

A peer-reviewed version of this preprint was published in PeerJ
on 22 August 2016.

View the peer-reviewed version (peerj.com/articles/cs-78), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Kuhn T, Chichester C, Krauthammer M, Queralt-Rosinach N, Verborgh R,
Giannakopoulos G, Ngonga Ngomo A, Viglianti R, Dumontier M. 2016.
Decentralized provenance-aware publishing with nanopublications.
PeerJ Computer Science 2:e78 https://doi.org/10.7717/peerj-cs.78

https://doi.org/10.7717/peerj-cs.78
https://doi.org/10.7717/peerj-cs.78

Decentralized provenance-aware publishing with

nanopublications

Tobias Kuhn, Christine Chichester, Michael Krauthammer, N�ria Queralt-Rosinach, Ruben Verborgh, George Giannakopoulos,

Axel-Cyrille Ngonga Ngomo, Raffaele Viglianti, Michel Dumontier

Publication and archival of scientific results is still commonly considered the responsability

of classical publishing companies. Classical forms of publishing, however, which center

around printed narrative articles, no longer seem well-suited in the digital age. In

particular, there exist currently no efficient, reliable, and agreed-upon methods for

publishing scientific datasets, which have become increasingly important for science. In

this article, we propose to design scientific data publishing as a Web-based bottom-up

process, without top-down control of central authorities such as publishing companies.

Based on a novel combination of existing concepts and technologies, we present a server

network to decentrally store and archive data in the form of nanopublications, an RDF-

based format to represent scientific data. We show how this approach allows researchers

to publish, retrieve, verify, and recombine datasets of nanopublications in a reliable and

trustworthy manner, and we argue that this architecture could be used as a low-level data

publication layer to serve the Semantic Web in general. Our evaluation of the current

network shows that this system is efficient and reliable.

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1760v1 | CC-BY 4.0 Open Access | rec: 19 Feb 2016, publ: 19 Feb 2016

Decentralized Provenance-Aware1

Publishing with Nanopublications2

Tobias Kuhn1, Christine Chichester2, Michael Krauthammer3, Núria3

Queralt-Rosinach4, Ruben Verborgh5, George Giannakopoulos6,4

Axel-Cyrille Ngonga Ngomo7, Raffaele Viglianti8, and Michel Dumontier9
5

1Department of Computer Science, VU University Amsterdam, De Boelelaan 1081, 10816

HV Amsterdam, Netherlands, t.kuhn@vu.nl (corresponding author)7

2Nestle Institute of Health Sciences, Lausanne, Switzerland8

3Yale University School of Medicine, New Haven, CT, USA9

4Universitat Pompeu Fabra, Barcelona, Spain10

5Multimedia Lab, Ghent University – iMinds, Ghent, Belgium11

6NCSR Demokritos, Athens, Greece12

7AKSW Research Group, University of Leipzig, Germany13

8University of Maryland, College Park, MD, USA14

9Stanford Center for Biomedical Informatics Research, Stanford University, CA, USA15

ABSTRACT16

Publication and archival of scientific results is still commonly considered the responsability of classical

publishing companies. Classical forms of publishing, however, which center around printed narrative

articles, no longer seem well-suited in the digital age. In particular, there exist currently no efficient,

reliable, and agreed-upon methods for publishing scientific datasets, which have become increasingly

important for science. In this article, we propose to design scientific data publishing as a Web-based

bottom-up process, without top-down control of central authorities such as publishing companies. Based

on a novel combination of existing concepts and technologies, we present a server network to decentrally

store and archive data in the form of nanopublications, an RDF-based format to represent scientific data.

We show how this approach allows researchers to publish, retrieve, verify, and recombine datasets of

nanopublications in a reliable and trustworthy manner, and we argue that this architecture could be used

as a low-level data publication layer to serve the Semantic Web in general. Our evaluation of the current

network shows that this system is efficient and reliable.

