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Abstract 7 

Large uncertainties still remain when using existing biomass equations to estimate total 8 

tree and forest stand scale. In this paper, we develop individual-tree biomass models for 9 

Chinese fir (Cunninghamia lanceolata （Lamb.）Hook.) stands in Fujian Province, 10 

southeast of China. For this, we used 74 previously established models that are most 11 

commonly used to estimate tree biomass, and selected the best fit models and modified 12 

it. The results showed the published model with ln(B) (biomass), ln(D) (diameter at 13 

breast height), (ln(H)) 2, (total height) (ln(H))3 and ln(WD) (wood density) to be the 14 

best fitting model for estimating the tree biomass of Chinese fir. Furthermore, we 15 

observed that variables D, H (height), WD significantly correlated with the total tree 16 

biomass estimation model, as a result of it portraying the natural logarithm structure to 17 

be the best tree biomass structure. Finally, when a multi-step improvement on tree 18 

biomass model was performed, the analytic model with TV (tree volume), WD and 19 

BECF (biomass wood density conversion factor), achieved the highest accuracy 20 

simulation. Therefore, when combined with TV, WD and BECF to tree biomass volume 21 

coefficient bi for Chinese fir, the optimal model is the forest stand biomass (SB) 22 

estimation model, model with variables of stand volume (SV) and coefficient bi. 23 

Key words: Cunninghamia lanceolata, stand, generic models, total tree biomass. 24 
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1Introduction 25 

Forest managers are constantly facing new problems and challenges including climate 26 

change, mitigation and adaptation. To meet a variety of ecological demands created by 27 

social valuations (Taeroe et al. 2015). In the future, different business deal in forestry, 28 

scientific measurements of the value of forest ecological services need to have high 29 

precision and forest biomass prediction model is indisputable(Hounzandji et al. 2015, 30 

Zeng 2015). In addition to climate change, the development of a regional biomass 31 

energy industry, carbon distribution and artificial forests the energy management 32 

problems still exist, so the high accuracy of forest stand biomass models is 33 

important( Temesgen et al. 2015, Qiu et al. 2015). 34 

The current biomass equations mainly use the following methods, biomass factor 35 

method, the outlier growth equation method and the volume source biomass method 36 

(R.Ostadhashemi et al 2014). At present many forest biomass estimation models mainly 37 

use diameter at breast height (D) to estimate biomass (Jenkins 2003). This method lacks 38 

specificity for different tree species and site features and the accuracy of the area 39 

measurement is always poor, resulting in high precision on only a small scale 40 

(Hailemariam et al 2015). 41 

In different allometric equation methods, Jenkins et al. (2003) have incorporated data 42 

from published studies into new biomass estimation equations. In order to adapt to 43 

different research purposes, many researchers have performed many trials and modified 44 

different models in recent years (Ostadhashemi et al. 2014). In previous researches, Li 45 

et al. (2010) and Dimitris et al. (2005) summarized the biomass models with diameter 46 

at breast height (D), tree height (H), D2H and DH as the independent variables. They 47 

used a combination of the commonly used power function model, exponential model 48 

and the polynomial model to simulate a part of or the whole plant wood biomass. 49 

Similarly, Liu et al. (2015) established a relevant analysis of the biomass of the shrub 50 

using a new biomass model. Almeida et al. (2014) included the D2 related to the 51 
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analysis of biomass 52 

With the progress of biomass research and utilization, José established the site index 53 

(SI) and forest biomass variable model of stand basal area(José 2015). The study 54 

showed that as the objective changed the reliability of the D indicator does not meet the 55 

needs of practical forestry estimates (Zheng et al. 2015). Wood density (WD) and stand 56 

basal area (G) have become more and more popular. For example, Gurdak et al. (2014) 57 

and Sabina et al. (2011) used a combination of D and H and WD, respectively, to 58 

establish a logarithmic and an exponential biomass model in combination with these 59 

indicators. Timothy et al. (2004) used a fusion variable and established a logarithmic 60 

model to estimate the biomass of the Amazon forest. To study the structural 61 

relationships between form factor, wood density, and biomass in African savanna 62 

woodlands, Matthew et al. (2014) established a variable containing the D, H, WD and 63 

