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Epithelial, metabolic and innate immunity transcriptomic
signatures differentiating the rumen from other sheep and
mammalian gastrointestinal tract tissues

Ruidong Xiang, Victor Hutton Oddy, Alan L. Archibald, Phillip E. Vercoe, Brian P. Dalrymple

Background. Ruminants are successful herbivorous mammals, in part due to their
specialized forestomachs, the rumen complex, which facilitates the conversion of feed to
soluble nutrients by micro-organisms. Is the rumen complex a modified stomach
expressing new epithelial (cornification) and metabolic programs, or a specialised stratified
epithelium that has acquired new metabolic activities, potentially similar to those of the
colon? How has the presence of the rumen affected other sections of the gastrointestinal
tract (GIT) of ruminants compared to non-ruminants? Methods. Transcriptome data from
11 tissues covering the sheep GIT, two stratified epithelial and two control tissues, was
analysed using principal components to cluster tissues based on gene expression profile
similarity. Expression profiles of genes along the sheep GIT were used to generate a
network to identify genes enriched for expression in different compartments of the GIT.
The data from sheep was compared to similar data sets from two non-ruminants, pigs
(closely related) and humans (more distantly related). Results. The rumen transcriptome
clustered with the skin and tonsil, but not the GIT transcriptomes, driven by genes from
the epidermal differentiation complex, and genes encoding stratified epithelium keratins
and innate immunity proteins. By analysing all of the gene expression profiles across
tissues together 16 major clusters were identified. The strongest of these, and consistent
with the high turnover rate of the GIT, showed a marked enrichment of cell cycle process
genes (P=1.4E-46), across the whole GIT, relative to liver and muscle, with highest
expression in the caecum followed by colon and rumen. The expression patterns of several
membrane transporters (chloride, zinc, nucleosides, amino acids, fatty acids, cholesterol
and bile acids) along the GIT was very similar in sheep, pig and humans. In contrast, short
chain fatty acid uptake and metabolism appeared to be different between the species and
different between the rumen and colon in sheep. The importance of nitrogen and iodine
recycling in sheep was highlighted by the highly preferential expression of SLC14A1-urea
(rumen), RHBG-ammonia (intestines) and SLC5A5-iodine (abomasum). The gene encoding
a poorly characterized member of the maltase-glucoamylase family (MGAM2), predicted to
play a role in the degradation of starch or glycogen, was highly expressed in the small and
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large intestines. Discussion. The rumen appears to be a specialised stratified cornified
epithelium, probably derived from the oesophagus, which has gained some liver-like and
other specialized metabolic functions, but probably not by expression of pre-existing colon
metabolic programs. Changes in gene transcription downstream of the rumen also appear
have occurred as a consequence of the evolution of the rumen and its effect on nutrient
composition flowing down the GIT.
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Abstract

Background. Ruminants are successful herbivorous mammals, in part due to their specialized
forestomachs, the rumen complex, which facilitates the conversion of feed to soluble nutrients by
micro-organisms. s the rumen complex a modified stomach expressing new epithelial
(cornification) and metabolic programs, or a specialised stratified epithelium that has acquired
new metabolic activities, potentially similar to those of the colon? How has the presence of the
rumen affected other sections of the gastrointestinal tract (GIT) of ruminants compared to non-

ruminants?

Methods. Transcriptome data from 11 tissues covering the sheep GIT, two stratified epithelial
tissues and two control tissues, was analysed using principal components to cluster tissues based
on gene expression profile similarity. Expression profiles of genes along the sheep GIT were
used to generate a network to identify genes enriched for expression in different compartments of
the GIT. The data from sheep was compared to similar data sets from two non-ruminants, pigs

(closely related) and humans (more distantly related).

Results. The rumen transcriptome clustered with the skin and tonsil, but not the GIT
transcriptomes, driven by genes from the epidermal differentiation complex, and genes encoding
stratified epithelium keratins and innate immunity proteins. By analysing all of the gene
expression profiles across tissues together 16 major clusters were identified. The strongest of
these, and consistent with the high turnover rate of the GIT, showed a marked enrichment of cell
cycle process genes (P=1.4E-46), across the whole GIT, relative to liver and muscle, with
highest expression in the caecum followed by colon and rumen. The expression patterns of

several membrane transporters (chloride, zinc, nucleosides, amino acids, fatty acids, cholesterol
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and bile acids) along the GIT was very similar in sheep, pig and humans. In contrast, short chain
fatty acid uptake and metabolism appeared to be different between the species and different
between the rumen and colon in sheep. The importance of nitrogen and iodine recycling in sheep
was highlighted by the highly preferential expression of SLC14A41-urea (rumen), RHBG-
ammonia (intestines) and SLC545-iodine (abomasum). The gene encoding a poorly
characterized member of the maltase-glucoamylase family (MGAM?2), predicted to play a role in

the degradation of starch or glycogen, was highly expressed in the small and large intestines.

Discussion. The rumen appears to be a specialised stratified cornified epithelium, probably
derived from the oesophagus, which has gained some liver-like and other specialized metabolic
functions, but probably not by expression of pre-existing colon metabolic programs. Changes in
gene transcription downstream of the rumen also appear have occurred as a consequence of the

evolution of the rumen and its effect on nutrient composition flowing down the GIT.
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INTRODUCTION

The ruminants, of which sheep, cattle, buffalo and goats are the major domesticated species,
are now the most numerous large herbivores on earth. Their success is largely due to their
specialized forestomachs, the rumen complex (the rumen, reticulum and omasum), and to
rumination, the process of recycling the partially digested material via the mouth to reduce
particle size and increase rate of fermentation (Hofmann, 1989). The forestomachs follow the
oesophagus and precede the abomasum (the equivalent of the stomach of non-ruminants)
(Hofmann, 1989). The evolutionary origin of the rumen is the subject of debate with out-
pouching of the oesophagus, or of the stomach, as the most likely origins (Beck et al., 2009;
Langer, 1988). The primary chambers of the rumen facilitate the action of a complex mixture of
micro-organisms to ferment a portion of the plant polysaccharides (including starch, xylan and
cellulose) and lipids to short chain volatile fatty acids (SCFAs), principally acetate, butyrate and
propionate (Bergman, 1990). The SCFAs are the primary energy source in carbon of ruminants,

and the rumen is the major site of their uptake.