17

18

19

20

21

22

23

24

25

26

27

28

Keywords: Data publishing, Semantic Web, Linked Data, provenance, nanopublications29

1 INTRODUCTION30

Modern science increasingly depends on datasets, which are however left out in the classical way of31

publishing, i.e. through narrative (printed or online) articles in journals or conference proceedings. This32

means that the publications describing scientific findings become disconnected from the data they are33

based on, which can seriously impair the verifiability and reproducibility of their results. Addressing this34

issue raises a number of practical problems: How should one publish scientific datasets and how can35

one refer to them in the respective scientific publications? How can we be sure that the data will remain36

available in the future and how can we be sure that data we find on the Web have not been corrupted or37

tampered with? Moreover, how can we refer to specific entries or subsets from large datasets, for instance,38

to support a specific argument or hypothesis?39

To address some of these problems, a number of scientific data repositories have appeared, such as40

Figshare and Dryad.1 Furthermore, Digital Object Identifiers (DOI) have been advocated to be used not41

only for articles but also for scientific data (Paskin, 2005). While these approaches certainly improve42

the situation of scientific data, in particular when combined with Semantic Web techniques, they have43

nevertheless a number of drawbacks: They have centralized architectures, they give us no possibility to44

1http://figshare.com, http://datadryad.org

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1760v1 | CC-BY 4.0 Open Access | rec: 19 Feb 2016, publ: 19 Feb 2016

http://figshare.com
http://datadryad.org

check whether the data have been (deliberately or accidentally) modified, and they do not support access45

or referencing on a more granular level than entire datasets (such as individual data entries). We argue that46

the centralized nature of existing data repositories is inconsistent with the decentralized manner in which47

science is typically performed, and that it has serious consequences with respect to reliability and trust.48

The organizations running these platforms might at some point go bankrupt, be acquired by investors49

who do not feel committed to the principles of science, or for other reasons become unable to keep their50

websites up and running. Even though the open licenses enforced by these data repositories will probably51

ensure that the datasets remain available at different places, there exist no standardized (i.e. automatable)52

procedures to find these alternative locations and to decide whether they are trustworthy or not.53

Even if we put aside these worst-case scenarios, websites have typically not a perfect uptime and54

might be down for a few minutes or even hours every once in a while. This is certainly acceptable for55

most use cases involving a human user accessing data from these websites, but it can quickly become a56

problem in the case of automated access embedded in a larger service. Furthermore, it is possible that57

somebody gains access to the repository’s database and silently modifies part of the data, or that the data58

get corrupted during the transfer from the server to the client. We can therefore never perfectly trust any59

data we get, which significantly complicates the work of scientists and impedes the potential of fully60

automatic analyses. Lastly, existing forms of data publishing have for the most part only one level at61

which data is addressed and accessed: the level of entire datasets (sometimes split into a small number62

of tables). It is in these cases not possible to refer to individual data entries or subsets in a way that is63

standardized and retains the relevant metadata and provenance information. To illustrate this problem, let64

us assume that we conduct an analysis using, say, 1000 individual data entries from each of three very65

large datasets (containing, say, millions of data entries each). How can we now refer to exactly these66

3000 entries to justify whatever conclusion we draw from them? The best thing we can currently do is to67

republish these 3000 data entries as a new dataset and to refer to the large datasets as their origin. Apart68

from the practical disadvantages of being forced to republish data just to refer to subsets of larger datasets,69

other scientists need to either (blindly) trust us or go through the tedious process of semi-automatically70

verifying that each of these entries indeed appears in one of the large datasets. Instead of republishing71

the data, we could also try to describe the used subsets, e.g. in the form of SPARQL queries in the case72

of RDF data, but this doesn’t make it less tedious, keeping in mind that older versions of datasets are73

typically not provided by public APIs such as SPARQL endpoints.74

Below, we present an approach to tackle these problems, which builds upon existing Semantic Web75

technologies, in particular RDF and nanopublications, and adheres to accepted Web principles, such as76

decentralization and REST APIs. Specifically, our research question is: Can we create a decentralized,77

reliable, trustworthy, and scalable system for publishing, retrieving, and archiving datasets in the form of78

sets of nanopublications based on existing Web standards and infrastructure?79

This article is an extended and revised version of a previous conference paper (Kuhn et al., 2015).80

