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Sharapov, Tamer Mahmoud, Sonja Krstin, Michael Linscheid, Abdel Nasser Singab, Michael Wink, Nahla Ayoub

Background: Schotia brachypetala Sond. (Fabaceae) is an endemic tree of Southern

Africa whose phytochemistry and pharmacology were slightly studied.The present work

aimed at profiling the major phenolics compounds present in the hydro-alcoholic extract

from S. brachypetala leaves (SBE) using LC/HRESI/MS/MS and NMR and prove their

antioxidant capabilities using novel methods. Methods: In vitro assays; DPPH, TEAC

persulfate decolorizing kinetic and FRAP assays, and in vivo assays: Caenorhabditis

elegans strains maintenance, Intracellular ROS in C. elegans, Survival assay, GFP

expression and Subcellular DAF-16 localization were employed to evaluate the antioxidant

activity. Results: More than forty polyphenols ,including flavonoid glycosides, galloylated

flavonoid glycosides, isoflavones, dihydrochalcones, procyanidins, anthocyanins,

hydroxybenzoic acid derivatives, hydrolysable tannins, and traces of methylated and

acetylated flavonoid derivatives were identified. Three compounds were isolated and

identified from the genus Schotia for the first time, namely gallic acid,

myricetin-3-O-�-L-1C4-rhamnoside and quercetin-3-O-L-1C4-rhamnoside.The tested extract

was able to protect the worms against juglone induced oxidative stress and attenuate the

reactive oxygen species (ROS) accumulation. SBE was also able to attenuate the levels of

heat shock protein (HSP) expression. Discussion: A pronounced antioxidant activity in

vivo, which can be attributed to its ability to promote the nuclear translocation of DAF-

16/FOXO, the main transcription factor regulating the expression of stress response genes.

The remarkable antioxidant activity in vitro and in vivo correlates to SBE rich phenolic

profile.
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27 Abstract

28 Background:SchotiabrachypetalaSond. (Fabaceae) is an endemic tree of 

29 Southern Africa whose phytochemistry and pharmacology were slightly 

30 studied.The present work aimed at profiling the major phenolics compounds 

31 present in the hydro-alcoholic extract from S. brachypetala leaves (SBE) using 

32 LC/HRESI/MS/MS and NMR and prove their antioxidant capabilities using novel 

33 methods.

34 Methods: In vitro assays; DPPH, TEAC persulfate decolorizing kinetic and 

35 FRAP assays, and in vivo assays:  Caenorhabditiselegans strains maintenance, 

36 Intracellular ROS in C. elegans, Survival assay, GFP expression and Subcellular 

37 DAF-16 localizationwere employed to evaluate the antioxidant activity.

38 Results:More than forty polyphenols ,including flavonoid glycosides, galloylated 

39 flavonoid glycosides, isoflavones, dihydrochalcones, procyanidins, anthocyanins, 

40 hydroxybenzoic acid derivatives, hydrolysable tannins, and traces of methylated 

41 and acetylated flavonoid derivatives were identified. Three compounds were 

42 isolated and identified from the genus Schotia for the first time, namely gallic 
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43 acid, myricetin-3-O-α-L-1C4-rhamnoside and quercetin-3-O-L-1C4-

44 rhamnoside.The tested extract was able to protect the worms against juglone 

45 induced oxidative stress and attenuate the reactive oxygen species (ROS) 

46 accumulation. SBE was also able to attenuate the levels of heat shock protein 

47 (HSP) expression.

48 Discussion:A pronounced antioxidant activity in vivo, which can be attributed to 

49 its ability to promote the nuclear translocation of DAF-16/FOXO, the main 

50 transcription factor regulating the expression of stress response genes. The 

51 remarkable antioxidant activity in vitro and in vivo correlates to SBE rich 

52 phenolic profile.

53 Key words:Schotiabrachypetala, polyphenolics, LC/HRESI/MS/MS, 

54 Caenorhabditiselegans, antioxidant activity.
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57 Introduction 

58 Plants produce a wide diversity of secondary metabolites, which have evolved as 

59 defence compounds against herbivores and microbes. Most secondary metabolites 

60 exhibit an interesting pharmacological activity. Therefore, many plants have been 

61 used in traditional medicine and phytomedicine for the treatment of health disorders 

62 all over the world (Wyk and Wink, 2004). In modern medicine, plants still have a 

63 special participation; anticancer compounds such as vinblastine, paclitaxel and 

64 camptothecin can be cited as enthusiastic examples of the pharmaceutical potential 

65 of the natural products (Efferth and Wink, 2010) Antiaging, antioxidants and anti-

66 inflammatories are also currently found in natural source (Angerhofer, 

67 Maes&Giacomoni, 2008;Debnath, Kim& Lim, 2013;Kim et al., 2004; Yuan et al., 

68 2006).

69 Antioxidants compounds are been extensively studied; they are supposed to 

70 play a role on aging and aging related diseases due to their ability to attenuate the 

71 cellular oxidative damage which are caused essentially by the reactive oxygen 

72 species (ROS) (Barja, 2004; Shaw, Werstuck& Chen, 2014).

73 The production of ROS is an inevitable result of the cell metabolism which 

74 can be enhanced by endogenous and exogenous stress. High concentrations of ROS 

75 cause oxidative damage on DNA, lipids and proteins; as a consequence, quite a 

76 number of health disorders are  related to ROS intracellular imbalance, including 

77 arteriosclerosis and other cardio-vascular conditions, inflammation, cataract, 

78 Alzheimer�s disease (Dumont &Beal., 2011; Pendergrass et al., 2006)  and even 

79 cancer (Valko et al., 2004; Valko et al., 2007).
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80 The cellular defence system against radicals include antioxidant enzymes, 

81 like superoxide dismutase, glutathione and catalase and compounds with 

82 antioxidant activity like proteins, vitamins, minerals and polyphenols (Sies& Stahl, 

83 1995). ECGC and resveratrol are examples of polyphenols with potent antioxidant 

84 activity and demonstrated health benefits (Fujiki et al., 1999; Patel, et al., 2010; 

85 Rossi et al. 2008; Widlansky et al. 2007; Wolfram, 2007).                  

86 SchotiabrachypetalaSond. (Fabaceae), commonly named weeping boer-

87 bean and huilboerbean (Afrikaans), is a tree endemic to southern Africa (Brenan, 

88 1967; Watt &Breyer-Brandwijk, 1932). Polyhydroxystilbenes were isolated from 

89 the heartwood of the tree (Drewes& Fletcher, 1974) and two antibacterial fatty 

90 acids [methyl-5,11,14,17-eicosatetraenoate and 9,12,15-octadecatrienoic 

91 linolenic acid)] have been described from the leaves (McGaw, Jäger&Van Staden., 

92 2002). Flavonolacylglucosides were recently reported from aerial parts of S. 

93 brachypetala(Du et al., 2014). A recent report indicates the presence of procyanidin 

94 isomers, quercetin 3-Orhamnoside, quercetin hexose gallic acid, quercetin hexose-

95 protocatechuic acid, quercetin 3-O rhamnoside and ellagicacid in twigs (Hassaan et 

96 al., 2014). In addition, catechin and epicatechin have been isolated from plants of 

97 the genus Schotia (Masika, Sultana&Afolayan2004).