G logarithmic combined biomass model 64 

Several studies (Timothy et al. 2004, Matthew et al. 2014, Zou et al. 2015), assert that, 65 

within the small area, an increase in the stem biomass, increases the independent 66 

variable and the goodness of fit of the model. This results in large-scale forest biomass 67 

estimations that consider the use of binary and tertiary biomass models. This is 68 

necessary in order to obtain a higher accuracy of the estimates (Zou et al., 2015). 69 

Therefore, in view of the different purposes and the actual demand, an increase in the 70 

independent variable parameter of the biomass model is meaningful (Zuo et al. 2015). 71 

In many cases, however, when the model was used to assess the biomass, the evaluation 72 

accuracy of large-scale or small-scale areas was not high, or there was uncertainty or 73 

restrictions (Jenkins 2003). For instance, the definition of a forest stand is uncertain at 74 

large and small scales. So the selection of either scale leads to uncertainty when 75 

selecting a model (Malhi et al., 2006). In order to solve this problem, Zuo et al. (2014) 76 

used different biomass estimation parameters to analyze the biomass estimation model 77 

of fir forests.Gomez - Garcia et al. (2014) used using D and H as the independent 78 

variables to determine 8 parameters in a forest stand biomass model. 79 
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Chinese fir (Cunninghamia lanceolata （Lamb.）Hook.) is one of the most popular 80 

plantation timber species in China due to its good timber quality, fast growth, straight 81 

stem and high resistance of bending (Guan et al. 2015, Zhao et al. 2009). To evaluate 82 

stand biomass for Chinese fir forests at large scale, the model must be extended to the 83 

entire stand or planted region for accurate biomass estimation (Pasalodos-Tato et al. 84 

2015). Because the selection of an established forest biomass model may not suit the 85 

Chinese fir stand the use of a more reasonable stand variable also needs to be researched 86 

(Gomez-Garcia et al. 2015). In few studies for Chinese fir stand biomass it was found 87 

that the models based on a large sample of forest biomass had a relatively high accuracy 88 

and being able to be applied in large area, whereas the regional models with small 89 

sample were limited to small area (Li et al. 2010)． 90 

This paper aims at: (1) base on the published biomass models, accurately fitting the 91 

total tree biomass (TB) for Cunninghamia lanceolata （Lamb.）Hook. (2)Selected and 92 

modified the best tree biomass (TB) model published before for the tree biomass (TB) 93 

of Cunninghamia lanceolata （Lamb.）Hook .(3) Base on the best (modified) tree 94 

biomass model, calculate the tree biomass (TB) volume coefficient (bi) for 95 

Cunninghamia lanceolata （Lamb.）Hook. (4) Model for biomass prediction of 96 

Cunninghamia lanceolata （Lamb.）Hook. stands (SB) by tree biomass volume 97 

coefficient (bi) and stand volume (SV). 98 

2Materials and methods 99 

2.1Materials 100 

The study area is in Jiangle state-own forest farm located between 117°05′-117°40′E 101 

and 26°26′-27° 04′ N, Fujian province, China. The main species of the forest farm are 102 

Cunninghamia lanceolata （Lamb.）Hook., Pinus massoniana Lamb, Phyllostachys 103 

heterocycla (Carr.) Mitford cv. Pubescens. The region is characterized by 104 

ferromagnesian (red) soils and has mean annual precipitation of approximately 1699 105 
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mm, a mean annual frost-free season of 287 days, and a mean annual temperature of 106 

18.7 °C. We sampled four regions, which were divided into 35 plots of Cunninghamia 107 

lanceolata trees and are represented by I, II, III and IV, respectively (Fig 1). Established 108 

between 2010 and 2014, the plots vary in size from 400 to 600 m2.  109 

In the plots, we measured the diameters at breast height (DBHs) over the bark (at 1.3 m 110 

above ground) of fresh trees (height > 1.3 m) and the total tree height of 35 trees that 111 

were felled for stem analysis. Before felling each tree, we measured two attributes: 112 

diameter at breast height (1.3 m above ground) and total tree height (H). After felling, 113 

we measured the diameter at intervals of 1 meter above the breast height depending on 114 

the total tree height by diameter tape. These diameters were measured along the largest 115 

axis and smallest axis. Base diameters of all sections were measured at intervals of 1 116 

meter. (1)The fresh masses of stem wood, stem bark, branch, and foliage were measured, 117 

and subsamples were selected and weighed in the field. (2)Fresh mass of stem bark was 118 

equal to fresh mass of stem or trunk multiplied by bark percent from subsamples. (3) 119 