2 BACKGROUND81

Nanopublications (Groth et al., 2010) are a relatively recent proposal for improving the efficiency of82

finding, connecting, and curating scientific findings in a manner that takes attribution, quality levels, and83

provenance into account. While narrative articles would still have their place in the academic landscape,84

small formal data snippets in the form of nanopublications should take their central position in scholarly85

communication (Mons et al., 2011). Most importantly, nanopublications can be automatically interpreted86

and aggregated and they allow for fine-grained citation metrics on the level of individual claims. A87

nanopublication is defined as a small data container consisting of three parts: an assertion part containing88

the main content in the form of an atomic piece of formally represented data (e.g. an observed effect of a89

drug on a disease); a provenance part that describes how this piece of data came about (e.g. how it was90

measured); and a publication info part that gives meta-information about the nanopublication as a whole91

(e.g. when it was created). The representation of a nanopublication with its three parts is based on the RDF92

language with named graphs (Carroll et al., 2005). In other words, the nanopublication approach boils93

down to the ideas of subdividing scientific results into atomic assertions, representing these assertions in94

RDF, attaching provenance information in RDF on the level of individual assertions, and treating each95

of these tiny entities as an individual publication. Nanopublications have been applied to a number of96

domains, so far mostly from the life sciences including pharmacology (Williams et al., 2012; Banda et al.,97

2015), genomics (Patrinos et al., 2012), and proteomics (Chichester et al., 2015). An increasing number of98

2/19

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1760v1 | CC-BY 4.0 Open Access | rec: 19 Feb 2016, publ: 19 Feb 2016

datasets formatted as nanopublications are openly available, including neXtProt (Chichester et al., 2014)99

and DisGeNET (Queralt-Rosinach et al., 2015), and the nanopublication concept has been combined with100

and integrated into existing frameworks for data discovery and integration, such as CKAN (McCusker101

et al., 2013).102

Interestingly, the concept of nanopublications has also been taken up in the humanities, namely103

in philosophy,2 musicology (Freedman, 2014), and history/archaeology (Golden and Shaw, 2016). A104

humanities dataset of facts is arguably more interpretive than a scientific dataset; relying, as it does, on105

the scholarly interpretation of primary sources. Because of this condition, “facts” in humanities datasets106

(such as prosopographies) have often been called “factoids” (Bradley, 2005), as they have to account107

for a degree of uncertainty. Nanopublications, with their support for granular context and provenance108

descriptions, offer a novel paradigm for publishing such factoids, by providing methods for representing109

metadata about responsibilities and by enabling discussions and revisions beyond any single humanities110

project.111

Research Objects are a related approach to establish “self-contained units of knowledge” (Belhajjame112

et al., 2012), and they constitute in a sense the antipode approach to nanopublications. We could call them113

mega-publications, as they contain much more than a typical narrative publication, namely resources like114

input and output data, workflow definitions, log files, and presentation slides. We demonstrate in this115

paper, however, that bundling all resources of scientific studies in large packages is not a necessity to116

ensure the availability of the involved resources and their robust interlinking, but we can achieve that also117

with cryptographic identifiers and a decentralized architecture.118

SPARQL is an important and popular technology to access and publish Linked Data, and it is both119

a language to query RDF datasets (Harris and Seaborne, 2013) and a protocol to execute such queries120

on a remote server over HTTP (Feigenbaum et al., 2013). Servers that provide the SPARQL protocol,121

referred to as “SPARQL endpoints”, are a technique for making Linked Data available on the Web in a122

flexible manner. While off-the-shelf triple stores can nowadays handle billions of triples or more, they123

potentially require a significant amount of resources in the form of memory and processor time to execute124

queries, at least if the full expressive power of the SPARQL language is supported. A recent study found125

that more than half of the publicly accessible SPARQL endpoints are available less than 95% of the126

time (Buil-Aranda et al., 2013), posing a major problem to services depending on them, in particular127

to those that depend on several endpoints at the same time. To understand the consequences, imagine128

one has to program a mildly time-critical service that depends on RDF data from, say, ten different129