98 Traditional healers applied a decoction of the bark to strengthen the body 

99 and to treat dysentery and diarrhoea, nervous and heart conditions, flu symptoms 

100 and as an emetic. The roots are also used to treat diarrhoea and heartburn. The 

101 seeds can be roasted and eaten (Du et al., 2014). Extracts from various parts of S. 

102 brachypetalawere active against bacteria that cause gastrointestinal infections; this 
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103 would explain the use of this plant in the traditional treatment of diarrhoea (Paiva et 

104 al., 2010). Furthermore, these extracts showed anti-oxidant, anti-bacterial and anti-

105 malarial activities (Du et al., 2014), and were active against Alzheimer's disease, 

106 which was correlated to their anti-oxidant and probably anti-inflammatory 

107 properties (Hassaan et al., 2014).

108 The current work aimed to characterize the phenolic secondary 

109 metabolitesofS. brachypetalaleaves using LC/HRESI/MS/MS and NMR. To 

110 evaluate its antioxidant activity in vivo, the nematode Caenorhabditiselegans was 

111 used, since it is a well-established model suitable to study stress resistance, aging, 

112 and longevity.

113

114                 Materials and methods

115 Plant material 

116 During the spring season (April-May 2012) S. brachypetala leaves were 

117 collected from trees grown in Orman Botanical Garden, Dokki, Giza, (Arab 

118 Republic of Egypt). The authenticity of the species was confirmed by Professor 

119 Dr. Mohamed El Gebaly (Professor of Taxonomy at the National Research Center, 

120 Egypt). The identity was further confirmed by DNA barcoding which was carried 

121 in our laboratory using rbcL as a marker gene. A voucher specimen was deposited 

122 at the herbarium of department of pharmacognosy, Faculty of Pharmacy, Ain 

123 Shams University, Egypt. Leaves sample was kept under accession number P8563 

124 at IPMB drug store. The plant was collected during the spring season (April-May 

125 2012).Specific permission was not required for research purpose because the plant 

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1768v1 | CC-BY 4.0 Open Access | rec: 21 Feb 2016, publ: 21 Feb 2016



126 was grown as an ornamental tree in the Botanical Garden.  The authors confirm 

127 that the field studies did not involve endangered or protected species

128                Plant material, extraction and isolation 

129 S. brachypetalaleaves (1 kg) were exhaustively extracted with distilled 

130 water (5 L). At low temperature, the extract was dried under vacuum followed by 

131 alcohol extraction. Similarly, the soluble alcohol extract was dried under vacuum. 

132 SBE dried powder of the aqueous alcohol (43g) was fractionated by column 

133 chromatography using polyamide S6 column. Gradient elution was carried out to 

134 obtain four main fractions. Fraction II showed only one major spot and was 

135 compared to reference gallic acid, Fraction III was applied on top of Sephadex-

136 LH50 column for further purification; Fraction IV was purified using PPC 

137 (preparative paper chromatography). Both Fraction III and IV were subjected to 

138 further analysis by LC/ESI/MSn. Compounds isolated from fraction III were 

139 analyzed using 1H-NMR spectroscopy.

140

141                      Solvents and chemicals

142 HPLC analysis was performed using HPLC grade solvents. All other 

143 chemicals used in the current work in the isolation of the compounds and in the 

144 biological assays were purchased from Sigma-Aldrich Chemicals with analytical 

145 grade.

146

147
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148                     LC�HRESI-MS�MS

149 The chromatographic analysis was performed on an HPLC Agilent 1200 

150 series instrument, the column was Gemini 3 µm C18 110A° from Phenomenex 

151 with dimensions     100 x 1 mm i.d. , protected with RP C18 100 A° guard column 

152 with dimensions (5 mm x 300 µm i.d., 5 µm). The mobile phase was consisted of 

153 two solvents (A) 2% acetic acid and (B) 90% MeOH, 2% acetic acid at a flow rate 

154 of  The sample was dissolved in 5% MeOH and 2% acetic acid while 

155 the sample injection volume was  A Fourier transform ion cyclotron 

156 resonance mass analyzer was used equipped with an electrospray ionization (ESI) 

157 system. X-calibur® software was used to control the system. Detection was 

158 performed in the negative ion mode applying acapillary voltage of 36 V and a 

159 temperature of 275 °C. The API source voltage was adjusted to 5 kV, and the 

160 desolvation temperature to 275 °C. Nitrogen was used as a nebulizing gas with a 

161 flow adjusted to 15 L/min. The analytical run time was 89 min and the full mass 

162 scan covered the mass range from 150 to 2000m/z with resolution up to 100000 

163 (Shaw, Werstuck&Chen, 2014).

164 NMR

165 For 1H-NMR experiments, samples were dissolved in deuterated DMSO-

166 d6and measured in 5mm tubes at 25 °C on a BRUKER 400 MHz NMR 

167 spectrometer. 

168

169

170                HPLC Standardization of SBE
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171 The hydro-alcoholic extract (SBE) was standardized using an Agilent 

172 1200 series HPLC instrument equipped with an Agilent quaternary pump 

173 connected to a photodiode array detector (PDA) with variable wavelengths. The 

174 separation was performed on a RP-C18 column with the following dimensions: 150 

175 mm, 4.6mm,  The standard used was gallic acid (Sigma-Aldrich Chemicals) 

176 prepared in a dilution of 1.296 mg/ml in HPLC grade methanol to give a stock 

177 solution from which serial dilutions were prepared (0.001, 0.002, 0.003 and 0.004 

178 mg/ml). All samples were tested using 4% acetic acid/ water (solvent A) and 

179 methanol (solvent B) in gradient program. The gradient program was 0-4 min 

180 100% A, 4.01-10 min 50% A in 50% B , 10-20 min 20% A in 80 % B, 20-22 min 

181 50% A in 50% B, 22-26 min 100% B, with flow rate 0.6 ml/min. 20 µl was 

182 injected onto the chromatograph, the detection was carried out at 

183 280nmwavelength (Mradu et al., 2012). Different concentrations of the reference 

184 standard were plotted against the peak area to establish the calibration curve. 

185

186                     Antioxidant activity in vitro

187 DPPH�assay

188 The radical scavenging activity of SBE was assessed using the stable free 

189 radical DPPH� (2,2-diphenyl-1-picrylhydrazyl). The assay was performed 

190 according to the standard technique described by Blois (1958) with some 

191 modifications to a 96-well microplate. In brief, 100  of DPPH solution (200 

192 µM) were added to 100  of the SPE with concentrations ranges between (50-
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193 1.25  In the dark at room temperature, the samples were incubated for 30 

194 min. The absorbance was measured at 517nm. The ability of the samples to 

195 scavenge the DPPH radicals was calculated according to the following equation:

196 DPPH scavenging effect (%) = [(A0 �A1)/A0]×100

197 Where A0 represents the control absorbance, and A1 the absorbance of 

198 SBE. All measurements were performed in triplicate. The EC50 value (µg SBE/ml) 

199 was estimated by sigmoid non-linear regression using adequate software.

200                    TEAC persulfate decolorizing kinetic assay

201 Trolox equivalent antioxidant capacity (TEAC) assay uses green-coloured cation 

202 radicals of ABTS  acid)]. The 

203 assay was carried out to assess the quenching ability of the compounds in relation 

204 to the reactivity of Trolox, a water-soluble vitamin E analogue. TEAC assay was 

205 performed as described by (Re et al., 1999) adapted to a 96-well microplate. 