The whole roots were excavated out, and fresh weights of stump (below ground level), 120 

coarse roots (more than 10 mm), middle roots(2–10 mm) and small roots (0-2 mm) 121 

were measured, respectively, and subsamples were selected (Zeng, 2015).Taking of 122 

subsamples for determination of fresh to dry weight ratios (65 °C). Based on the ratio 123 

of dry biomass to fresh biomass, the biomass of stem, bark, foliage and root was 124 

calculated and then summed to obtain the total biomass of each tree (TB). Table 1 125 

summarizes the characteristics of the selected trees (Xu et al. 2014). 126 
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 127 

Figure 1: Four sites in Fujian province, Southeast China, where 35 trees were 128 

sampled. 129 

Table 1: Mean diameter at breast height (1.3) (D), total height (H), age, BECF (BCEF 130 

= BEF * WD, BEF is biomass expansion factor), volume(V), wood density (WD), total 131 

tree biomass (TB) for sampled biomass trees. 132 

2.2Model fitting and evaluation 133 

74 biomass models were selected ( Dimitris et al. 2005; Dimitris et al., 2004; Dimitris 134 

et al., 2011). The nls (non-linear least squares regression) function was used to fit the 135 

equations with R project. Different starting values were used for the parameters to 136 

ensure that a global minimum was achieved. 137 

The best function was selected on the basis of four statistical criteria: mean absolute 138 

 D(cm) H(m) Age BECF V (m3) WD B (kg) 

Mean 17.0 15.8 24.4 391.8 0.2655 304.2 107.8 

SD 7.3 6.7 9.5 81.4 0.31 59.7 101.3 

Minimum 5.1 4.1 6 236.3 0.0060 117.0 4.6 

Maximum 38.4 31.8 38 613.8 1.7091 427.1 482.4 
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bias (MAB), root mean square error (RMSE), average relative error (ARE) and the 139 

adjusted coefficient of determination (R2) (Zhang 2011). The formulae of these 140 

statistics are as follows: 141 
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Where iB and iB


are the biomass measurements and predictions, respectively; B is 146 

the average of measurements; n is the data size. 147 

2.3Variable computed 148 

(1)V (volume): Based on taper model, formula (5) was used to calculate the volume of trees 149 

(Mei et al. 2015). 150 

V=

0.007(3.482321-2.153699* )

2

0
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                (5) 151 

where H is the total height, D is the diameter at breast height, h is the height above ground level. 152 

Add all the tree volume together as the stand volume, tree-level and stand-level biomass 153 

prediction expanded by the stand volume. 154 

(2)BEF (biomass expansion factor): BEF= Aboveground biomass / Trunk biomass (Luo 2014). 155 

(3)WD (wood density): WD=Aboveground biomass/ Stem dry weight (kg*m-3). 156 

(4)BECF (biomass wood density conversion factor): BCEF = BEF * WD (Enes et al., 2014). 157 

(5)Accuracy (%) = (predict value/ measure value)*100%. 158 
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3Results 159 

3.1Total tree biomass model 160 

The best method to calculate total tree biomass (include both aboveground and 161 

belowground) can be seen from the fitting results (Table 2). Based on the models 162 

accuracy evaluation variable analysis, the MAB in model No.1 is the lowest among the 163 

candidate models (Fig 2). From the perspective of total statistics, the average relative 164 

error (ARE) is of great importance. When comparing the ARE, the ARE of model No.1 165 

is 7.037, model No.2 is 12.623, and model No.3 is 15.931, so the simulation effect of 166 

model No.1 is the best. 167 

Table 2. 74 Commonly used biomass models that have been previously published. 168 

No Model a b c d e MAB RMSE R2 

1 

ln(B)~a+b*ln(D)+c*(ln(H))2+d*(ln(H))3+e

*ln(WD) 