SPARQL endpoints. Assuming that each endpoint is available 95% of the time and their availabilities are130

independent from each other, this means at least one of them will be down during close to five months131

per year. The reasons for this problem are quite clear: SPARQL endpoints provide a very powerful query132

interface that causes heavy load in terms of memory and computing power on the side of the server.133

Clients can request answers to very specific and complex queries they can freely define, all without paying134

a cent for the service. This contrasts with almost all other HTTP interfaces, in which the server imposes135

(in comparison to SPARQL) a highly limited interface, where the computational costs per request are136

minimal.137

To solve these and other problems, more light-weight interfaces were suggested, such as the read-write138

Linked Data Platform interface (Speicher et al., 2015), the Triple Pattern Fragments interface (Verborgh139

et al., 2014), as well as infrastructures to implement them, such as CumulusRDF (Ladwig and Harth,140

2011). These interfaces deliberately allow less expressive requests, such that the maximal cost of each141

individual request can be bounded more strongly. More complex queries then need to be evaluated by142

clients, which decompose them in simpler subqueries that the interface supports (Verborgh et al., 2014).143

While this constitutes a scalability improvement (at the cost of, for instance, slower queries), it does not144

necessarily lead to perfect uptimes, as servers can be down for other reasons than excessive workload.145

We propose here to go one step further by relying on a decentralized network and by supporting only146

identifier-based lookup of nanopublications. Such limited interfaces normally have the drawback that147

traversal-based querying does not allow for the efficient and complete evaluation of certain types of148

queries (Hartig, 2013), but this is not a problem with the multi-layer architecture we propose below,149

because querying is only performed at a higher level where these limitations do not apply.150

A well-known solution to the problem of individual servers being unreliable is the application of a151

decentralized architecture where the data is replicated on multiple servers. A number of such approaches152

2http://emto-nanopub.referata.com/wiki/EMTO Nanopub

3/19

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1760v1 | CC-BY 4.0 Open Access | rec: 19 Feb 2016, publ: 19 Feb 2016

http://emto-nanopub.referata.com/wiki/EMTO_Nanopub

related to data publishing have been proposed, for example in the form of distributed file systems based on153

cryptographic methods for data that are public (Fu et al., 2002) or private (Clarke et al., 2001). In contrast154

to the design principles of the Semantic Web, these approaches implement their own internet protocols and155

follow the hierarchical organization of file systems. Other approaches build upon the existing BitTorrent156

protocol and apply it to data publishing (Markman and Zavras, 2014; Cohen and Lo, 2014), and there is157

interesting work on repurposing the proof-of-work tasks of Bitcoin for data preservation (Miller et al.,158

2014). There exist furthermore a number of approaches to applying peer-to-peer networks for RDF data159

(Filali et al., 2011), but they do not allow for the kind of permanent and provenance-aware publishing160

that we propose below. Moreover, only for the centralized and closed-world setting of database systems,161

approaches exist that allow for robust and granular references to subsets of dynamic datasets (Proell and162

Rauber, 2014).163

The approach that we present below is based on previous work, in which we proposed trusty URIs to164

make nanopublications and their entire reference trees verifiable and immutable by the use of cryptographic165

hash values (Kuhn and Dumontier, 2014, 2015). This is an example of such a trusty URI:166

http://example.org/r1.RA5AbXdpz5DcaYXCh9l3eI9ruBosiL5XDU3rxBbBaUO70167

The last 45 characters of this URI (i.e. everything after “.”) is what we call the artifact code. It contains a168

hash value that is calculated on the RDF content it represents, such as the RDF graphs of a nanopublication.169

Because this hash is part of the URI, any link to such an artifact comes with the possibility to verify its170

content, including other trusty URI links it might contain. In this way, the range of verifiability extends to171

the entire reference tree.172

Furthermore, we argued in previous work that the assertion of a nanopublication need not be fully173

formalized, but we can allow for informal or underspecified assertions (Kuhn et al., 2013), to deal with the174

fact that the creation of accurate semantic representations can be too challenging or too time-consuming175

for many scenarios and types of users. This is particularly the case for domains that lack ontologies176

and standardized terminologies with sufficient coverage. These structured but informal statements are177

supposed to provide a middle ground for the situations where fully formal statements are not feasible. We178

proposed a controlled natural language (Kuhn, 2014) for these informal statements, which we called AIDA179