206 Initially, the reaction between 7 mM ABTS�+ and 2.45 mM potassium persulfate 

207 in water (final concentration) was used to generate ABTS�+ radical. The reaction 

208 was kept for 12-16 h (stock solution) in the dark and at room temperature. The 

209 ABTS�+ working solution was prepared in water. The absorbance of the working 

210 solution was (A734= 0.7 ± 0.02). Trolox stock solution (11.5 mM) was prepared in 

211 ethanol and then diluted in water to give the working solution. 50 µl of Trolox or 

212 SBE were added in each individual well. Consequently, 250 µl of ABTS�+ 

213 working solution was added. The samples were kept for 6 min at room 

214 temperature, and then the absorbance was measured at 734 nm using a 
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215 spectrophotometer plate reader. All measures were performed in triplicate and 

216 repeated at least three times. The results were expressed in Trolox equivalent/mg 

217 of sample. 

218 FRAP assay

219 FRAP assay, Ferric Reducing Antioxidant Power, was performed as 

220 previously reported by (Benzie& Strain, 1996) adapted to a 96-well microplate. The 

221 assay depends on the ability of the extract to reduce the ferric complex (2,4,6-

222 tripyridyl-s-triazine � Fe3+-TPTZ) to its ferrous form (Fe2+-TPTZ) at low pH. 300 

223 mM acetate buffer at pH 3.6, 10 mM TPTZ (2,4,6-tripyridyl-s-triazine) in 40 

224 mMHCl and 20 mM FeCl3.6 H2O were used to prepare the FRAP working solution 

225 by mixing them in the ratio 10:1:1 prior to analysis. The fresh FRAP working 

226 solution was warmed to 37o C for 30 min prior to the assay. FeSO4.7H2O was used 

227 as standard.

228 A freshly prepared FRAP working solution (175 µl) was added to the 

229 samples (25 µl), the reaction was kept for 7 min at 37o C. All measurements 

230 performed in triplicate and repeated three times. As a colorimetric assay, the 

231 reduction is indicated by development of an intense blue colour measured at 595 

232 nm using a spectrophotometer microplate reader. FRAP values were showed as 

233 molFe(II)/mg of SBE sample.

234

235 Antioxidant activity in vivo
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236                                Caenorhabditiselegans strains and maintenance

237 Nematodes were maintained under standard conditions(on nematode 

238 growth medium � NGM - inoculated with living E. coli OP50, and incubated at 

239 20°C),]. Age synchronized cultures were obtained by sodium hypochlorite 

240 treatment of gravid adults; the eggs were allowed to hatch in M9 buffer and larvae 

241 obtained were subsequently transferred to S-medium inoculated with living E. 

242 coli OP50 (D.O600 = 1.0) (Stiernagle,  2006). In the current work the following C. 

243 elegans strains were used: Wild type (N2), TJ375 [hsp-16.2::GFP(gpls1)] and 

244 TJ356. All of them provided by the CaenorhabditisGenetic Center (CGC).

245                          Survival assay under juglone induced oxidative stress

246 Synchronized worms (L1 larvae stage, N2 strain grown at 20°C in S-media 

247 inoculated with living E. coli OP50 � D.O600= 1.0) were treated with 50 µg, 100 

248 µg and 150 µg SBE/ml for 48 h, except the control group.. Then, juglone 80 µM 

249 was added as a single dose to the medium. 24 h after of the juglone treatment, the 

250 survivors were counted (Abbas and Wink, 2014). The result is presented as 

251 percentage of live worms, compared by one-way ANOVA followed by Bonferroni 

252 (post-hoc) correction.

253                        Intracellular ROS in C. elegans

254 Synchronized worms (L1 larvae stage, N2 strain grown at 20°C in S-

255 media inoculated with living E. coli OP50 � D.O600= 1.0) were treated with 50 µg, 

256 100 µg and 150 µg SBE/ml for 48 h, except the control group. After treatment, 

257 the worms were carefully washed in M9 buffer and then transferred to 1 ml of 
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258 CM-H2DCF-DA 20 µM and incubated for 30 min at 20°C. To remove the excess 

259 of dye, the worms were washed once more with M9 buffer and finally analysed 

260 by fluorescence microscopy ( Ex 480/20 nm; Em 510/38 nm). The worms were 

261 paralyzed with sodium azide 10 mM and placed on a glass slide. Images were 

262 taken from at least 30 worms at constant exposure time. The relative fluorescence 

263 of the whole body was determined densitometrically using Image J software. The 

264 results are shown as mean pixel intensity (mean ± SEM) and tcompared by one-

265 way ANOVA followed by Bonferroni (post-hoc) correction.

266  Quantification of hsp-16.2::GFP expression 

267 Synchronized transgenic C. elegansTJ375 [expressing hsp-

268 16.2::GFP(gpls1)] were grown at 20°C in S media with living E. coli OP50 

269 (D.O600 nm= 1.0). L4 worms were treated for 48 h with 50, 100 and 150 µg 

270 SBE/ml, except the control group. Then they were exposed to juglone 20 µM for 

271 24 h and finally analysed by fluorescence microscopy ( Ex 480/20 nm; Em 510/38 

272 nm). The mutant strain contains hsp-12.6 promoter coupled to the gene encoding 

273 GFP (green fluorescence protein), whose expression is directly quantified by 

274 observing the fluorescence intensity of the GFP reporter in the pharynx of the 

275 worm. The worms were paralyzed with sodium azide 10 mM and placed on a 

276 glass slide. Images were taken from at least 30 nematodes using 20X objective 

277 lens at constant exposure time. The relative fluorescence of the pharynx was 

278 determined densitometrically using imageJ software. The results are shown as 

279 mean pixel intensity (mean ± SEM) and then compared by one-way ANOVA 

280 followed by Bonferroni (post-hoc) correction.
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281 Subcellular DAF-16 localization

282 Synchronized transgenic TJ356 worms (L1 larvae grown in S media at 

283 20°C with living E. coli OP50 - D.O600 nm= 1.0),which have a DAF-16::GFP 

284 fusion protein as reporter, were treated for 72 h with 50, 100 and 150 µg SBE/ml, 

285 except the control group.  In M9 buffer, the worms were paralyzed with sodium 

286 azide 10 mM and placed on a glass slide. Images were taken from at least 30 

287 worms using 10X objective lens at constant exposure time.  According to DAF-

288 16::GFP fusion protein major location, the worms were sorted in three categories: 

289 cytosolic, intermediate and nuclear. The results are shown as percentage (mean ± 

290 SEM) and compared by one-way ANOVA followed by Bonferroni (post-hoc) 

291 correction. 

292

293           Results and discussion

294 Identification of the isolated flavonoid glycosides by NMR

295 Two flavonoid glycosides (myrecitin-3-O-α-L-1C4-rhamnoside) and 

296 (quercetin-3- O- α-L-1C4-rhamnoside), were isolated and identified from SBEfor 

297 the first time.