-5.744 2.480 -0.217 -0.278 0.60 7.675 13.656 0.982 

2 B~exp(a)*(D+1b*Hc*exp(d*D)*exp(e*H) -6.104 5.162 -1.340 -0.138 0.10 8.017 11.750 0.987 

3 B~exp(a)*(D+1)b*Hc*exp(d*D) -6.250 3.389 0.704 -0.064  8.601 12.602 0.985 

4 B~a+b*D+c* D2+d*H+e*D*H -2.878 4.827 -0.124 -7.493 0.60 9.892 13.796 0.981 

5 ln(B)~a+b*ln(D2*H)+c*ln(WD) -4.720 0.831 0.370   10.007 18.936 0.967 

6 ln(B)~a+b*ln(D)+c*ln(WD) -5.702 2.546 0.504   10.025 19.425 0.965 

7 ln(B)~a+b*ln(D)+c*ln(H)+d*ln(WD) -5.723 2.567 -0.020 0.507  10.095 19.895 0.965 

8 B~a+b*D+c* D2+d*(D3/H) -9.452 -0.808 0.572 -0.171  10.961 14.627 0.979 

9 B~a+b*D2+c*D +d*D*H -10.924 -0.696 0.198 0.200  11.029 14.847 0.979 

10 B~a+ D2*b+D*H*c -16.477 0.195 0.183   11.130 14.894 0.978 

11 ln(B)~a+(D/(D+10))*b -2.411 10.864    11.440 15.666 0.976 

12 ln(B)~a+b*(D/(D+7)+c*H+d*ln(H)) -2.785 10.899 0.005 -0.046  11.558 21.683 0.954 

13 ln(B)~a+(D/(D+11))*b+c*ln(H) -2.121 10.451 0.071   11.628 16.219 0.974 

14 B~exp(a+b*ln(D2*H)) -1.823 0.748    11.809 16.116 0.975 
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15 B~a*(D2*H)b 0.162 0.748    11.809 16.116 0.975 

16 B~a*Db*Hc 0.171 1.574 0.650   11.943 15.834 0.976 

17 ln(B)~a+b*(D/(D+11)) -2.111 10.757    11.970 16.732 0.973 

18 B~exp(a)*(D+1)b*Hc -2.050 1.617 0.674   12.316 16.148 0.975 

19 B~exp(a+b*ln(D2*H*G)) -1.543 0.436    12.455 16.285 0.975 

20 B~a+b*H+c* D2 -24.870 1.493 0.319   12.669 16.118 0.975 

21 ln(B)~a+b*D/(D+13)+c*H+d*ln(H) -1.582 10.205 0.005 0.040  12.796 21.425 0.955 

22 B~a+b*D2 -11.692 0.349    12.853 16.582 0.973 

23 B~a+b*D2*H+c*D2 -13.130 0.001 0.363   12.940 16.810 0.973 

24 B~a+b*D+c* D2*H -48.700 6.542 0.006   12.968 16.736 0.974 

25 B~a+b*D^c -20.336 0.559 1.869   13.007 16.442 0.974 

26 ln(B)~a+(D/(D+14))*b+c*ln(H) -1.499 10.211 0.106   13.028 21.937 0.953 

27 ln(B)~a+(D/(D+ 13))*b -1.643 10.667    13.037 20.706 0.958 

28 B~a+b*D+c* D2 -23.013 1.314 0.317   13.118 16.628 0.974 

29 ln(B)~a+(D/(D+14))*b -1.456 10.666    13.578 23.191 0.948 

30 ln(B)~a+b*D/(D+18)+c*H+d*ln(H) -1.338 10.419 -0.020 0.360  13.790 23.329 0.947 

31 B~a*Db 0.245 2.090    14.713 18.004 0.969 

32 B~exp(a+b*ln(D) -1.407 2.090    14.713 18.004 0.969 

33 ln(B)~a+b*ln(D)+c*ln(H*D2) -2.821 2.117 0.143   14.812 29.533 0.915 

34 ln(B)~a+(D/(D+5))*b -5.560 13.001    14.864 24.769 0.940 

35 ln(B)~a+b* ln(D)+c*H+d*ln(H*D2) -2.794 2.139 0.001 0.130  14.879 30.159 0.911 

36 ln(B)~a+b*ln(D)+c*H -2.676 2.441 0.008   15.654 34.441 0.884 

37 ln(B)~a+b*ln(D) -2.843 2.550    15.682 32.304 0.901 

38 ln(B)~a+b*ln(pi*D) -5.762 2.550    15.682 31.826 0.901 

39 ln(B)~a+b*(D/(D+30)+c*H+d*ln(H)) -1.261 11.587 -0.005 0.074  15.714 28.420 0.921 