(standing for the introduced restriction on English sentences to be atomic, independent, declarative, and180

absolute), and we had shown before that controlled natural language can also serve in the fully formalized181

case as a user-friendly syntax for representing scientific facts (Kuhn et al., 2006). We also sketched how182

“science bots” could autonomously produce and publish nanopublications, and how algorithms could183

thereby be tightly linked to their generated data (Kuhn, 2015b), which requires the existence of a reliable184

and trustworthy publishing system, such as the one we present here.185

3 APPROACH186

Our approach builds upon the existing concept of nanopublications and our previously introduced method187

of trusty URIs. It is a proposal of a reliable implementation of accepted Semantic Web principles, in188

particular of what has become known as the follow-your-nose principle: Looking up a URI should return189

relevant data and links to other URIs, which allows one (i.e. humans as well as machines) to discover190

things by navigating through this data space (Berners-Lee, 2006). We argue that approaches following191

this principle can only be reliable and efficient if we have some sort of guarantee that the resolution of192

any single identifier will succeed within a short time frame in one way or another, and that the processing193

of the received representation will only take up a small amount of time and resources. This requires that194

(1) RDF representations are made available on several distributed servers, so the chance that they all195

happen to be inaccessible at the same time is negligible, and that (2) these representations are reasonably196

small, so that downloading them is a matter of fractions of a second, and so that one has to process only a197

reasonable amount of data to decide which links to follow. We address the first requirement by proposing198

a distributed server network and the second one by building upon the concept of nanopublications. Below199

we explain the general architecture, the functioning and the interaction of the nanopublication servers,200

and the concept of nanopublication indexes.201

3.1 Architecture202

There are currently at least three possible architectures for Semantic Web applications (and mixtures203

thereof), as shown in a simplified manner in Figure 1. The first option is the use of plain HTTP GET204

4/19

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1760v1 | CC-BY 4.0 Open Access | rec: 19 Feb 2016, publ: 19 Feb 2016

current solution with plain HTTP requests

and follow-your-nose principle:

applications (find/query/analyze/use data)

resolvable URIs (provide data)

current solution with SPARQL endpoints:
applications (analyze/use data)

SPARQL endpoints (provide/find/query/analyze data)

current solution with Triple Pattern Fragments:
applications (query/analyze/use data)

Triple Pattern Fragments servers (provide/find/query data)

proposed architecture:

applications (analyze/use data)

advanced services (query/analyze data)

core services (find data)

nanopublication server network (provide data)

Figure 1. Illustration of current architectures of Semantic Web applications and our proposed approach

requests to dereference a URI. Applying the follow-your-nose principle, resolvable URIs provide the205

data based on which the application performs the tasks of finding relevant resources, running queries,206

analyzing and aggregating the results, and using them for the purpose of the application. This approach207

aligns very well with the principles and the architecture of the Web, but the traversal-based querying208

it entails comes with limitations on efficiency and completeness (Hartig, 2013). If SPARQL endpoints209

are used, as a second option, most of the workload is shifted from the application to the server via the210

expressive power of the SPARQL query language. As explained above, this puts servers at risk of being211

overloaded. With a third option such as Triple Pattern Fragments, servers provide only limited query212

features and clients perform the reminder of the query execution. This leads to reduced server costs, at the213

expense of longer query times.214

We can observe that all these current solutions are based on two-layer architectures, and have moreover215

no inherent replication mechanisms. A single point of failure can cause applications to be unable to216

complete their tasks: A single URI that does not resolve or a single server that does not respond can217

break the entire process. We argue here that we need distributed and decentralized services to allow for218

robust and reliable applications that consume Linked Data. In principle, this can be achieved for any of219

these two-layer architectures by simply setting up several identical servers that mirror the same content,220