298 Compound 1 (2.3g) was isolated as yellow crystalline powder. On PC, it 

299 showed a dark purple spot under short UV light. Rfvalues: 24.5 (BAW) and 13.5 

300 (6% AcOH). It gave a dirty green colour with FeCl3 spray reagent which is specific 

301 for phenolics. Also, its UVspectrum showed two bands at maxMeOH (350nm band 
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302 I and 206nm band II), which are indicative the flavone nucleus. It showed a 

303 bathochromic shift (19nm) on addition of sodium methoxide and (66nm) in band II 

304 with sodium acetate to prove that the 3', 4', 5' and 7 OH positions are free. The 1H-

305 NMR spectra indicated the absence of the signal for H-3, the presence of aromatic 

306 proton signals at δ=6.15ppm (1H, s, H-8) and δ=6.31ppm (1H, s, H-6), presence of 

307 O-glycosidicanomeric signal at δ=5.2ppm (1H, s, H-1") and signal for methyl of 

308 rhamnose at δ=1.51ppm (3H, S, CH3rhamnose). UV as well as 1H-NMR chemical 

309 shifts were found to be similar to those previously reported for myrecitin-3-O-α-L-

310
1C4-rhamnoside. Consequently, compound 1 was confirmed to be myrecitin-3-O-α-

311 L-1C4-rhamnoside (Hayder et al., 2008). 

312 Compound 2 (0.39g) was obtained as yellow crystalline powder. On PC, it 

313 showed a dark purple spot under short UV light. Rfvalues: 22.5 (BAW) and 7.5 (6% 

314 AcOH). It gave a dirty green colour with the FeCl3spray reagent. Also, its UV 

315 spectrum showed two bands at maxMeOH (350nm band I and 206nm band II) 

316 which indicated the presence of a flavone nucleus. It showed a bathochromic shift 

317 (30nm) on addition of sodium methoxide and (20nm) in band II with sodium 

318 acetate indicating that the 3', 4'' and 7 OH positions are free. From these data we 

319 conclude that compound 2corresponds to quercetin-3-O-α-L-1C4-rhamnoside.

320 The 1H-NMR spectrum of compound 2 indicated the absence of the signal 

321 for H-3, the presence of aromatic proton signals at δ =7.199 (1H, d, J=2.5 Hz, H-2'), 

322 δ=6.909 (1H, dd, J=2.5 Hz, 8 Hz, H-6'), δ =6.882 (1H, d, J=8 Hz, H-5'), presence of 

323 O-glycosidicanomeric signal at  (1H, S, H-1") and a signal for methyl 

324 of rhamnose at δ=1.242 ppm (3H, s, CH3rhamnose).UV as well as 1H-NMR 
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325 chemical shifts were found to be similar to those previously reported for quercetin-

326 3-O-α-L-1C4-rhamnoside. Consequently, compound 2 was identified asquercetin-3-

327 O-α-L-1C4-rhamnoside (Ma et al., 2005).

328 Identification of constituents by LC/HRESI/MS/MS

329 HPLC-MS plays an important role in the separation and identification of complex 

330 plant mixtures. Among its main advantages is the high sensitivity and specificity 

331 which can be used both for volatile and non-volatile compounds (Dumont & Beal, 

332 2011).

333 A total of 43secondary metabolites were identified from SBE, its fractions and sub-

334 fractions using LC/ESI/MS/MS (Table 1). LC/HRESI/MS/MS profiles of SBE, its 

335 fractions and sub-fractions are shown in Figures (1-5). Different classes of phenolics 

336 were discovered, which will be discussed in the following:

337 Flavonoid glycosides

338 The negative ion mode profile of LC-ESI-MS/MS showed a major peak 

339 (peak area 4.85%) with a [M-H]-at m/z 477 representing quercetin-3-O-

340 glucouronide (8) and a fragment at m/z 301 for the deprotonated quercetinaglycone. 

341 The difference of 176 mass units indicates a glucuronic acid moiety; the fragment 

342 at m/z 151 of ring A in quercetinaglycone moiety, confirming the 

343 quercetinaglycone identity (Saldanha, Vilegas&Dokkedal,2013). Another peak for 

344 the deprotonated ion m/z 447 was identified as quercetin-3- rhamnoside(13) 

345 according to literature data (Saldanha, Vilegas&Dokkedal,2013), accompanied with 

346 a fragmentation at m/z 301 due to cleavage of the O-glycosidic bond releasing free 

347 aglycone and loss of a sugar moiety.
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348 Another molecular ion peak (m/z 431) was identified as kaempferol-3-O-

349 rhamnoside (15) (Diantini, Subarnas&Lestari, 2012) with a major fragment at m/z 

350 285 corresponding to the kaempferolaglycone (Diantini, Subarnas& Lestari, 2012).

351 Quercetin-3-O-hexoside isomers (37)(38) were identified by a molecular 

352 peak of m/z 463 accompanied by fragment ions at m/z 301 indicative for a 

353 quercetinaglycone.Flavonolaglycones like quercetin produce a characteristic ion 

354 the deprotonated fragment [M�H]_, moreover, they produce ions corresponding to 

355 retro-Diels-Alder (RDA) fragmentation in thering C, involving 1,3-scission 

356 (Sannomiya,Montoro&Piacent, 2005). Kaempferol-3-O-rutinoside (40) as an 

357 example for flavonol-O-dihexosides was identified with m/z 593 (Valko et al., 

358 2007), which was further confirmed in comparison with an authentic reference 

359 substance.

360 The pka values for each of the compounds confirmed the sequence of 

361 elution all over the peaks. Based on MS�MS fragmentation a [M�H]-signal at m/z 

362 519 was assigned to isorhamnetin acetyl-glucoside (an acylatedflavonol 

363 glycoside) (36) which is characterized by the loss of a glucose and a complete 

364 acetylglucose unit, producing fragments with strong intensity at m/z 357 [M-162-

365 H] and at m/z 315 [M-162�42- H], respectively.

366

367                     Galloylated flavonoid glycosides

368 A number of galloylated derivatives were identified as major peaks with 

369 [M-H]-at m/z 631. According to literature data (Saldanha, 

370 Vilegas&Dokkedal,2013), they represent myrecitin-3-O-(2"-O-galloyl)-hexoside 
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371 and its isomer (6) (7).Informative ions are: deprotonated molecular mass [M-H]- 

372 (m/z 631), fragment ion peak for deprotonated myrecitinhexoside (m/z 479), and a 

373 deprotonated myrecitin at m/z 317.Two peaks with the same pattern were detected 

374 suggesting the presence of sugar isomers. 

375 Major peaks of quercetin-3-O-(2"-O-galloyl)-hexoside and its isomer (9) 

376 (10), showed deprotonated molecule peak [M-H]-  at m/z 615, a fragment ion peak 

377 for the deprotonated quercetinhexoside (m/z 463), and for the deprotonated 

378 quercetinaglycone at m/z 301(Saldanha, Vilegas&Dokkedal,2013). 