40 ln(B)~a+(D/(D+18))*b -0.901 10.841    15.877 34.020 0.887 

41 B~a*(WD* D2*H)/1000 0.054     15.900 35.951 0.878 

42 B~a+b*H+c* D2*H -24.710 4.595 0.008   15.983 20.399 0.961 
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43 B~a+b* D2*H+c*H2 1.586 0.007 0.197   15.996 20.989 0.958 

44 B~a+b*D+c*( D2*H)2 -85.590 10.830 0.000   16.618 21.062 0.958 

45 B~a+b*H2+c*H3 0.373 0.155 0.010   20.297 27.868 0.924 

46 B~a*Hb 0.061 2.595    20.318 28.225 0.925 

47 B~a+b*D+c*H2 -81.275 7.637 0.200   20.367 26.335 0.934 

48 B=aV+b 312.470 24.740    20.502 26.497 0.934 

49 B~a+b*D2*H 27.464 0.011    20.986 27.187 0.930 

50 B~a+b*D -118.191 13.264    22.249 29.696 0.917 

51 B~a+b*D+c*H -115.504 15.366 -2.428   22.285 29.212 0.919 

52 B~a*H*D2 0.013     23.777 34.283 0.886 

53 B~a+b*H+c*(D2*H)2 -64.280 9.985 0.000   25.411 30.737 0.911 

54 B~a+b*(1/D2*H)*D2*H -23.380 0.445    25.779 31.257 0.905 

55 ln(B)~ a+b*ln(D)2 0.405 0.484    26.178 81.410 0.355 

56 B~a*exp(H*b) 14.665 0.112    26.306 32.099 0.900 

57 B~a*exp(b*D) 23.845 0.081    28.721 32.615 0.899 

58 B~a*BAb*SIc 1.067 0.604 1.206   30.605 61.748 0.640 

59 ln(B)~ln(a)+b*H 4.070 0.172    34.697 90.892 0.219 

60 B~a+b*H -105.634 13.467    36.505 47.096 0.790 

61 B~a+b*ln(D) -387.080 180.950    37.662 53.784 0.727 

62 B~a*ln(H* D2)+b 58.273 

-

365.449 

   38.751 55.563 0.699 

63 B~a+b*ln(D2*H) -365.451 58.274    38.751 56.399 0.699 

64 B~a+b*ln(H) -295.080 151.940    45.808 64.782 0.603 

65 ln(B)~ln(a)+b*D 

Misconvergence 

66 ln(B)~ln(a)+b* D2*H 

67 

B~(WD/a)*exp(b*ln(D)+c*(ln(D))2+d*(ln(

D)3)+e) 

68 B~(WD/a)*exp(b*ln(D)+c) 
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69 

B~exp(a+b*ln(D)+c*(ln(D))2+d*ln(H)+e*l

n(G)) 

70 B~a*Hb*(D+1)(c+d*ln(D)) 

71 B~a*D2+(D2-b)*c 

72 ln(B)~a+b*ln(D)+c*ln(D2)+d*ln(H) 

73 B~exp(a+b*ln(D))+exp(c+d*ln(D)) 

74 B~ a+(b*(1/ D2)+c*(1/D2))*D2 

Where a, b, c, d, e, f is the model parameters; RMSE, MAD and R2 is model evaluation index; V is 169 

stem volume (m3); B is the whole tree biomass (kg); D is the diameter at breast height (cm); H is 170 

the tree total height (m); G is a basal area (m2); BCEF is biomass wood density conversion factor, 171 

that is, the ratio of aboveground biomass over buck volume (kg*m-3); BEF is biomass expansion 172 

factor, that is, the ratio of aboveground biomass over trunk biomass, dimensionless; BCEF = BEF 173 

* WD (Enes, Fonseca, 2014); WD is wood density, the dry weight per unit volume of wood (kg*m-174 