but there is no standardized and generally accepted way of how to communicate these mirror servers221

and how to decide on the client side whether a supposed mirror server is trustworthy. Even putting aside222

these difficulties, two-layer architectures have further conceptual limitations. The most low-level task of223

providing Linked Data is essential for all other tasks at higher levels, and therefore needs to be the most224

stable and robust one. We argue that this can be best achieved if we free this lowest layer from all tasks225

except the provision and archiving of data entries (nanopublications in our case) and decouple it from226

the tasks of providing services for finding, querying, or analyzing the data. This makes us advocate a227

multi-layer architecture, a possible realization of which is shown at the bottom of Figure 1.228

Below we present a concrete proposal of such a low-level data provision infrastructure in the form of229

a nanopublication server network. Based on such an infrastructure, one can then build different kinds of230

services operating on a subset of the nanopublications they find in the underlying network. “Core services”231

could involve things like resolving backwards references (i.e. “which nanopublications refer to the given232

one?”) and the retrieval of the nanopublications published by a given person or containing a particular233

URI. Based on such core services for finding nanopublications, one could then provide “advanced services”234

that allow us to run queries on subsets of the data and ask for aggregated output. These higher layers can235

of course make use of existing techniques such as SPARQL endpoints and Triple Pattern Fragments or236

even classical relational databases, and they can cache large portions of the data from the layers below237

(as nanopublications are immutable, they are easy to cache). For example, an advanced service could238

allow users to query the latest versions of several drug-related datasets, by keeping a local triple store239

5/19

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1760v1 | CC-BY 4.0 Open Access | rec: 19 Feb 2016, publ: 19 Feb 2016

Nanopublications
with Trusty URIs

Publication

Retrieval

Propagation /
Archiving

Figure 2. Schematic representation of the decentralized server architecture. Nanopublications can be

uploaded to a server (or loaded from the local file system by the server administrator), and they are then

propagated to the other servers of the network. They can then be retrieved from any of the servers, or

from multiple servers simultaneously, even if the original server is not accessible.

and providing users with a SPARQL interface. Such a service would regularly check for new data in the240

server network on the given topic, and replace outdated nanopublications in its triple store with new ones.241

A query request to this service, however, would not involve an immediate query to the underlying server242

network, in the same way that a query to the Google search engine does not trigger a new crawl of the243

Web.244

While the lowest layer would necessarily be accessible to everybody, some of the services on the245

higher level could be private or limited to a small (possibly paying) user group. We have in particular246

scientific data in mind, but we think that an architecture of this kind could also be used for Semantic Web247

content in general.248

3.2 Nanopublication Servers249

As a concrete proposal of a low-level data provision layer, as explained above, we present here a250

decentralized nanopublication server network with a REST API to provide and propagate nanopublications251

identified by trusty URIs.3 The nanopublication servers of such a network connect to each other to retrieve252

and (partly) replicate their nanopublications, and they allow users to upload new nanopublications, which253

are then automatically distributed through the network. Figure 2 shows a schematic depiction of this254

server network.255

Basing the content of this network on nanopublications with trusty URIs has a number of positive256

consequences for its design: The first benefit is that the fact that nanopublications are all similar in size and257

always small makes it easy to estimate how much time is needed to process an entity (such as validating258

its hash) and how much space to store it (e.g. as a serialized RDF string in a database). Moreover it ensures259

that these processing times remain mostly in the fraction-of-a-second range, guaranteeing quick responses,260

and that these entities are never too large to be analyzed in memory. The second benefit is that servers261

do not have to deal with identifier management, as the nanopublications already come with trusty URIs,262

which are guaranteed to be unique and universal. The third and possibly most important benefit is that263

nanopublications with trusty URIs are immutable and verifiable. This means that servers only have to deal264

with adding new entries but not with updating them, which eliminates the hard problems of concurrency265

control and data integrity in distributed systems. Together, these aspects significantly simplify the design266

of such a network and its synchronization protocol, and make it reliable and efficient even with limited267

resources.268

Specifically, a nanopublication server of the current network has the following components:269