379 Additionally, the molecular ion peak at m/z 599, which is indicative for the 

380 deprotonated quercetin hexose protocatechuic acid and its sugar isomer 

381 (11)(12);fragment ions at m/z 463 and m/z 300 may be due to the loss of the 

382 hexose and the protocatechuic acid moiety, respectively (Abdel-Hameed, 

383 Bazaid& Salman, 2013). Furthermore, the molecular ion peak [M-H]-at m/z 601 

384 and its deprotonated fragment at m/z 449) were identified as myrecitin-3-O-(2"-

385 galloyl)-pentoside (Saldanha, Vilegas&Dokkedal,2013), the difference of m/z 152 

386 is due to a loss of pentose residue from the molecule. The presence of two 

387 molecular ion peaks with the same fragmentation pattern but different retention 

388 times indicates the presence of isomers. Similarly, the peak at m/z 585, with the 

389 difference in aglycone moiety (quercetin instead of myrecitin), represents the 

390 deprotonated molecular ion of quercetin-3-O-(2"-galloyl)-pentoside(28) 

391 (Saldanha, Vilegas&Dokkedal,2013) and deprotonated fragments at (m/z 433) and 

392 (m/z 301) suggest the sequential loss of a pentose and galloyl moiety.
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393 Hydroxybenzoic acid derivatives

394 This class was represented by a deprotonated molecular ion peak at m/z 

395 343indicative for galloylquinic / epiquinic acid (32)(33) and the deprotonated 

396 fragments at m/z 191, and m/z 85; fragment m/z 191beingconsistent with quinic 

397 acid (Clifford, Stoupi&Kuhnert, 2007). The presence of two peaks with m/z 

398 343butdifferent retention times can beexplained by the presence of quinic acid 

399 and its isomer epiquinic acid (27)(28) ( Eliel&Ramirez, 1997).

400                             Isoflavones

401 A minor peak of daidzeinaglycone(1) was recognized as a deprotonated 

402 peak at m/z 253. 

403     Dihydrochalcones

404 A hexoside derivative ofphloretin, a characteristic and quite common aglycone 

405 previously reported in apple, was identified in SBE as phloretin-3-O-

406 xyloglucoside (42)with m/z 567 and a major ion peak at m/z 273 corresponding to 

407 the aglycone of phoretin (Balazs et al, 2012).

408                          Procyanidins

409 A procyanidin dimer-hexoside (43) was identified and recognized at m/z 737 

410 with fragmentation pattern as follows: A product ion of m/z611 containing the 

411 galactoside was formed by the loss of gallic acid (126 Da). However, the second 

412 product ion withm/z 449 was detected in the spectrum indicates the loss of both the 

413 gallic acid and the sugar moiety (Sies and Stahl, 1995). A procyanidintrimer(24) was 
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414 identified according to its deprotonated base peak at m/z 850andits deprotonated 

415 fragments at m/z 697, 425 and 407, which are produced by a cleavage of the 

416 interflavan bond through a quinine-methide (QM) cleavage (Passos, 

417 Cardoso&Domingues,2007) to give (m/z 425) then a loss of water molecule to yield 

418 m/z 407 in agreement with a procyanidintrimer MS fragmentation pathway (Passos, 

419 Cardoso&Domingues,2007).

420       Hydrolysable tannins

421 For trigalloyl hexose isomer (20) a [M-H]-was identified with m/z 635. 

422 The contribution of the major peak (m/z 483) is due to the presence of a 

423 digalloyl‐hexose moiety. Besides, two intermediate ions were detected at m/z 271 

424 and m/z 211. They are indicative formono and di-galloyl‐hexose; the elimination 

425 of a hexose moiety from monogalloyl‐hexose was detected which subsequently 

426 lead to the formation of the deprotonated gallic acid at m/z 169 (Poay, Kiong& 

427 Hock,2011). 

428 Represented by a deprotonated parent ion peak at m/z 495 for 

429 digalloylquinic acid (2) (4), different positional isomers arise from the difference in 

430 hydroxyl attachment site giving rise to peaks of same m/z value. The identification 

431 was done according to the identity of the obtained peaks as follows: a [M�H]- at m/z 

432 343 indicates the loss of a galloylmoiety from the parent peak and fragmentation 

433 showed fragments at m/z 191 and m/z 169, corresponding to quinic acid andgallic 

434 acid moieties, respectively (Sannomiya,Montoro&Piacent, 2005).  Compound (5) 

435 with m/z 483, identified as digalloyl hexose, showed an ion peak typical for the 

436 dimer analogue of m/z 169 produced by gallic acid.

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1768v1 | CC-BY 4.0 Open Access | rec: 21 Feb 2016, publ: 21 Feb 2016

https://scholar.google.com.eg/citations?user=OLQ9d4IAAAAJ&hl=en&oi=sra


437 Methyl and acetyl flavonoid glycosides

438 A peak at m/z 963 is typical for deprotonated 

439 methoxylatedcastalagin/vescalagin(25) showing a major peak at m/z 933, 

440 corresponding to the polyphenol castalagin or its isomer vescalagin (Rauha, 

441 Wolfender&Salminen, 2001). 

442 Two acetyl flavonoid glycosides were detected luteolin-7-O-hexosyl-8-C-

443 (6"-acetyl)-hexoside (35) with m/z 651. The detected fragments at m/z 179, 151 

444 provide the evidence thatluteolin was the aglycone of compound (35)  (Simirgiotis 

445 et al., 2013). Compound (41) with a  ion at m/z 687 showed fragments at 

446 m/z 651, 489, 327. These ions match with the MS data previously reported  for 

447 compound (41)[luteolin-5-O-hexosyl-8-C-(6"-acetyl)-hexoside derivative], full MS 

448 at (m/z 651) after the loss of 38 amu and thus was tentatively assigned to its 

449 analogue luteolin-7-O-hexosyl-8-C-(6"-acetyl)-hexoside (35) (Masika, 

450 Sultana&Afolayan,2004).

451

452 Methylflavone, flavanol and flavonol

453 A methyl-flavone was identified as tricin-7-O-neohesperidoside (44) from 

454 its exact mass (m/z 638) [M-H]-; by taking into consideration the additional mass of 

455 30 for the extra methoxy group on the [M-H]- ion. The major fragments of (38) 

456 were at m/z 492 and 330 corresponding, respectively, to ions [M-H-146]- and [M-

457 H-146-162]. The losses of 146 and 162 Da are characteristic for rhamnose and 
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458 glucose moieties, respectively, and the ion at m/z 330 is characteristic of the 

459 aglyconetricin (Paiva et al., 2010).

460 A flavanol was represented by a deprotonated parent peak for (epi) 

461 catechingallateatm/z 441(31) and its deprotonated fragments at m/z 289, 169 and 

462 135 (MarkowiczBastos et al., 2007). The fragment at m/z 289 for the deprotonated 

463 (epi) catechin (Ivanova et al., 2011), m/z 169 for the galloyl moiety, and m/z 135 for 

464 ring (A) of flavones nucleus.  As an example of the flavonolisorhamnetin(30), a 

465 deprotonated molecular ion peak was detected at m/z 315 with deprotonated 

466 fragments at (m/z 301, m/z 151) ( Snache- Rabaneda et al., 2003).

467                     Standardization of SBE using HPLC

468 The SBE showed an intense peak at Rt 3.983 min corresponding to gallic 

469 acid (identified by peak matching with a gallic acid standard). Through the 

470 standardization experiment, it was shown that each mg SBE constitutes 0.0022 

471 mg gallic acid. The calibration curve showed good linearity for gallic acid 

472 (reference compound) in the range of 0.3 up to 1 mg/ml with correlation 

473 coefficient (R2) 0.999.