From the rumen, partially processed plant material, nutrients, and micro-organisms pass
through the omasum and enter the conventional gastrointestinal system: the abomasum, and the
small and large intestines for further digestion and fermentation (in the large intestine). The
abomasum is primarily a digestive organ lowering the pH of the rumen fluid and facilitating the
first step of proteolysis prior to more extensive degradation in the duodenum and absorption of
amino acids and small peptides. Pancreatic RNAses degrade microbial RNA in the small
intestine contributing to nitrogen availability. On pasture, roughage or grass diets only small
amounts of starch escape fermentation in the rumen and the remaining starch is generally

digested in the small intestine, providing limited amounts of glucose (Deckardt et al., 2013).
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Depending on the dietary source larger amounts of starch may escape fermentation in the rumen
(Huntington, 1997). As a consequence glucose is not a major source of carbon in ruminants, and
the liver is not a major site of (fatty acids) FA synthesis (Ingle et al., 1972). Biohydrogenation
processes in the rumen (Van Nevel & Demeyer, 1996) increase the saturation of fatty acids
(Jenkins et al., 2008; Van Nevel & Demeyer, 1996), and lipids that escape fermentation in the
rumen are taken up in the small intestine. Fermentation of the remaining carbohydrates, lipid etc.
occurs in the large intestine/hindgut. The hindgut is responsible for 5-10% of the total digestion
of carbohydrates (Gressley et al., 2011) and for 8 to 17% of total production of SCFAs (Hoover,
1978). This contribution of hindgut fermentation may be altered on high grain diets (Fox et al.,
2007; Mbanzamihigo et al., 1996). The overlap in functions of the rumen and the hindgut raises
the question of whether the equivalent processes in the two tissues are undertaken by the same
proteins and pathways; that is co-option of the hindgut program by the rumen, or by different

proteins and pathways resulting from convergent evolution.

Unlike the stomach and subsequent segments of the GIT the rumen surface is a stratified
squamous epithelium that is cornified and keratinized to protect the rumen from physical damage
from the ingested plant material (Scocco et al., 2013). Due to the large numbers of
microorganisms in the rumen it is also exposed to colonization of surfaces and potential attack
from these organisms. The nature of the defences and the interaction between the surface of the

rumen and the microbial populations has not been investigated in detail.

Herein, we utilised the latest sheep genome and transcriptome data (Jiang et al., 2014) to
further dissect gene expression features of the ruminant GIT. We analyze the transcriptomes of
six GIT tissue/cell types covering the majority of the sheep GIT in the context of reference

samples from two other tissues with stratified squamous epithelium (skin and tonsil), another
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component of the immune system (spleen), and two non-epithelial tissues (liver and muscle).
Further, we systematically compared our results with existing transcriptome data from the human
and pig gastrointestinal tracts and with relevant literature using candidate gene/protein based
approaches. Our major aims were to identify: 1) the distinctive features of ruminant GIT, ii) the
common features shared between ruminant and mammalian GIT and iii) the developmental

origin of the rumen.

METHODS

Data acquisition and statistical analysis

No new primary datasets were generated in this work, the major secondary datasets are included
in the supplementary material. The sample preparation procedures and sequencing of the RNA
are described in (Jiang et al., 2014) and experimental animal information were specified in
Additional file 1: Table S1. Briefly, tissue samples were obtained from a trio of Texel sheep, i.e.,
ram (r), ewe () and their lamb (1). RNA was prepared and sequenced using stranded Illumina
RNA-Seq with a yield of 70-150 million reads per tissue sample. 26 files of RNA sequence
alignment data in the BAM format for 11 tissue/cell types, including skin (n=3), tonsil (n=1r),
ventral rumen (n=3), abomasum (n=3), duodenum (n=1r), caecum(n=2, r and 1), colon(n=3),
rectum (n=3), spleen (n=2, r and 1), liver (n=2, r and e) and muscle (n=3), was downloaded from
the Ensembl sheep RNA sequencing archive, Oar v3.1 (Huttenhower et al., 2009; Jiang et al.,
2014). Detailed animal and gender distribution can be found in Supplementary Figure S1.
Detailed raw RNA sequencing data from the same samples was also retrieved from the European
Nucleotide Archive (ENA), study accession PRIEB6169. The raw mapping counts for each gene
were calculated from the downloaded BAM files and the Ensembl sheep gene models (Ensembl),

with additional gene models for genes at the EDC locus not included in the Ensembl sheep gene
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126 models (Jiang et al., 2014), using HTSeq in the Python environment (Anders et al., 2015). The
127 raw count data was normalized and clustered with DEseq2 (Love et al., 2013) to produce PCA
128 plots and variance-stabilizing transformed gene expression values for network analysis described
129 below. DEseq2 produced PCA sample clustering was further tested for significance using a k-
130 means method and bivariate t-distributions based on the eigenvalues of the principle

131 components. Calculation was performed using the stat ellipse package (2012) and the raw

132 outputs were presented in ggplot2 in R. EdgeR (Robinson et al., 2010) in Bioconductor in R

133 v3.1.3 was used to analysis gene differential expression. After filtering for transcripts with at

134 least 1 count per million in at least one of the 11 tissues, data was analysed using the Analysis of
135 Variance-like procedure (special feature in EdgeR) and fitted to a simple model:

136y =tissue, + animal  +e;. Where y is raw transcript counts, fissue; (i=11) is 11 types of tissues

137  and animal; (j=3) is the adjustment of types of animal (lamb, ram and ewe). Transcripts with
138 significance levels (P) < 0.01 and false discovery rate (FDR) < 0.01 for tissue effects and

139 differentially expressed in at least one of the 11 tissues were identified.

140 Co-expression network analysis

141  Variance-stabilizing transformed RNA sequencing expression values have properties similar to
142 normalized microarray expression values in terms of network analysis (Giorgi et al., 2013) and
143 raw counts of differentially expressed (FDR<0.01) transcripts were variance-stabilizing

144  transformed (Durbin et al., 2002) using DEseq2. Transformed expression values were analyzed
145  for co-expression using PCIT (Hudson et al., 2012; Reverter & Chan, 2008) in R v3.1.3

146  (Watson-Haigh et al., 2010). To reduce the complexity of the network the PCIT output was

147 filtered for pairs of genes with a correlation coefficient > 0.9 and visualized in Cytoscape v3.1.2

148 (Shannon et al., 2003). The network cluster algorithm ‘community cluster’ within the GLay
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plugin (Su et al., 2010) of cytoscape was used to subdivide the large network and identify
explanatory sub-networks in an iterative manner until no obvious sub-network was observed in
the large network. Pig genes assigned to 10 clusters showing differential expression in the pig
GIT (Freeman et al., 2012) were mapped to sheep genes based on their gene symbols. The
probability of over or under representation of pig GIT genes in a sheep GIT gene cluster was
calculated using the hypergeometric distribution (Andrews et al., 1999). Functional enrichment
of shared sets of genes within sheep clusters was analyzed using GOrilla (Eden et al., 2009) to

identify biological pathways.