3); Ln is the natural logarithm (Zuo et al. 2014). 175 

 176 

Figure 2: The MAB of 64 convergence biomass models in table 2. 177 

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1767v1 | CC-BY 4.0 Open Access | rec: 21 Feb 2016, publ: 21 Feb 2016



12 

3.2Stand biomass model 178 

(1) Based on the above analysis, the model can be used for the natural logarithms of the 179 

mathematical model structure. 180 

(2)The parameters of the model can consider the 3 indices of D, H and WD( Gomez-181 

Garica Esteban et al. 2014, Gurdak et al. 2013). 182 

(3) The size of the trees can be described by the forest measurements D and H, and the 183 

D and H are comprehensive statistics for the volume (TV) ( André et al. 2015). 184 

(4)According to the (1), (2), and (3) analyses, the improved expression can be written 185 

as:  186 

ln (TB) = a +b*ln(TV)+c*ln(WD)                               (75) 187 

After an analysis of the fit: a = 3.5743, b = 0.8887, c = 0.4106, MAB = 9.051, RMSE 188 

= 16.424, R2 = 0.975. 189 

A comprehensive comparison of model 5 (with 3 variables) and model 75, under the 190 

conditions of the 3 variables model, the evaluation indicates of RMSE and R2 are similar 191 

but the mean absolute bias of model 75 is smaller than model 5 at 0.956. Compared to 192 

other model, model 75 has easy measure stand variable and can better explain the 193 

biomass, which has an obvious relationship between tree volume and wood density. At 194 

this step, the accuracy is less than model 1, model 75 not the best biomass model. So 195 

we need keep on modifying model 75. 196 

(5) In analysis (4), model 75 used an expression of V performed very well, as in the 197 

Fang’s study (Fang 2001), which signifies that a certain type of biomass is closely 198 

associated with timber volume ratio (BEF) (Taeroe et al. 2015). The equation 199 

BCEF=BEF*WD is combined with model No.75 in accumulation variable BECF (Zuo 200 

et al. 2014), thus introducing BECF parameters. That is, model 75 can be further written 201 

as:  202 

ln(TB) = a + b*ln(TV) + c*ln(WD) + d*ln(BECF)                    (76) 203 

which is defined as model 76. 204 

After fitting model 76, a = 0.3766, b = 0.9685, c = 0.9365, d = 0.1538, MAB = 4.8483, 205 
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RMSE = 9.3294, R2 = 0.992. 206 

(6) The comparative analysis of model 1 and model 76 showed that, after inserting the 207 

biomass conversion factor BECF, the MAB dropped to 4.8483, less than model No.1 208 

by 2.8267, the RMSE decreased to 7.09, less than model 1 by 6.566 and R2 increased 209 

by 0.017. Model including the variable of BECF, increasing the accuracy significantly. 210 

(7) Through the above analysis, we can conclude that model 76 is the optimal tree 211 

biomass model for Chinese fir, namely:  212 

ln(TB) = 0.3766 + 0.9685*ln(TV) + 0.9365*ln(WD) + 0.1538*ln(BECF) (77) 213 

The wood density and conversion coefficient, in combination with a different volume 214 

size, can estimate the biomass of a species. From the definition of a forest stand, which 215 

can be determined for a tree species, the WD and BECF are consistent (Timothy et al. 216 

2004). Therefore, the unit stand biomss model (bi) can be: 217 

bi = exp(0.3766 + 0.9685*ln (TV) + 0.9365*ln (WD) + 0.1538*ln (BECF))  (78) 218 

This paper defined bi as the stand biomass coefficient (Sabina et al. 2011). The stand 219 

biomass model can be written as: 220 

SB = bi * SV/TV                                         (79) 221 

where SV is the stand volume (m3), SB is stand biomass (kg ), TV is the sample tree 222 

volume (m3). 223 

n is defined as n = SV/TV, which can be used to obtain: 224 

SB = bi * n                                              (80) 225 

In this new model, the parameter is less than model No.1, making it highly significant 226 

in forestry and biology, like a universal biomass model. 227 

4Discussion 228 

In this paper, we used previous research to reconstruct a stand biomass estimation 229 

model for Chinese fir. Compared with the best previous biomass model the precision of 230 

our model is higher and the absolute bias in the mean is nearly 3 times lower for Chinese 231 

fir (Fig 3). 232 
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The buck volume, wood density, and biomass wood density conversion coefficient 233 

