropy (bits)

N
um

be
r

of
 c

om
m

it
m

es
sa

ge
s

0

1000

2000

3000

4000

4 8 12 16
Cross−Entropy (bits)

N
um

be
r

of
 c

om
m

it
m

es
sa

ge
s

Build Status

Errored

Failed

Passed

Figure 1. Histograms of commit message cross-entropies. Note the tall bins (left), which contain a large
number of auto-generated commit messages that were not foreseen when training this model. We recalculated
the histogram (right), removing auto-generated commits, as well as many non-English commit messages.

To quantify the “unusualness” of each commit message, the text of each message is tokenized and evaluated
using MITLM to calculate the mean cross-entropy of the commit message with respect to a language model
trained on all other projects. That is, the cross-entropy of each trigram in a message is calculated with respect to
the leave-one-out language model and averaged to produce the cross-entropy of the entire message. Intuitively,
cross-entropy measures how much information a distribution—such as an n-gram language model—needs to
explain an observation. The higher the cross-entropy, the more difficult it is for the model to explain a given
observation. The higher the cross-entropy a commit message has, the more unusual it is.

3 RESULTS
Figure 1, left, is a histogram displaying the cross-entropies of all 120 822 commits. The width of the bins in
the histogram were chosen using the Freedman-Diaconis rule Freedman and Diaconis (1981). What is instantly
notable from this histogram are the four major “outlier” bins; in general, the distribution of cross-entropies tends
to follow a somewhat normal distribution; however, these bins (quite literally) stick out.

Examining the messages in these bins revealed that, despite the previous discipline in removing merge
commits due to their automatically generated commit messages, these automatic messages still crept in. For
the exception of the second largest bin, which contains the messages of the form “Update file-pattern ”, the
messages in these outliers are caused by tools which automatically make commits. Specifically, the Maven release
plug-in, and its clone, the Gradle release plug-in both, of which generate messages of the form, “[maven-release-
plugin] prepare for next development iteration”10. The largest outlier bin was filled with 2880 messages similar
to “GS-803 Build version advanced to 1150111 git-svn-id: svn://pc-lab14/SVN/xap/trunk/openspaces@170939
eb64e73736164df089415ee2ae88103d ”11. These commits were automatically generated by a bot that modifies
build configuration; most of these commits had a build status of errored.

Lesson: Not all commit messages are written by hand; even non-merge commits may be automatically
generated.

We were curious about “very unusual” messages—those belonging to the rightmost bins in Figure 1, left.
Manual inspection of these bins revealed that the majority of the messages in the right-tail were not written in
English. Since most of the corpus is in English, the language models would report commits in other languages
as very unusual indeed; additionally, this would affect our distribution and hypothesis, since a cursory glance
of Spanish and Polish commits message show that they have a similar terseness and grammatical structure as
“usual” English commits.

10https://github.com/shyiko/mappify/commit/0bfac7039a7951bcc47c0ae4e4c6f8e201161a0e
11https://github.com/OpenSpaces/OpenSpaces/commit/26e900e32d07ab6747d9092b929194076a575632

4/6
PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1771v1 | CC-BY 4.0 Open Access | rec: 23 Feb 2016, publ: 23 Feb 2016

Lesson: commit messages on GitHub cannot be assumed to be written in English.
To determine if the cross-entropies of passed, failed, and errored commits had different distributions, we

calculated the pairwise comparisons using the Wilcoxon rank sum test. Letting α = 0.01, we obtained a significant
p-value near zero for all comparisons of passed vs. failed, passed vs. errored, and errored vs. failed, meaning that
the cross-entropy distributions differed depending on build status.

However, we were suspicious of the effects of the outlier bins; note that the tallest bin visually seems to have
a disproportionate amount of errored results. Thus, we repeated the pairwise Wilcoxon rank sum test with all
five outlier bins removed. Only passed vs. failed and passed vs. errored distributions resulted as significantly
different with a p-values near zero and 0.0021, respectively. Errored vs. failed, were not significantly different
(p = 0.2518). This means that the cross-entropy distributions of passed vs. “broken” (either errored or failed)
may be different. Still, since the bins were merely removed from the significance tests after the models had
already been trained, the cross-entropies analyzed in these tests are still affected by commit messages in the
outlier bins.

Given the significant effect of outliers and the fact that the tail had commits in languages other than English,
it became obvious that the leave-one-out methodology must be recalculated without such confounding factors.

We curated a list of auto-generated commits, and omitted such commits when constructing the new corpus.
To filter for English-language commits, we used langid.py Lui and Baldwin (2012) to estimate the probability
that a whole project’s commits are in English. We found that in isolated cases, langid.py would misclassified
English commit messages (often as German or Dutch). Hence, we assisted it by manually verifying its results
of over 100 projects, letting it handle the rest. The resultant corpus contained 108 989 commits from 2 529
projects.