Gene expression pattern clustering

The transcripts present in the gene networks described above, and with an ANOVA P <0.01 and
a FDR <0.01, were included in k-mean clustering in R v3.1.3 based on log, fold change across
11 tissues with abomasum being the reference. The k-mean analysis aimed to identify expression
patterns to represent transcript groups showing elevated expression levels for the following sets
of tissues v. the remaining tissues: 1) all GIT tissues, i.e., rumen, abomasum, duodenum,
caecum, colon and rectum, 2) rumen and abomasum, 3) rumen and intestinal tissues, 4)
abomasum and intestinal tissues, 5) rumen, 6) abomasum, 7) intestinal tissues, 8) rumen and
skin, 9) rumen and tonsil, 10) rumen, skin and tonsil, 11) spleen, duodenum, caecum, and colon.
The transcript names are determined based on the tissue(s) where included transcripts showed
the highest expression. We filtered these identified transcript clusters with the criteria that 1) the
average absolute expression of the transcript at the highest expressed tissue > 3 count per
million, 2) the log, expression fold difference of expression of the transcript from the tissue
within the reference tissue group with the highest expression to the tissue within the elevated

expressed tissue group with the highest expression, be > 0.5, and 3) from the tissue with the
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highest expression to the tissue with the lowest expression within the elevated tissue group be <
0.5. The final expression of each transcript is presented in the format of log2 Fragments Per
Kilobase of exon per Million fragments mapped (FPKM). Selected gene members and associated

pathways were presented in heat maps based on their log2 FKPM values using GENE-E (Gould).

To understand the GIT associated SLC family genes, we performed a network analysis of
expression as above. The PCIT output of network matrix was filtered for correlation coefficient
> 0.7, clustered by GLay (Su et al., 2010) and visualized in Cytoscape v3.1.2 (Shannon et al.,

2003).

Comprehensive transcript annotation

To complement the sheep genome annotation, we used multiple annotation sources and software
to identify the function of the products encoded by the identified transcripts. Firstly, the
transcripts of interest, both with or without a gene symbol, were validated for existence on the
sheep genome, using comparisons of the sheep gene along within the locus with its ortholog(s) of
human and bovine from Ensembl and NCBI. Secondly, GO was used to annotate genes. Thirdly,
the functions and annotations of the genes were searched in Ensembl and NCBJ, if no available
description or gene information were identified, the biomedical literature was searched with
GenCLiP 2.0 (Wang et al., 2014). When multiple biomedical functions were listed, functions
related to gastrointestinal activity were prioritized for annotation. Fourthly, for a subset of genes
Unigene (McGrath et al., 2010) and Genevestigator (Hruz et al., 2008) were used to identify
transcript expression patterns in cattle and humans respectively. Protein sequences analysis was
performed using Radar (Heger & Holm, 2000), to identify amino acid sequence repeats, and

NetOGlyc 4.0 (Steentoft et al., 2013), to identify glycosylation sites.
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Data access
No new primary datasets were generated in this work, the major secondary datasets are included

in the supplementary material.

RESULTS AND DISCUSSION

Clustering of sheep GIT tissue transcriptomes

We performed principal component analysis (PCA) using RNA-Seq data from six GIT (rumen,
abomasum, duodenum, caecum, colon and rectum), two epithelial (skin and tonsil), an immune
(spleen) and two reference (liver and muscle) tissue/cell types from a trio of Texel sheep (ram,
ewe and lamb (Jiang et al., 2014)). We included a total of 26 tissue samples, a similar tissue
sample coverage to a previous transcriptomic study of the pig GIT (Freeman et al., 2012) to
which the results of this analysis will be compared below. Three clusters of tissues were
identified at the 95% confidence interval: cluster 1, skin, tonsil and rumen, cluster 2, muscle, and

cluster 3, liver, spleen and the remaining GIT tissues (Figure 1A, Additional file: Figure S1A).

Identification of common and specific GIT and epithelial transcriptomic signatures

To identify the genes driving the clustering of the tissues we identified those transcripts with an
ANOVA P <0.01 and a false discovery rate (FDR) < 0.01, for differential expression in at least
one tissue versus the other tissue types. This multi-tissue comparison reduced the impact of the
small sample size for some tissues, in particular the duodenum (one tissue sample). Secondly, for
a conservative gene network cluster analysis, the pair-wise gene correlation coefficient cut-off
was set to 0.9 and we further filtered transcripts based on relative (fold change) and absolute

(count per million) expression levels. We identified 16 major gene expression patterns,
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217 representing common and specific transcriptomic signatures of the epithelial and GI tissues,

218 accounting for 639 different transcripts (Figure 2A). A full list of the expression of the genes
219 across the tissues with assignment to clusters is available (Additional file 1: Table S2, S3). Gene
220 Ontology enrichment analysis of the clusters identified a number of significantly enriched terms
221 (Table 1). A full list of the genes contributing to the enrichments is available (Additional file 1:
222 Table S4). Most notable was the highly significant enrichment of the genes in the epithelia-

223 intestine cluster for the GO-term, “cell cycle process”. The higher expression of the majority of
224  these genes in the epithelial and GIT tissues (Figure 2, Supplementary Table S2) is consistent
225 with the much higher turnover rate of these tissues compared to liver and muscle (Milo et al.,
226 2010) and may contribute to the structural adaptability of the rumen epithelia to different diets
227 and health conditions (Dionissopoulos et al., 2012; Penner et al., 2011). Epithelia structure

228 related pathways including ‘cell junctions’ showed significant enrichment in genes highly

229 expressed in the rumen and the large intestine (Table 1). Gene members involved in cell junction
230 functions have been reported to be important for the rumen epithelia to maintain pH homeostasis
231 (Dionissopoulos et al., 2012; Steele et al., 2011a). Two other very significant enrichments were
232 observed, “flavonoid biosynthetic process” in the rumen-intestine-liver cluster and “regulation of
233 chloride transport” in the large intestine cluster (Table 1). The mammalian Epidermal

234  Development Complex (EDC) locus is a cluster of up to 70 adjacent genes encoding proteins
235 with roles in the development and the structure of stratified epithelia (Kypriotou et al., 2012).
236  Although no significant enrichment of genes in the rumen cluster was identified by GO analysis
237 several genes in the EDC region were very significantly overrepresented in the cluster (Table 1).
238 This is consistent with our previous identification of several ruminant specific genes at the EDC

239 locus highly preferentially expressed in the rumen (Jiang et al., 2014). The genes in the epithelia-
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rumen-tonsil cluster were also very significantly enriched for EDC genes (Table 1). Thus the
clustering of the rumen with the skin and tonsil appears to have been driven by genes involved in

the development and structure of the stratified epithelium.