• A key-value store of its nanopublications (with the artifact code from the trusty URI as the key)270

• A long list of all stored nanopublications, in the order they were loaded at the given server.271

We call this list the server’s journal, and it consists of a journal identifier and the sequence of272

nanopublication identifiers, subdivided into pages of a fixed size. (1000 elements is the default:273

page 1 containing the first 1000 nanopublications; page 2 the next 1000, etc.)274

3Source code repository: https://github.com/tkuhn/nanopub-server

6/19

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1760v1 | CC-BY 4.0 Open Access | rec: 19 Feb 2016, publ: 19 Feb 2016

https://github.com/tkuhn/nanopub-server

• A cache of gzipped packages containing all nanopublications for a given journal page275

• Pattern definitions in the form of a URI pattern and a hash pattern, which define the surface276

features of the nanopublications stored on the given server277

• A list of known peers, i.e. the URLs of other nanopublication servers278

• Information about each known peer, including the journal identifier and the total number of279

nanopublications at the time it was last visited280

The server network can be seen as an unstructured peer-to-peer network, where each node can freely281

decide which other nodes to connect to and which nanopublications to replicate.282

The URI pattern and the hash pattern of a server define the surface features of the nanopublications that283

this server cares about. We called them surface features, because they can be determined by only looking284

at the URI of a nanopublication. For example, the URI pattern ‘http://rdf.disgenet.org/’ states285

that the given server is only interested in nanopublications whose URIs start with the given sequence of286

characters. Additionally, a server can declare a hash pattern like ‘AA AB’ to state that it is only interested in287

nanopublications whose hash in the trusty URI start with one of specified character sequences (separated288

by blank spaces). As hashes are represented in Base64 notation, this particular hash pattern would let289

a server replicate about 0.05% of all nanopublications. Nanopublication servers are thereby given the290

opportunity to declare which subset of nanopublications they replicate, and need to connect only to those291

other servers whose subsets overlap. To decide on whether a nanopublication belongs to a specified subset292

or not, the server only has to apply string matching at two given starting points of the nanopublication293

URI (i.e. the first position and position 43 from the end — as the hashes of the current version of trusty294

URIs are 43 bytes long), which is computationally cheap.295

Based on the components introduced above, the servers respond to the following request (in the form296

of HTTP GET):297

• Each server needs to return general server information, including the journal identifier and the298

number of stored nanopublications, the server’s URI pattern and hash pattern, whether the server299

accepts POST requests for new nanopublications or servers (see below), and informative entries300

such as the name and email address of the maintainer and a general description. Additionally, some301

server-specific limits can be specified: the maximum number of triples per nanopublication (the302

default is 1200), the maximum size of a nanopublication (the default is 1 MB), and the maximum303

number of nanopublications to be stored on the given server (unlimited by default).304

• Given an artifact code (i.e. the final part of a trusty URI) of a nanopublication that is stored by the305

server, it returns the given nanopublication in a format like TriG, TriX, N-Quads, or JSON-LD306

(depending on content negotiation).307

• A journal page can be requested by page number as a list of trusty URIs.308

• For every journal page (except for incomplete last pages), a gzipped package can be requested309

containing the respective nanopublications.310

• The list of known peers can be requested as a list of URLs.311

In addition, a server can optionally support the following two actions (in the form of HTTP POST312

requests):313

• A server may accept requests to add a given individual nanopublication to its database.314

• A server may also accept requests to add the URL of a new nanopublication server to its peer315

list.316

Server administrators have the additional possibility to load nanopublications from the local file system,317

which can be used to publish large amounts of nanopublications, for which individual POST requests are318

not feasible.319

Together, the server components and their possible interactions outlined above allow for efficient320

decentralized distribution of published nanopublications. Specifically, current nanopublication servers321