474 Antioxidant activities in vitro and in vivo:

475                   Antioxidant activity in vitro

476 Total phenolic contents of SBE were 376 mg of caffeic acid equivalents 

477 (CAE)/g SBE while the total flavonoid content was 67.87 mg (quercetin 

478 equivalents)/g SBE. The antioxidant activity of SBE was evaluated in vitro using 
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479 three different assays, DPPH, ABTS and FRAP. These methods are widely 

480 employed for the antioxidant activity evaluation of pure compounds, plant 

481 extracts, as well as food items because long-lived radicals such as DPPH� and 

482 ABTS�+ as well as FeSO4are sensitive and reliable (Prior, Wu&Schaich, 2005). 

483 All methods revealed a strong antioxidant capacity of SBE (Table 2).

484

485 Antioxidant activity in vivo in C. elegans

486                          Survival Assay

487 Juglone (5-hydroxy-1,4-naphthoquinone) is a natural quinine from 

488 Juglansregia with toxic pro-oxidant activity ( Saling et al., 2011) . Exposure of C. 

489 elegans to a high concentration of juglone kills the worms; however, antioxidant 

490 compounds can prevent such an effect. According to our results (Figure 6), worms 

491 pre-treated with SBE showed an increased survival rate (up to 41 %), when 

492 compared with the control group (11%), which was treated with juglone alone. 

493 The increased survival rate indicates that SBE works efficiently as an antioxidant 

494 in vivo. Similar results have been obtained with other antioxidant polyphenols, 

495 such as EGCG from green tea, anthocyanins from purple wheat and aspalathin 

496 from Rooibos tea (Abbas& Wink. 2014; Chen et al., 2013).

497                        Influence of SBE on intracellular ROS in C. elegans

498 To assess the intracellular concentration of ROS (reactive oxygen species) and to 

499 evaluate a potential antioxidant activity in vivo, the membrane permeable reagent 
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500 2�,7�- dichlorofluorescindiacetate (CMH2DCF-DA) was used. The reagent 

501 becomes deacetylated to a non-fluorescent compound by intracellular esterases. 

502 The deacetylated form is oxidized in the presence of ROS, especially H2O2, 

503 forming high fluorescent compound 2�, 7�- dichlorofluorescein (DCF) which can 

504 to be analysed by fluorescence microscopy. In our experiments, worms were 

505 treated for 48 h with three different concentrations of SBE (50, 100 and 150 

506 µg/ml) and then analysed by fluorescence microscopy. The images reveal that the 

507 SBE treated worms exhibited significantly lower fluorescence intensity in 

508 comparison to the untreated control group (Figure 7). The decrease in the 

509 fluorescence, measured through pixel intensity, was dose-dependent and reachs 

510 up to 72%for the highest tested concentration, indicating that SBE is capable to 

511 effectively scavenge the ROS in vivo.

512                          Quantification of hsp-16.2::GFP expression via fluorescence microscopy

513 Heat shock proteins (HSPs) are virtually found in all living organisms. 

514 Increase in HSP levels correlates with exposure to environmental stress conditions 

515 that can induce protein damage such as high temperature and presence of oxidants. 

516 HSP play an important role for aging and longevity (Swindell, 2009).

517 To assess the ability of SBE to suppress hsp-16.2::GFP expression, worms 

518 from the mutant strain TJ375 were used. hsp-16.2::GFP expression was induced by 

519 juglone treatment. Results revealed that those worms pre-treated with SBE had a 

520 significantly lower expression of hsp-16.2::GFP, monitored by fluorescence 

521 microscopy. The reduction of hsp-16.2::GFP expression was dose-dependent and 
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522 up to 60% in the 150 µg SBE/ml group, in comparison with the control group 

523 (Figure 8). These findings correlate with the demonstrated ability of SBE in 

524 increasing the mean survival rate in response to acute oxidative stress (caused by 

525 juglone; Figure 6) and suppress ROS formation in vivo (Figure 8). Similar results 

526 have been reported for other phenolic antioxidants, such as EGCG (Abbas and 

527 Wink, 2014).

528                Subcellular localization of DAF-16

529

530 DAF-16, a forkhead transcription factor (FOXO) family member, in its 

531 phosphorylated form,  it remains arrested in the cytosol (inactive form).The 

532 dephosphorylated active form migrates into the nucleus and triggers the activity of 

533 several target genes related to oxidative stress response and lifespan regulation in 

534 both, C. elegans and mammals (Mukhopadhyay&Tissenbaum, 2006).

535 In another set of experiments, we investigated whether the antioxidant 

536 effects observed, were related to DAF-16/FOXO translocation into the nucleus. 

537 Worms (transgenic strain TJ356) were treated with SBE and submitted later to 

538 fluorescence microscopy. As illustrated in Figure 9, a high percentage of the treated 

539 worms showed nuclear localization pattern of DAF-16/FOXO (up to 78%), while 

540 in the untreated control group, only 5% of the worms exhibited a nuclear 

541 localisation pattern. This finding strongly suggests that the ability of SBE to 

542 enhance oxidative stress resistance in C. elegans is DAF-16/FOXO dependent, 

543 similar to the situation with other phenolic antioxidants (Abbas and Wink. 2014; 

544 Chen et al. 2013).
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545           Conclusions

546 The current study resulted inthe identification of different phenolic 

547 metabolite classes including flavonoid glycosides, procyanidins, anthocyanins, 

548 dihydrochalcones, and hydroxybenzoic acid derivatives. Myricetin-3-O-α-L-1C4-

549 rhamnoside, quercetin-3-O--L-1C4-rhamnoside, and gallic acid were reported for 

550 the first time from the leaves of S. brachypetala. 

551 SBE is rich in phenolics, especially flavonoid glycosides such as quercetin 

552 which are known as powerful antioxidants in vitro (Bouktaib, Atmani&Rolando, 

553 2002). Potential health effects of polyphenols have been discussed: Several studies 

554 reported the ability of quercetin to ameliorate pathological conditions linked to 

555 ROS such as oxidation of LDL-cholesterol, to counteract cardiovascular risks 

556 (Chopra et al. 2000), to protect primary neurons against to  deposits   ( Ansari et 

557 al. 2009). Furthermore, antioxidants are beneficial for chronic inflammation 

558 (Comalada et al. 2005; Shoskes et al. 1999) and can avoid Ca2+-dependent cell 

559 death (Sakanashi et al., 2008)

560 Our study showed that SBE exhibits a strong antioxidant activity in vitro as 

561 well as in vivo. It is able to decrease ROS production and attenuates hsp16.2 

562 expression under oxidative stress conditions in C. elegans. We assume that a 

563 modulation of the DAF-16/FOXO transcription factor by the phenolics is 

564 responsible for the observed antioxidant effects. The leaf extract can increase the 

565 nuclear location of DAF-16, thereby activating many important biological 

566 processes including target genes related to stress resistance and longevity.
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567 Further in vivo experiments are needed to develop the polyphenols of S. 

568 brachypetala into a useful nutraceuticals or phytomedicine.

569 Conflict of Interest: There is no conflict of interest.
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Table 1(on next page)

Table [1]: Compounds identified from the total leaf extract of Schotia brachypetalea, its

fractions and subfractions
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Source (tR min.)# Compound Class tR 

(min.

)

[M-

H]- 

(m/z

)

MS/MS 

fragment

Reference

Extrac

t (peak 

area %)

Fr.3 Fr.4 Sub.