The stratified squamous rumen epithelium expression signature

The EDC locus genes are not the only genes encoding proteins involved in the synthesis of the
cornified surface of the rumen and we looked for additional genes involved in cornification
preferentially expressed in the rumen compared to skin and tonsil. The cross linking of the
proteins of the cornified surface is mediated by transglutaminases (TGMs) (Eckert et al., 2005).
Multiple TGMs are expressed in the rumen in this study, TGM1 and TGM3 appear to be the
major rumen transglutaminases, but are also highly expressed in the skin (Figure 3). Keratins are
major components of the cornified layers so we asked the question, are there keratin genes highly
preferentially expressed in the rumen? Although no KRT genes showed expression as exclusive
to the rumen as some of the EDC locus genes in our data, KR736 was grouped in the rumen
expression cluster (Figure 3, Additional file 1: Table S3, Additional file 2: Figure S2), with
significantly elevated expression in rumen, compared to the other studied tissues, and limited
expression in skin. KRT36 was previously identified as a novel keratin gene only expressed in
sheep hair cortex (Yu et al., 2011) and its rumen expression showed significant responses to
dietary changes in cattle (Li et al., 2015). However, in humans the highest expression of KR736
was in the tongue (Genevestigator (Hruz et al., 2008) analysis). Overall the transglutaminases
and keratins do not appear to be as preferentially expressed in the rumen as some of the EDC

locus genes.
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262 Kallikrein-related peptidases are involved in the turnover of the cornified layers of the stratified
263 epithelia, and deficiencies can lead to altered turnover of the surface layers of the epithelia

264 (Hovnanian, 2013). In our study, KLK?2 is the only KLK family member preferentially

265 expressed in the rumen (Figure 3, Additional file 1: Table S2). Members of the SPINK (serine
266 peptidase inhibitor, Kazal type) family are inhibitors of the KLK family peptidases (Hovnanian,
267 2013), SPINKS is the only member of the family that is highly expressed in the rumen (Figure 3,
268 Additional file 1: Table S2) in our data, but is also highly expressed in the tonsil and skin.

269 KLKI12 and SPINKS may be involved in the regulation of the turnover and thickness of the

270 cornified surface of the rumen epithelium, but may not form a rumen specific system.

271 Rumen micro-organism interactions

272 The rumen is the site of frequent interaction between the host and very dense populations of

273 micro-organisms. In our study, DUOX2 and DUOXA?2 encoding subunits of dual oxidase were
274  preferentially expressed in the rumen (Figure 3), while DUOXI showed rumen-biased expression
275 (Figure 3) and DUOXA 1 was highly expressed in all epithelia tissues (Figure 3). This

276  observation is in line with the findings in the pig where the highest expression of DUOXAI and
277 DUOXI was in the epithelial tissues. e.g., tongue and lower oesophagus (Freeman et al., 2012).
278 In humans, the DUOXAI and DUOX]I genes are also most highly expressed in epithelia tissues
279  exposed to air, whilst DUOX2 and DUOXA2 are most highly expressed in a different set of

280 tissues including the GIT (Genevestigator (Hruz et al., 2008) analysis). Thus, our findings

281 suggest that the DUOXI1s are active in general epithelial tissues, while DUOX2s are probably
282  active specifically in rumen to play a major role in controlling microbial colonization. Previously

283 in sheep, the highest expression levels of DUOXI and DUOX?2 were reported in the bladder and
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abomasum, respectively, but the rumen and epithelial tissues were not included in the tissues
surveyed (Lees et al., 2012).

PIP, encoding prolactin-induced protein (an aspartyl protease), was preferentially expressed in
the rumen (Figure 3). In humans, PIP is also highly expressed in epidermal (Genevestigator
(Hruz et al., 2008) analysis) and exocrine tissues, and in pigs in the salivary gland. Although PIP
has been reported to be involved in regulation of the cell cycle in human breast epithelial cells
(Cassoni et al., 1995; Naderi & Vanneste, 2014), its expression pattern in sheep (not part of the
cell cycle cluster) is more consistent with a role in mucosal immunity (Hassan et al., 2009). Also
highly expressed in the rumen were members of the SERPINB family of peptidase inhibitors
(Figure 3), which are involved in the protection of epithelial surfaces in humans (Wang et al.,
2012) and mice (Sivaprasad et al., 2011). EDC locus genes PGLYRP3 and PGLYRP4 encode
peptidoglycan recognition proteins in the N-acetylmuramoyl-L-alanine amidase 2 family, which
bind to the murein peptidoglycans of Gram-positive bacteria as part of the innate immune
system. Additional EDC locus genes, S100A48, S10049 and S100A412 (calgranulins A, B and C),

encode key players in the innate immune function (Funk et al., 2015; Tong et al., 2014).

Rumen steroid metabolism

Amongst the genes preferentially expressed in the rumen (and often the liver) we identified a
number of aldo/keto-reductases (Figure 4). AKRICI can catalyze the conversion of progesterone
to 20-alpha-hydroxy-progesterone (PGF2a) (Penning, 1997), retinals to retinols and bioactivates
and detoxifies a range of molecules (El-Kabbani et al., 2011). Intravenous injection of PGF2a in
goats has been shown to increase contraction of rumen smooth muscle, which leads to a
reduction in the contraction rate of the rumen (van Miert & van Duin, 1991; Veenendaal et al.,

1980). AKRIC1 has also been reported to be preferentially expressed in the rumen of cattle (Kato
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et al., 2015). The exact role of AKRICI in the rumen is unknown,. In addition, the gene
encoding the related enzyme AKR1D1 (catalyzes the reduction of progesterone,
androstenedione, 17-alpha-hydroxyprogesterone and testosterone to 5-beta-reduced metabolites)
is highly expressed in the rumen and the liver and the gene encoding ARK1C4 in the rumen,
liver and duodenum (Figure 4). The products of these genes are also likely to be involved in the
metabolism of steroids in the rumen epithelium. In addition, we observed marked pathway
enrichment of flavonoid biosynthetic process due to the identification of five members of the
UDP-glucuronosyltransferase (UGT) gene family [29], with the highest expression levels in the
rumen and liver (Additional file 1: Table S2). Flavonoids are only produced by plants, but UGT
enzymes are highly active in mammals and catalyze the glucuronidation of a diverse chemical
base including steroids, bile acids and opioids [29]. The functions of the products of these genes
in the rumen require further investigation. However, results discussed here suggest important

interactions between the rumen wall and activity of steroids.

Comparison of the sheep and pig GIT transcriptomes

To compare the ruminant and a closely related non-ruminant mammal GIT transcriptomes (Jiang
et al., 2014), we mapped those transcripts previously reported to show specific expression
patterns in the pig GIT (Freeman et al., 2012) to the sheep gene network (Figure 2B). Pig is the
genomically closest non-ruminant to the ruminants (Groenen et al., 2012; Jiang et al., 2014) for
which sufficient GIT transcriptome data is available. The overall overlap of the 639 genes in the
sheep GIT network and the 2634 mappable pig GIT genes is 179, which is highly significant
(Table 2). The smaller number of genes showing differential expression in our study versus the

pig study is due to the application of stringent statistical filtering thresholds to minimize the
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impact of the small number of samples per tissue. However, the overlap of 627 genes between
the set of 2475 sheep genes identified using relaxed filtering criteria and the 2634 pig genes was
also highly significant (P <10E-20), supporting the robustness of the approach. The set of 179
overlapping genes was highly significantly enriched for the GO-term “cell cycle process” (Table
2). The overlap of genes between the pig intestine clusters and the sheep epithelia-intestine
cluster was highly significant and the overlap genes were again very highly significantly
enriched for the GO-term “cell cycle process” (Table 2). A full list of the genes in the overlap
and assignment to the pig and sheep gene clusters is available (Additional file 1: Table S5).
Furthermore, pig genes preferentially expressed in the tongue and oesophagus have a highly
significant overlap with sheep genes with high expression in the rumen and epithelial tissues
(Figure 2B), enriched for the GO-term “epidermis development” (Table 2). Our results
emphasises the contribution of cell cycle to the renewal of mammalian GIT epithelial surfaces

(Crosnier et al., 2006).