The results are in Figure 1, right. One outlier remains, which (as in the previous histogram) is filled with
messages of the form “Update file-pattern ”. A portion of these may be auto-generated, however we deemed
these messages as plausibly hand-written; we did not discard them. Pairwise Wilcoxon rank sum test was
retried and we found that passed vs. failed are still different distributions with a p-value near zero; similarly,
failed vs. errored are different with a p-value of 0.0015. Given a p-value of 0.7527, we fail to reject passed
vs. errored as different distributions. Strikingly, we plotted the empirical cumulative distribution function of
passed, errored, and failed as seen in Figure 2. We found that failed is different, for lower values of cross-entropy.
Additionally, it steadily closes the gap between itself and passed and errored. This means that failure rate
is lower given a more usual commit, and gradually increases. Calculating Pearson’s product-moment linear
correlation coefficient yields a 99% confidence interval of (0.007,0.468). Since zero is not in the interval (zero
would indicate no correlation) we conclude that build failure and “unusualness” may be positively correlated—
but only marginally.

4 DISCUSSION
Does this mean that developers can use commit messages to predict build failure? Can we cancel our continuous
integration subscriptions? In short, no.

Though the results are statistically significant, we conclude that they are not practically helpful for the
average developer. For example, which of the following commits failed its status check? “added init.d test to
travis config”12 (cross-entropy = 5.08), or “I’m sloppy”13 (cross-entropy = 12.9)? The latter has a far more
unusual commit message than the former, yet it passed its status check; the “usual” commit failed. Thus, as a
heuristic for estimating the probability of build failure, commit messages are not very useful.

For future work, we would like to investigate other features correlation with build status; are there any
non-code features that do predict build failure?

5 CONCLUSIONS
RQ1: How can the unusualness of a commit message be measured? Using n-gram language models, one
is able to use cross-entropy as an analogue for unusualness. Automatically-generated messages and non-English
commits become easy to spot out.

RQ2: Is the unusualness of a commit message related to the quality of the code committed?
“Never judge a book by its cover.” Similarly, never judge a commit by its log message. Despite some evidence

12https://github.com/ksclarke/solr-jetty-maven/commit/80b627f6327afc178e9b0d1a14c9821a197bc76d
13https://github.com/cucumber/bool/commit/33af59d3dac87491c0b22b6248e54ba7b02a367e

5/6
PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1771v1 | CC-BY 4.0 Open Access | rec: 23 Feb 2016, publ: 23 Feb 2016

0.00

0.25

0.50

0.75

1.00

0 5 10 15
Cross−Entropy (bits)

N
um

be
r

of
 c

om
m

it
m

es
sa

ge
s

(c
om

m
ul

at
iv

e)

Figure 2. Empirical cumulative distribution functions of number of passed (in green), failed (in purple), and
errored (in orange) commits as cross-entropy (“unusualness”) increases. Note that failed, initially grows slower
than passed and errored; by 10 bits, however, failed is indistinguishable from passed and errored.

to suggest that the “unusualness” of a commit message is positively correlated with build failure, the slope is so
gradual that it is infeasible for an average developer to judge a commit by simply reading its log message.

REFERENCES
(2015). Unicode Standard Annex #15, ”Unicode Normalization Forms,” an integral part of The Unicode Stan-
dard.

Alali, A., Kagdi, H., and Maletic, J. I. (2008). What’s a typical commit? A characterization of open source
software repositories. In Program Comprehension, 2008. ICPC 2008. The 16th IEEE International Conference
on, pages 182–191. IEEE.

Dyer, R., Nguyen, H. A., Rajan, H., and Nguyen, T. N. (2013). Boa: A language and infrastructure for analyzing
ultra-large-scale software repositories. In 35th International Conference on Software Engineering, ICSE 2013,
pages 422–431.

Freedman, D. and Diaconis, P. (1981). On the histogram as a density estimator: L 2 theory. 57(4):453–476.
Hindle, A., Barr, E., Su, Z., Gabel, M., and Devanbu, P. (2012). On the naturalness of software. In Software

Engineering (ICSE), 2012 34th International Conference on, pages 837–847.
Hsu, B.-J. P. and Glass, J. R. (2008). Iterative language model estimation: efficient data structure & algorithms.
In INTERSPEECH, pages 841–844.

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D. M., and Damian, D. (2014). The promises
and perils of mining GitHub. In Proceedings of the 11th Working Conference on Mining Software Repositories,
pages 92–101. ACM.

Lui, M. and Baldwin, T. (2012). langid. py: An off-the-shelf language identification tool. In Proceedings of the
ACL 2012 system demonstrations, pages 25–30. Association for Computational Linguistics.

6/6
PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1771v1 | CC-BY 4.0 Open Access | rec: 23 Feb 2016, publ: 23 Feb 2016