1

Sub.

2

1 Daidzein Isoflavone 1.68 253 253 (Hanganu, 

Vlase & 

Olah, 2010)

√

(1.32%)

- - - -

2 Digalloyl quinic 

acid

Gallotannin 11.56 495 343 (Sannomiya,  

Montoro& 

Piacent, 

2005)

√

(1.32%)

√

(24.27)

√

(10.92)

√

(12.28)

√

(11.46)

3 Narirutin 

(naringenin-7-O-

rutinoside)

Flavonoid 

glycoside

18.5 579 433, 271 (Sanchez-

Rabaneda et 

al., 2004)

√

(1.32%)

√

(18.35

)

- -

4 Digalloyl quinic 

acid

Gallotannin 24.48 495 343 (Sannomiya,  

Montoro& 

Piacent, 

2005)

√

(1.25%)

- √

(12.47)

- -

5 Digalloyl hexose Hydrolysable 

tannin

29.12 483 343 (Poay,  

Kiong &   

Hock, 2011)

√

(1.20%)

√

(17.12)

√

(29.13)

√

(15.62)

-

6 Myrecitin-3-O-(2"-

O-galloyl)-hexoside

Galloylated 

flavonoid 

glycoside

39.92 631 479, 317 (Saldanha, 

Vilegas& 

Dokkedal, 

2013)

√

(2.36%)

√

(38.84

)

√

(48.93

)

- -

7 Myrecitin-3-O-(2"- Galloylated 40.05 631 479, 317 Saldanha, √ √ - - -
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O-galloyl)-hexoside flavonoid 

glycoside

Vilegas& 

Dokkedal, 

2013)

(3.98%) (39.35

)

8 Quercetin-3-O-

glucouronide

Flavonoid 43.62 477 301, 179, 

151

(Saldanha, 

Vilegas& 

Dokkedal, 

2013)

√

(4.85%)

√

(42.80

)

√

(43.36

)

- √

(31.21

)

9 Quercetin-3- O-(2"-

O-galloyl)-hexoside

Galloylated 

flavonoid 

glycoside

44.03 615 463, 301 (Saldanha, 

Vilegas& 

Dokkedal, 

2013)

√

(12.81%

)

√

(44.72

)

√

(47.64

)

- -

10 Quercetin-3- O-(2"-

O-galloyl)-hexoside

Galloylated 

flavonoid 

glycoside

46.76 615 463, 301 (Saldanha, 

Vilegas& 

Dokkedal, 

2013)

√

(15.75%

)

√

(45.05

)

√

(52.41

)

- -

11 Quercetin-hexose-

protocatechuic acid

Galloylated 

flavonoid 

glycoside

51.48 599 463, 300 (Abdel-

Hameed,  

Bazaid & 

Salman, 

2013)

√

(7.34%)

√

(50.76

)

√

(65.20

)

- -

12 Quercetin-hexose 

protocatechuic acid

Galloylated 

flavonoid 

glycoside

54.71 599 463, 300 (Abdel-

Hameed,  

Bazaid & 

Salman, 

2013)

√

(5.62%)

√

(51.13

)

√

(65.28

)

- -

13 Quercetin-3-O-

rhamnoside

Flavonoid 

glycoside

57.01 447 301 (Saldanha, 

Vilegas& 

Dokkedal, 

√

(5.72%) 

√

(56.17

)

- - √

(58.78

)
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2013)

14 Myricetin-3-O-α-
arabinopentoside

Flavonoid 

glycoside

59.91 449 271, 179 (Saldanha, 

Vilegas& 

Dokkedal, 

2013)

√

(2.56%)

- - - -

15 Kaempferol-3-O-

rhamnoside

Flavonoid 

glycoside

63.56 431 285         

(Diantini, 

Subarnas, & 

 Lestari, 

2012)

√

(2.75%)

- - - -

16 Kaempferol 

derivative

Flavonoid 

glycoside

68.61 583 285 (Saldanha, 

Vilegas& 

Dokkedal, 

2013)

√

(1.29%)

- - - -

17 Myricetin-3-O-α-
arabinopentoside

Flavonoid 

glycoside

69.70 449 271, 179 (Saldanha, 

Vilegas& 

Dokkedal, 

2013)

√

(4.94%)

- - - -

18 Unidentified ------ 7.1 611 ------ ------ - √ - - -

19 Pentagalloyl-

hexoside

Hydrolysable 

tannin

11.2 991 495, 343 (Poay,  

Kiong &   

Hock, 2011)

- √ - - -

20 Trigalloyl hexose 

isomer

Hydrolysable 

tannin

33.68 635 463,343,211

, 161

(Poay,  

Kiong &   

Hock, 2011)

- - √ √ -

21 1-O-galloyl-6-O-

cinnamoyl-p-

Hydrolysable 

tannin

33.3 607 461 Tentative - √ - - -
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coumaryl-hexoside

22 Luteolin-7-O-6�-

acetylhexoside

Flavonoid 40.10 489 467,285 (Saldanha, 

Vilegas& 

Dokkedal, 

2013)

- √ - - -

23 Caffeoyl-O-hexo-

galloyl

Hydrolysable 

tannin

43.62 493 331,313 (Poay,  

Kiong &   

Hock, 2011)

- √ - - -

24 Procyanidin trimer Procyanidin 60.88 850 697, 425, 

407

(Poay,  

Kiong &   

Hock, 2011)

- √ - √

(60.76

)

-

25 Methoxylated 

castalagin/vescalagi

n

Methyl 

flavonoid 

glycoside

64.75 963 933 (Rauha, 

Wolfender 

&Salminen, 

2001).

- √ - √

(64.67

)

√

(64.65

)

26 Myrecitin-3-O-(2"-

O-galloyl)-

pentoside

Galloylated 

flavonoid

65.07 601 449 (Saldanha, 

Vilegas& 

Dokkedal, 

2013)

- √ - - -

27 Myrecitin-3-O-(2"-

O-galloyl)-

pentoside

Galloylated 

flavonoid

66.02 601 449 (Saldanha, 

Vilegas& 

Dokkedal, 

2013)

- √ - - -

28 Quercetin-3-O-(2"-

O-galloyl)-

pentoside

Galloylated 

flavonoid

67.38 585 433, 301 (Saldanha, 

Vilegas& 

Dokkedal, 

2013)

- √ - - -
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29 Luteolin aglycone Flavonoid 67.45 285 285 (Saldanha, 

Vilegas& 

Dokkedal, 

2013)

- √ - - -

30 Isorhamnetin Flavonol 67.68 315 301, 151 (Rabaneda et 

al.,2003)

- √ - √

(75.88

)

-

31 (epi) Catechin 

gallate

Flavanol 2.58 441 289, 169, 

135

(Bastos et 

al., 2007)

- - - √ √

(2.58)

32 Galloyl quinic 

acid/epiquinic

Hydroxybenzoic 

acid derivative

4.86 343 191, 85 (Clifford,  

Stoupi & 

Kuhnert, 

2007)

- - - √ -

33 Galloyl quinic acid

/epiquinic

Hydroxybenzoic 

acid derivative

6.49 343 191, 85 (Clifford,  

Stoupi & 

Kuhnert, 

2007)