Ruminant specific pathways for SCFA uptake and GIT metabolism?

SCFAs are the major source of energy in ruminants, with the primary sources of SCFAs being
the rumen, and to a much lesser extent the large intestine. Carbonic anhydrases, which hydrate
CO; to bicarbonate, are thought to play a significant role in the uptake of SCFAs by an
SCFA/bicarbonate antiporter, and by providing protons at the rumen epithelium to neutralize the
SCFAs and promote their diffusion into the ruminal epithelium (Bergman, 1990; Wang et al.,
1996). There are many members of the carbonic anhydrase gene family (Tashian, 1989), several
of which are expressed in mammalian gastrointestinal tissues (Freeman et al., 2012; Kivel et al.,
2005; Parkkila et al., 1994; Tashian, 1989). In ruminants, CA/ has previously been reported to

encode a rumen specific carbonic anhydrase with low activities in the blood (unlike in other
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mammals) and in the large intestines (Carter, 1971). Consistent with this, compared to all of the
other tissues in our dataset, CA/ is highly expressed in the rumen and, albeit with lower but
significant expression, in the large intestine (Figure 4). C4A2 and CA?7 appear to encode the major
carbonic anhydrases in the large intestines (Figure 4). In humans CA1, CA2 and CA7 are highly
expressed in the colon (Genevestigator (Hruz et al., 2008) analysis). In contrast in pigs, whilst
CA?2 is highly expressed in the stomach, it is not highly expressed in the large intestine and CA/

and CA7 were not reported to be differentially expressed across the GIT (Freeman et al., 2012).

The apical membrane SCFA/bicarbonate antiporter exchanges intracellular bicarbonate with
intra-ruminal SCFA and consistent with previous publications, SLC4A9, preferentially expressed
in the rumen in our dataset (Figure 4), encodes the most likely antiporter. The proposed
basolateral membrane SCFA/bicarbonate antiporter gene SLC16A1 (exchanges intracellular
SCFA with blood bicarbonate), which has highest expression in the rumen in our dataset,
followed by the colon and rectum, has a much more general expression across the tissues than
SLC4A49 (Figure 4). These expression patterns are consistent with previous findings in cattle
(Connor et al., 2010). SLC16A1 is also likely to be involved in the transport of ketone bodies
into the blood supply to the basolateral surface of the rumen epithelium (van Hasselt et al.,

2014).

HCOj-independent apical uptake of acetate in the rumen has also been observed (Aschenbach et
al., 2009). However, the transporter has not been identified, with candidates proposed in the
SLC4A, SLC16A, SLC21A, SLC22A and SLC26A families (Aschenbach et al., 2009). Members
of the SLC21A and SLC22A families showed generally low expression in the rumen in our study
(Additional file 1: Table S2). In addition to SLC16A1 and SLC4A49 discussed above, SLC26A2

and SLC26A43 are highly expressed in the rumen in our dataset (Figure 4). Both genes encode
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apical anion exchangers confirming them as candidates for encoding the apical HCO;™-
independent acetate uptake transporter. SLC26A3 is a Cl/ HCO5™ exchanger (see fluid and
electrolyte balance section below) and therefore is unlikely to be an HCO5 -independent acetate
transporter. However, SLC26A2 is a SO4*/OH/CI- exchanger (Ohana et al., 2012) and remains a
candidate for the proposed apical HCO5-independent acetate transporter. An HCO5 -independent
basolateral maxi-anion channel for SCFA- efflux to blood has also been proposed without an
assigned transporter (Georgi et al., 2014). A survey of ABC (ATP-binding cassette) family
transporters identified ABCC3 as the most preferentially expressed in the rumen in our dataset
and with the second highest expression in the large intestine (Figure 4). ABBC3 is an organic
anion transporter with a possible role in biliary transport and intestinal excretion (Rost et al.,
2002). Therefore, ABCC3 may be involved in the efflux transport of SCFA- from the rumen

epithelium to blood.

In most mammals, including humans, the liver is the major site of the synthesis of ketone bodies
(acetoacetate and beta-hydroxybutyrate), but in ruminants the epithelium of the rumen is a major
site of de novo ketogenesis (Lane et al., 2002). HMGCS2 encodes an HMG-CoA synthase (3-
hydroxy-3-methylglutaryl-CoA Synthase 2) in the ketogenesis pathway (Figure 5). This gene is
significantly associated with bovine butyrate metabolism (Baldwin et al., 2012) and the encoded
enzyme was predicted to be the rate limiting enzyme in sheep ruminal ketone body synthesis
(Lane et al., 2002). As expected, in our data HMGCS? is highly expressed in the rumen
compared to the other GIT tissues and the liver (Figure 4). ACADS, HMGCL and BHD1, which
encode other enzymes involved in the ketone body pathway (Figure 5), are also highly expressed
in the rumen relative to most of the other tissues studied (Figure 4). HMGCS1 and ACAT2 may

also contribute to the ketone body pathway in the rumen, but their highest expression levels are
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399 in the liver (Table S1). However, their expression in the rumen has been reported to actively
400 respond to different diets (Steele et al., 2011b) and acidosis conditions (Steele et al., 2012) in
401 cattle. Whilst HMGCS?2 is quite highly expressed in the colon, in contrast ACADS, HMGCL and
402 BHDI are not highly expressed (Figure 4), consistent with the colon not being a major

403 contributor to ketone body synthesis. Genes encoding enzymes for other steps in the pathways
404 from acetate and butyrate to ketone bodies are much more generally expressed across the tissues,
405 although expression of ECHSI and ACAT1 are significantly higher in the rumen than in other
406  GIT tissues (Figure 4). In humans, in addition to the liver, HMGCS?2 also has high expression in
407 the intestine, including the jejunum and colon (Genevestigator (Hruz et al., 2008) analysis). In
408 contrast, the only enzyme in the pathway (Figure 4, 5) reported to be preferentially expressed in
409 the pig GIT was BDH1, in the fundus of the stomach (Additional file 1: Table S5). Thus the

410 rumen, abomasum, duodenum, caecum, colon and rectum in sheep all appear to have subtly

411 different SCFA transport and metabolism systems, and in the equivalent compartments of the