BECF indices are included in the new model. The variable D and H are included in the 234 

stock volume estimation variable V, so the model explains the key elements that 235 

influence the biomass. At the same time the forest tree total biomass model contains the 236 

aboveground and belowground biomass. With the total tree biomass as the dependent 237 

variable, the model estimates all biomass components of a tree, which gives the model 238 

the advantage of compatibility, it is better than estimate the biomass model using one 239 

parts of one tree (Menéndez-Miguélez et al. 2013). In case of Chinese fir biomass 240 

estimation model to estimate forest biomass directly the model needs the biomass of all 241 

the tree organs or the total diameter at breast height, tree height and basal area. However, 242 

this type of estimation not only is incompatible but also has too much variance in the 243 

estimations. Based on the single tree volume calculate the tree biomass and stand 244 

biomass is a good way.  245 

Over the 35 types of trees, the precision is stable, and the highest accuracy is found in 246 

the BECF from 300 to 350, WD from 350 to 400, the accuracy up to 90% (Fig 4). The 247 

BECF smaller than 363.49, the estimate value is small the measure value, or it will 248 

bigger than measure value (Crecente-Campo 2010). The parameters are easy to obtain, 249 

so this method is highly feasible. 250 

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1767v1 | CC-BY 4.0 Open Access | rec: 21 Feb 2016, publ: 21 Feb 2016



15 

 251 

Figure 3: MAB and RMSE values of different biomass estimation models. 252 

 253 

Figure 4: Changes of model accuracy with parameters WD and BECF. 254 
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In a different analysis strategy for a different age structure coefficient of Chinese fir 255 

plantations that provides the stand biomass bi, this series of parameters can be used to 256 

estimate forest stand biomass for different sized stands. The dynamic stand volume can 257 

be combined with the site index and age estimates of growth, and the calculation 258 

formula for the stand volume (SV) forecast can be used to perfect the forest biomass 259 

estimation model using easy stand measurement variables (Návar, 2015). 260 

Compared to the model Fang published in the journal of Science in which they applied 261 

a biomass conversion factor (BEF) for large-scale biomass estimation (Fang, 2001), but 262 

in this paper we used the biomass wood density and conversion factor BCEF 263 

(BCEF=BEF*WD) to estimate the stand biomass. Because our model also considered 264 

density of the wood as variable, our model has the same biological meaning. Using this 265 

better estimation variable, the new model established in this paper for small-scale stands 266 

can also have a high prediction precision, better scale adaptability, and the ability to use 267 

the tree volume of forest management data to calculate the bi of different species. 268 

In this paper, we propose a new forest biomass model: B = bi * n, where bi is the first 269 

proposed variable for different tree species. As a new variable parameter, the 270 

relationship between bi and stand indicators still needs further in-depth study (Litton et 271 

al, 2008). 272 

5Conclusions 273 

Depending on the degree of accuracy pursued, the buck volume (TV), diameter at breast 274 

height (D), tree total height (H), biomass wood density conversion factor (BCEF), wood 275 

density (WD), and the natural logarithm ln combined together produce the best tree 276 

biomass model ln(TB)= a + b*ln(TV) + c*ln(WD) + d*ln(BECF). 277 

We provided the first available models for stand biomass. For different species, it is 278 

necessary to calculate the stand biomass coefficient bi first, and then the stand biomass 279 

can be estimated easily using the formula SB=bi*n. The model has high precision, and 280 

the parameter is less than in model No.1, which makes the model highly significant for 281 

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1767v1 | CC-BY 4.0 Open Access | rec: 21 Feb 2016, publ: 21 Feb 2016



17 

forestry and tree biology. Higher efficiency of the models, for bi, the BECF from 300 282 

to 350, WD from 350 to 400 trees has high precision in stand biomass estimation, the 283 

parameters are easy to obtain, and it is highly feasibly. The model is very useful in 284 

evaluating the ecological benefit of forest planning, and can be useful for carbon stock 285 

age and sequestration assessments in those fast-growing plantations. 286 
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