- - - √ -

34 Dihydromyricetin

methylated 

dihexoside derivative 

Flavonoid

dervitative

31.14 509 347 Tentative - - - √ -

35 Luteolin-7-O-

hexosyl-8-C-(6"-

acetyl)-hexoside

Acetyl 

flavonoid 

glycoside

37.77 651 489, 327 

179,151
(Simirgioti

s et al., 

2013)

- - - √ -

36 Isorhamnetin acetyl Acetylated 45.36 519 357,315 (Simirgiotis - - - √ √
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glucoside flavonoid 

glycoside

et al., 2013) (41.71

)

37 Quercetin-3-O-

hexoside

Flavonoid 

glycoside

48.87 463 301 (Sannomiya,  

Montoro& 

Piacent, 

2005)

- - - √ -

38 Quercetin-3-O-

hexohexoside

Flavonoid 

glycoside

51.93 463 301 (Sannomiya,  

Montoro& 

Piacent, 

2005)

- - - √ -

39 Unidentified ------------ 53.44 629 -------- --------- - - - √ -

40 Kaempferol-3-O-

rutinoside

Flavonoid 

glycoside
66.78 593 285

(Sannomiya,  

Montoro& 

Piacent, 

2005)

- - - √

41 Luteolin-5-O-

hexosyl-8-C-(6"-

acetyl)-hexoside 

derivative

Acetyl 

flavonoid 

glycoside

6.35 687 651, 489, 

327

(Simirgiotis 

et al., 2013)

- - - - √

42 Phloretin 

xyloglucoside

Dihydrochalcon

e 

21.48 567 435, 273 (Balázs et 

al., 2012)

- - - - √

43 Procyanidin

Dimer-hexoside

Flavonoid 

glycoside

55.78 737 611,449 (Balázs et 

al., 2012)

- - - - √
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44 Tricin-7-O-

neohesperidoside

O-methylated 

flavone

59.33 638 492,330 (Balázs et 

al., 2012)

- - - - √

45 Hesperitin aglycone 63.44 301 157 (Balázs et 

al., 2012)

- - - - √

1

2i
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Table 2(on next page)

Table [2]: In vitro antioxidant activity of SBE
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T���� [2][ In vitro antioxidant activity of SBE

* EC50= µg/ml, ** Fe2+ equivalents/mg of sample, *** Trolox equivalents/mg of sample

DPPH* FRAP** ABTS***

SBE 9 5000 1054

EGCG 3 25000 5293

1
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Figure 1(on next page)

Negative LC/ESI/mass spectrum of phenolics from hydro-alcoholic extract of Schotia

brachypetalea
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Figure (1): Negative LC/ESI/mass spectrum of phenolics from hydro-alcoholic extract of Schotia brachypetalea 
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Figure 2(on next page)

Negative LC/ESI/mass spectrum of phenolics from fraction III of hydro-alcoholic extractof

Schotia brachypetalea
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Figure (2): Negative LC/ESI/mass spectrum of phenolics from fraction III of hydro-alcoholic extractof Schotia brachypetalea 
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Figure 3(on next page)

Negative LC/ESI/mass spectrum of phenolics from fraction IV of hydro-alcoholic extractof

Schotia brachypetalea
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Figure (3): Negative LC/ESI/mass spectrum of phenolics from fraction IV of hydro-alcoholic extractof Schotia brachypetalea 
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Figure 4(on next page)

Negative LC/ESI/mass spectrum of phenolics from Sub-fraction I (of fraction 4) of hydro-

alcoholic extract of Schotia brachypetalea
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Figure (4): Negative LC/ESI/mass spectrum of phenolics from Sub-fraction I (of fraction 4) of hydro-alcoholic extract of Schotia brachypetalea 
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Figure 5(on next page)

Negative LC/ESI/mass spectrum of phenolics from Sub-fraction II (of fraction 4) of hydro-

alcoholic extractof Schotia brachypetalea
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Figure (5): Negative LC/ESI/mass spectrum of phenolics from Sub-fraction II (of fraction 4) of hydro-alcoholic extractof Schotia brachypetalea 
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Figure 6(on next page)

Stress resistance of C. elegans under juglone treatment. Survival rates were

significantly increased after pre-treatment of the nematodes with SBE. Data are

presented as percentage of survivals (mean p ���� �	
�� 

 � � ���� ��� 


 �������

related
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Figure (6): Stress resistance of C. elegans under juglone treatment. Survival rates were significantly increased after pre-treatment of the 

nematodes with SBE. Data are presented as percentage of survivals (mean ± SEM, n=3). ** p < 0.01 and *** p<0.001 related to the control by a 

one-way ANOVA followed by Bonferroni (post-hoc) correction. 
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Figure 7(on next page)

Effect of SBE on intracellular ROS accumulation in C. elegans. Data are presented as

pixel intensity � ��� ������ �� !"#$%�& ' %"(�)*+ ,,,  - �+��. ��!$%�& %/ %0� #/�%�/! 12

a one-way ANOVA followed by Bonferroni (post-hoc) correction. Micrographs show a
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Figure (7): Effect of SBE on intracellular ROS accumulation in C. elegans. Data are presented as pixel intensity ± SEM (n=40, replicated 3 

times). *** p < 0.001 related to the control by a one-way ANOVA followed by Bonferroni (post-hoc) correction. Micrographs show a 

representative worm treated with 50 µg SBE/ml (B), 100 µg SBE/ml (C), 150 µg SBE/ml (D) and a representative worm from the control group 

(E). 
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Figure 8(on next page)

Influence of SBE on hsp16.2::GFP expression in the transgenic C. elegans strain (TJ375

hsp-16.2::GFP(gplsI) under juglone-induced oxidative stress. Data are presented as pixel

intensity (mean i 3456 789:6 ;<=>?@AB<C D B?E<FGH I = J :H:K A7C III = J :H::L
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Figure (8): Influence of SBE on hsp16.2::GFP expression in the transgenic C. elegans strain (TJ375 hsp-16.2::GFP(gplsI) under juglone-induced 

oxidative stress. Data are presented as pixel intensity (mean ± SEM, n=40, replicated 3 times). * p < 0.05 and *** p < 0.001 related to the 

control, analysed by one-way ANOVA followed by Bonferroni (post-hoc) correction. Micrographs show a representative worm treated with three 

different concentrations 50 µg SBE/ml (B), 100 µg SBE/ml (C), 150 µg SBE/ml (D) and a representative worm from the control group (E). 
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Figure 9(on next page)

Effect of the leaf extract from S. brachypetala (SBE) on DAF-16 subcellular pattern of

location in the transgenic C. elegans strain (TJ356). Data show the percentage of worms

exhibiting cytosolic, intermediate or nuclear pattern of location (A

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1768v1 | CC-BY 4.0 Open Access | rec: 21 Feb 2016, publ: 21 Feb 2016



Figure (9): Effect of the leaf extract from S. brachypetala (SBE) on DAF-16 subcellular pattern of location in the transgenic C. elegans strain 

(TJ356). Data show the percentage of worms exhibiting cytosolic, intermediate or nuclear pattern of location (A). *** p < 0.001 related to the 

control, analysed by one-way ANOVA followed by Bonferroni (post-hoc) correction. Micrographs illustrate representative location of DAF-16 

in the cytosol (B), in cytosol and nucleus(C) and only in the nucleus (D). 
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