412 GIT appear to be different between sheep, humans and pigs.

413  Long chain fatty acids (LCFAs) uptake, cholesterol homeostasis and bile acid recycling
414  Due to the activity of the microbial populations of the rumen and the production of SCFAs

415 ruminants have less reliance on dietary LCFAs than non-ruminants. Does this reduced

416 importance lead to detectable differences in the transcriptome? The small intestine is the

417  principal site of uptake of LCFA and cholesterol homeostasis, and consistent with this the genes
418 encoding the well characterized components of the intestinal fatty acid uptake (CD36,

419 SLC27A2/4/5 and FABP2 (Wang et al., 2013)) and cholesterol homeostasis (NPCIL1 and

420 ABCGS5/8 (Wang et al., 2013)) systems are expressed in the sheep small intestine (Figure 4), as

421 they are in humans and most are in the pig (Freeman et al., 2012). FABP2 and ABCGS5 are
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422 particularly preferentially expressed in the sheep small intestine relative to other GIT tissues

423  (Figure 4). However, it is thought that the major route of LCFA uptake at the apical membrane
424  of the GIT epithelium is by passive diffusion (Abumrad & Davidson, 2012).

425 Bile acids secreted by the liver and stored in the gall bladder before being released into the small
426 intestine play a major role in the uptake of LCFAs. Bile acids are recycled in the intestine.

427 SLCI0A2 in the apical membrane and SLC51A and SLC51B in the basolateral membrane are
428 proposed to constitute the uptake systems in the human small intestine (Ballatori et al., 2013).
429 SLCI10A2 is also preferentially expressed in the small intestines of the pig, but preferential

430 expression of SLC51A/B has not been reported (Freeman et al., 2012). In sheep SLC10A2 is

431 preferentially expressed in the small intestine, albeit it a low level (Figure 4). Whilst SLC51B is
432  highly expressed in the duodenum in sheep, the highest expression of the two subunits together
433 in sheep (SLC51A/B) is in the caecum and the colon (Figure 4), where they are also expressed in
434  humans and mice (Genevestigator (Hruz et al., 2008) analysis). Although described as subunits
435 of a complex, SLC514 and SLC51B have also been reported to be regulated differently (Ballatori
436 et al., 2013), thus the balance between expression of SLC/0A2 and SLC51A4 and SLC51B may
437 indicate differences in the bile acid uptake pathways in the duodenum, large intestines and liver

438  of sheep.

439  Overall despite the reduced importance of LCFAs sheep appear to have a very similar systems to

440 human and pigs for LCFA uptake and bile acid recycling.

441 Saccharide metabolism

442  Again as a consequence of the activity of the rumen microbes in mature ruminants the uptake of

443  dietary glucose may be less than 10% of glucose requirements (Young, 1977). The dietary
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glucose comes primarily from the degradation of polysaccharides, in particular in the small
intestine of starch that has escaped degradation by the rumen microbial population. The primary
source of alpha-amylase required to digest the long polymers is the pancreas, which was not
investigated in this study. Genes encoding three enzymes likely to contribute to the digestion of
starch and other alpha-glycans, MGAM (maltase-glucoamylase), MGAM?2 (maltase-glucoamylase
2) and S7 (sucrase-isomaltase) (Nichols et al., 2003), were preferentially expressed in the tissues
studied here. ST was preferentially expressed in the intestine-low in rectum gene cluster, MGAM?2
was highly expressed in all intestinal tissues, while MGAM was also preferentially expressed in
the intestine (primarily the duodenum), but at a much lower level (Figure 4). In humans
(Genevestigator (Hruz et al., 2008) analysis) and pigs (Freeman et al., 2012), both MGAM and SI
are preferentially expressed in the small intestine. Expression of the orthologues of MGAM?2 has
not been reported in the GIT of humans (Genevestigator (Hruz et al., 2008) analysis) or

pigs(Freeman et al., 2012) .

The mammalian MGAM and MGAM?2 genes appear to have arisen by tandem duplication of a
single ancestral gene at the base of the mammals (Nichols et al., 2003; Nichols et al., 1998).
MGAM? genes are present in most mammals, but have been annotated as possible pseudogenes
in a number of species, including man (NCBI LOC93432). MGAM?2 is not well characterized in
any species. Comparative analysis of the protein sequences of MGAM and MGAM?2 showed that
MGAM2 has additional sequence at the carboxy-terminus comprised of multiple copies of a 40
amino acid repeat not present in MGAM (Figure 6). The repeat unit is enriched in serine and
threonine, with similar sequences in the predicted sheep, cattle, pig and to a much lesser extent
human proteins (Figure 6). The repeat unit of MGAM?2 is predicted to be heavily glycosylated

(Steentoft et al., 2013) to form a mucin-like domain. As in the rumen the microbial population in
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the large intestine ferments plant material, contributing up to 10% of the total carbohydrate
fermentation and conversion to SCFAs in the ruminant GIT (Gressley et al., 2011). Whilst the
role MGAM?2 is unclear it appears to represent a contribution from the host to the breakdown of
plant polysaccharides by the bacterial population in the large intestine. MGAM produces glucose
from maltose and MGAM?2 may have a similar functionality, and therefore contribute to the
uptake of the scarce supply of glucose in ruminants. Alternatively the high expression of
MGAM2 and low expression of MGAM may reflect the reduced availability of glucose in the
rumen GIT. Further investigation of this gene and the activity and function of its encoded protein

will improve our understanding of carbohydrate metabolism in the large intestine of ruminants.

In humans the major uptake of glucose in the GIT occurs in the small intestine via SLC5A1 (aka
SGLT1) in the apical membrane, and SLC2A2 (aka GLUT2) in the basolateral membrane (Roder
et al., 2014). The expression pattern of these two genes in sheep (Figure 4) and pigs (Freeman et

al., 2012) is consistent with a similar process in all three species.

Nitrogen acquisition and recycling

A high level of nitrogen recycling in the GIT is a characteristic of ruminants. Urea is the major
input from the animal (primarily via the saliva and the rumen epithelium) and anabolic-N sources
(in the small intestine) and ammonia (in the rumen, small and large intestines) are the major
uptake molecules from the GIT (Lapierre & Lobley, 2001). SLC14A1 (Figure 4), encoding
SLC14A1 which mediates the basolateral cell membrane transport of urea, a key process in
nitrogen secretion into the GIT (Abdoun et al., 2010), is highly preferentially expressed in the
rumen in our dataset (Figure 4). However, in cattle expression of SLC14A41 was not affected by
differences in dietary N (Rojen et al., 2011) and doubts remain about the role of SLC14A1 in

increasing rumen epithelial urea permeability at low dietary N. Urea is also thought to be
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released by the epithelium of the small and large intestines (Lapierre & Lobley, 2001), but our
analysis did not identify a potential transporter.

Urea is converted to ammonia by microbial ureases and is used by rumen microorganisms to
synthesize microbial proteins (75-85% of microbial N) and nucleic acids (15-25% of microbial
N) (Fujihara & Shem, 2011) which are subsequently digested by the host in the intestines, thus
recovering the majority of the secreted nitrogen (Abdoun et al., 2006). Consistent with this,
SLC3A1 (neutral and basic amino acid transporter) in our study is preferentially expressed in the
duodenum (Figure 4), as is SLC28A42 (concentrative nucleoside transporter) the product of which
plays in an important role in intestinal nucleoside salvage and energy metabolism (Huber-Ruano
et al., 2010). Both genes were also highly expressed in the small intestine of pigs (Freeman et al.,
2012) and humans (Genevestigator (Hruz et al., 2008) analysis). RHBG (SLC42A42), an ammonia
transporter, is preferentially expressed in the sheep small and large intestines and the liver
(Figure 4) and is a candidate for an intestinal ammonia transporter. However, RHBG is not
expressed at particularly high levels in the human GIT (Genevestigator (Hruz et al., 2008)
analysis) relative to many other tissues, and was not reported to be preferentially expressed in the
pig GIT (Freeman et al., 2012). In humans uptake of ammonia in the large intestine is thought to
most likely occur (mainly) by passive non-ionic diffusion (Wrong & Vince, 1984). However,
RHCG (apical membrane) and RHBG (basolateral membrane) have also been proposed to
constitute an ammonium uptake pathway in the human GIT (Handlogten et al., 2005). The

expression profile of RHCG in sheep (Figure 4) is not consistent with such a pathway in sheep.

In addition to the secretion of urea into the rumen (a ruminant specific process) the increased
importance of nitrogen recycling in ruminants may have led to the apparent increased expression

of RHBG in the GIT of sheep.
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513 lodine recycling

514 SLC5A5, member 5 of solute carrier family 5, encoding a sodium iodide symporter is highly
515 preferentially expressed in the abomasum in our study (Figure 4). SLC5A435 also has higher

516 expression in human (Genevestigator (Hruz et al. 2008) analysis) and rat stomach (Kotani et al.,
517 1998) than in other digestive tissues. The latter authors reported that the distribution of SLC545
518 transcripts in the stomach epithelium was consistent with a role of SLC5435 in the import or

519 export of iodine, from or to the stomach contents. In the rat, iodine is actively transported into
520 the gastric lumen and this transport is at least partly mediated by a sodium-iodide symporter
521 (Josefsson et al., 2006). In cattle the rate of iodine export by the abomasum epithelium into the
522 abomasum is much greater than the import of iodine from the abomasum (Miller et al., 1975),
523  suggesting that the role of SLC5AS in sheep abomasum is to export iodine into the stomach

524 contents. In contrast, SLC545 was not reported to be significantly more expressed in the pig
525 stomach versus other components of the GIT (Freeman et al., 2012). The specific physiological
526 role of iodine in the stomach/GIT is unknown, but a number of possibilities have been suggested:
527 iodine-conserving mechanisms to deal with low iodine concentrations in the diet (Miller et al.,
528 1975), antioxidative activity (Venturi & Venturi, 1999) and antimicrobial activity (Spitzweg et
529 al., 1999). The majority of the secreted iodine is thought to be recovered in the lower intestines.
530 Another member from the same transporter family SLC5A6, a sodium/multivitamin and iodide
531 co-transporter (de Carvalho & Quick, 2011), encoded by a gene showing expression in all

532 studied tissues, with the highest expression sheep large intestine (Figure 4) is a likely candidate
533 for the iodine importer. In humans, SLC5A46 is also expressed in a wide range of tissues with
534 intestinal tissues being close to the top of the list (de Carvalho & Quick, 2011). In pigs, SLC546

535 is preferentially expressed in the small intestine (Freeman et al., 2012). The high expression of
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536 SLC5A5 in the abomasum suggests that ruminants may have retained a higher dependence on

537 1iodine in the GIT than other mammals.

538 Zinc homeostasis

539 SLC39A44 encodes a transporter protein essential for zinc uptake in the mouse intestine (Dufner-
540 Beattie et al., 2003) and stomach (Martin et al., 2013). SLC39A44 is highly expressed in stomach
541 and intestines in sheep (Figure 4) and humans (Genevestigator (Hruz et al., 2008) analysis), and
542 showed the highest expression in pig small intestine (Freeman et al., 2012). Another zinc

543 transporter encoding gene, SLC39435, has a similar expression profile to SLC3944 in sheep

544  (Figure 4), humans and pigs. However, SLC39AS5 is located in the basolateral membrane and is
545 involved in the secretion of zinc. In mouse gastrointestinal tract cells the two zinc transporters
546  are reciprocally regulated (Weaver et al., 2007), together controlling the influx and efflux of zinc
547  at the intestinal epithelium. It appears likely that sheep have a similar mechanism for zinc

548 homeostasis to other mammals.

549  Fluid and electrolyte balance

550 Maintaining salt and water balance is an important function of the mammalian GIT. In the large
551 intestine significant GO term enrichment was identified for regulation of chloride transport, due
552 to the inclusion of CA2, 7 and CFTR (Table 1, Figure 4). This is in agreement with the reported
553 critical chloride secretory mechanism in intestinal epithelial cells, associated with mucosal

554  hydration (Barrett & Keely, 2000). SLC26A3, which is a CI/HCO; antiporter, imports Cl- ions
555 driven by bicarbonate, thus linking the activity of carbonic anhydrases and the leakage of CI- out

556 of the cells by CFTR. SLC2643 is preferentially expressed in the large intestine of sheep (Figure
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4) and the colon of pigs. Thus the expression of genes involved in fluid and electrolyte balance is

similar between all three species.

Conclusions

As a significant event in the evolution of the true ruminants, the evolutionary origin of the rumen
is the subject of debate, with out-pouching of the oesophagus, or of the stomach, as the two most
likely origins (Beck et al., 2009; Langer, 1988). The cornification of the epithelia surface, tissue
clustering analysis based on gene expression (driven by the epidermal structural proteins and
innate immunity genes) and the relative lack of metabolic overlap with the abomasum strongly
favours an oesophageal origin. Metabolically the rumen has many similarities with the liver,
especially for SCFA metabolism and even though there are functional similarities with the large

intestine, the complements of genes involved are not highly similar.

We have identified a small number of highly rumen specific metabolic processes, in particular
the roles of SLC14A1 (urea secretion), SLC4A9 (SCFA uptake) and AKR1C1 (uncertain
function). Overall our analysis has enabled gene expression data to be married up with decades
of physiological and other research to link transport and enzymatic activities and the most likely
genes encoding products with the activities. Nitrogen and iodine recycling have been identified
as processes with a much greater importance in the sheep than in humans or pigs. These
metabolic functions are protected by strong immune functions and stratified epidermis-like
epithelium. The major rumen immune players are DUOX and SERPINB gene families and
DUOXA2, DUOX2s and SERPINB3/4-like 1 appear to be preferentially expressed in the rumen.
These findings will bring novel insights into biomedical research on mammalian digestive and

gastrointestinal systems.
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Table 1(on next page)

Gene Ontology enrichments of clusters
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1 Table 1 Gene Ontology enrichments of clusters

Cluster GO-term FDR corrected P-
value!
Rumen EDC locus? 7.1E-133
Epithelia-rumen-tonsil ~ EDC locus? 8.6E-153
Defense response to fungus 8.6E-03
Epithelia-rumen bias Keratinization 2.4E-04
Epithelia-all - -
Epithelia-large intestine  Desmosome organization 4.7E-03
Epithelia-GI-liver Cell junction organization 6.3E-03
Abomasum-intestine - -
Intestine-low in rectum - -
Large intestine Regulation of chloride 4.5E-05
transport
Intestine - -
Epithelia-intestine Cell cycle process 1.4E-46
Abomasum Digestion 3.8E-02
Small intestine - -
Rumen-abomasum Platelet aggregation 2.2E-04
Rumen-intestine-liver Flavonoid biosynthetic process 5.5E-10
Intestine-spleen Humoral immune response 4.5E-02

ITop significantly enriched pathway selected from GORILLA analysis (see
methods) for each input gene cluster

2Genes in the EDC locus of the sheep genome.
SEnrichment of EDC locus genes was calculated using the hypergeometric

distribution.
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Table 2(on next page)

Representation of the pig GIT gene clusters in the sheep GIT network
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Table 2 Representation of the pig GIT gene clusters in the sheep GIT network

Pig cluster!  Pig tissues! OP;igggill type of Overlap P-value? Representation  Sheep tissues Go term enrichment P-value?
Overall 179 8.1E-31 Over Cell cycle process 2.0E-13
1,7 Intestine - ir}r]lgleune cells/cell 58 2.4E-11 Over Epithelia, intestine ~ Cell cycle process 1.5E-33
Tongue- Stratified squamous Rumen, epithelia,
3,8 £ atied sq 73 1.3E-34 Over abomasum, large Epidermis development 2.9E-05
oesophagus epithelia . .
intestine
2,4,9 Oesophagus- Muscle 9 0.00024 Under* Rumen, abomasum  na
stomach
6,13, 15 Salivary gland ~ Suatified columnar 0.1777  None na
epithelia
5,12,14, 16 Stomgoh- C1¥1ate{glandular 35 5.4E-09 Over Stomach intestine na
intestine epithelia
10 Stomach Neuronal 0 na na na

"Numbers, names and grouping of pig gene clusters by cell type of origin are according to (Freeman et al. 2012).

2Calculated hypogeometric P values, representing the significance of representation of pig genes in sheep gene network.
SFDR corrected GO term enrichment P values.
“4If overlap with just the rumen and rumen-abomasum clusters, significant (P=8E-05) over representation
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Figure 1(on next page)
Transcriptomic sample clustering.

Each dot represents one tissue sample from a single animal. Circles indicate significant
clusters (confidence interval = 95%). Raw PCA plots are available (Additional file 2: Figure

S1).
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Figure 2 (on next page)

Gene co-expression network.

(A) Each dot represents a sheep transcript and different colors represent the tissue(s) where
the transcript showed high expression, compared to the other tissues. Rectum!: low in
rectum. (B) The same gene co-expression network with only the orthologous genes present
in specific pig GIT clusters (Freeman et al. 2012) highlighted (Additional file 1). The names
and colors of pig cluster were determined according to the tissues where genes showed the
highest and the second highest expression level in the pig Gl gene network (Freeman et al.

2012) .
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Figure 3(on next page)

Expression profiles of innate immunity and epithelial development genes in sheep.

Data are presented with log, Fragments Per Kilobase of exon per Million fragments mapped
(FPKM) values along with the subcellular locations and/or tissues of pig (Freeman et al. 2012)
and human (Genevestigator (Hruz et al. 2008) analysis) where these genes showed high
expression. Cellular location information were derived from GENATLAS database (Frezal

1998) .
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Figure 4 (on next page)

Gene expression profiles of metabolic processes discussed in the text.

Data are presented with log, Fragments Per Kilobase of exon per Million fragments mapped
(FPKM) values along with the subcellular locations and/or tissues of pig (Freeman et al. 2012)
and human (Genevestigator (Hruz et al. 2008) analysis) where these genes showed high
expression. Texts and bars on the left side of the heatmap indicate involved pathways for
covered genes described in the article. Cellular location information were derived from

GENATLAS database (Frezal 1998).
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Sodium | SLCsA12  Apical Kidney/small intestine -
Lactate | |SLC9A3  Apical Colon -
ACSS1 Mitochondria General -
HADH Mitochondria Kidney/rectum -
ECHS1 Mitochondria Kidney/liver -
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SCFA ACAA2  Mitochondria Duodenum/heart -
Ketone bodies ACAT1 Mitochondria Heart -
ACADS Mitochondria Jejunum/liver -
B . |HMGCS2  Mitochondria Liver -
HMGCL Mitochondria Liver -
BOH1 Mitochondria General -
[ | SLC16A1 Baso-lateral Colon -
ABCC3 Baso-lateral General -
SLC4A9  Apical General -
CA1 Cytoplasm Colon -
HCO, Cytoplasm Colon Stomach
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. . . .~ |SLC10A2 Apical Jejunum Small intestine
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SLC51B  Baso-lateral Jejunum/caolon -
| [NPC1L1  Apical Jejunum Small intestine
Cholesterol | |ABCGS  Apical Jejunum/liver Small intestine
ABCGB Apical Jejunum/liver Small intestine
CD36 Apical Adipose tissue Tongue-oesophagus
| SLC27A2  Apical Liverfjejunum/caolon -
LCFA SLC27A4  Apical Jejunum/general Small intestine
SLC27AS  Apical Liver -
FABP2 Cytoplasm Jejunum Small intestine
FABPE Cytoplasm lleum Small intestine
AKR1C1  Cytoplasm Epithelia/liver Tongue-cesophagus
: AKR1C3  Cytoplasm Jejunum/liver -
Steroids AKR1C4  Cytoplasm Liver i
AKR1D1  Cytoplasm Liver -
Glucose SLC5A1  Apical Small and large intestine  Small intestine
SLC2A2  Baso-lateral Liver/small intestine Small intestine
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Figure 5(on next page)

Ruminant ketone body metabolism pathways.

Key enzyme encoding genes (red text) and pathways (black arrow) are highlighted.
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Figure 6(on next page)
Organization of the MGAM2 carboxy-teminus.

Consensus motifs of the serine/threonine rich 40 amino acid repeats at the carboxy-terminus

of predicted MGAM-like proteins. (A) sheep. (B) cattle. (C) Pig. (D) human.
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Sheep MGAM-like protein amino acid repeats
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