7/19

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1760v1 | CC-BY 4.0 Open Access | rec: 19 Feb 2016, publ: 19 Feb 2016

follow the following procedure. Every server s keeps its own list of known peer Ps. For each peer p on322

that list that has previously been visited, the server additionally keeps the number of nanopublications323

on that peer server n′p and its journal identifier j′p, as recorded during the last visit. At a regular interval,324

every peer server p on the list of known peers is visited by server s:325

1. The latest server information is retrieved from p, which includes its list of known peers Pp, the326

number of stored nanopublications np, the journal identifier jp, the server’s URI pattern Up, and its327

hash pattern Hp.328

2. All entries in Pp that are not yet on the visiting server’s own list of known peers Ps are added to Ps.329

3. If the visiting server’s URL is not in Pp, the visiting server s makes itself known to server p with a330

POST request (if this is supported by p).331

4. If the subset defined by the server’s own URI/hash patterns Us and Hs does not overlap with the332

subset defined by Up and Hp, then there won’t be any nanopublications on the peer server that this333

server is interested in, and we jump to step 9.334

5. The server will start at position n to look for new nanopublications at server p: n is set to the total335

number of nanopublications of the last visit n′p, or to 0 if there was no last visit (nanopublication336

counting starts at 0).337

6. If the retrieved journal identifier jp is different from j′p (meaning that the server has been reset338

since the last visit), n is set to 0.339

7. If n = np, meaning that there are no new nanopublications since the last visit, the server jumps to340

step 9.341

8. All journal pages p starting from the one containing n until the end of the journal are downloaded342

one by one (considering the size of journal pages, which is by default 1000 nanopublications):343

(a) All nanopublication identifiers in p (excluding those before n) are checked with respect to344

whether (A) they are covered by the visiting server’s patterns Us and Hs and (B) they are not345

already contained in the local store. A list l is created of all nanopublication identifiers of the346

given page that satisfy both, (A) and (B).347

(b) If the number of new nanopublications |l| exceeds a certain threshold (currently set to348

5), the nanopublications of p are downloaded as a gzipped package. Otherwise, the new349

nanopublications (if any) are requested individually.350

(c) The retrieved nanopublications that are in list l are validated using their trusty URIs, and all351

valid nanopublications are loaded to the server’s nanopublication store and their identifiers352

are added to the end of the server’s own journal. (Invalid nanopublications are ignored.)353

9. The journal identifier jp and the total number of nanopublications np for server p are remembered354

for the next visit, replacing the values of j′p and n′p.355

The current implementation is designed to be run on normal Web servers alongside with other356

applications, with economic use of the server’s resources in terms of memory and processing time. In357

order to avoid overload of the server or the network connection, we restrict outgoing connections to other358

servers to one at a time. Of course, sufficient storage space is needed to save the nanopublications (for359

which we currently use MongoDB), but storage space is typically much easier and cheaper to scale up than360

memory or processing capacities. The current system and its protocol are not set in stone but, if successful,361

will have to evolve in the future — in particular with respect to network topology and partial replication —362

to accommodate a network of possibly thousands of servers and billions of nanopublications.363

8/19

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1760v1 | CC-BY 4.0 Open Access | rec: 19 Feb 2016, publ: 19 Feb 2016

(a) (b)

(c) (f)

(d) (e)
has element

has sub-index

appends to

Figure 3. Schematic example of nanopublication indexes

3.3 Nanopublication Indexes364

To make the infrastructure described above practically useful, we have to introduce the concept of indexes.365

One of the core ideas behind nanopublications is that each of them is a tiny atomic piece of data. This366

implies that analyses will mostly involve more than just one nanopublication and typically a large number367

of them. Similarly, most processes will generate more than just one nanopublication, possibly thousands368

or even millions of them. Therefore, we need to be able to group nanopublications and to identify and use369

large collections of them.370

Given the versatility of the nanopublication standard, it seems straightforward to represent such371

collections as nanopublications themselves. However, if we let such “collection nanopublications” contain372

other nanopublications, then the former would become very large for large collections and would quickly373

lose their property of being nano. We can solve part of that problem by applying a principle that we can call374

reference instead of containment: nanopublications cannot contain but only refer to other nanopublications,375

and trusty URIs allow us to make these reference links almost as strong as containment links. To emphasize376

this principle, we call them indexes and not collections.377

However, even by only containing references and not the complete nanopublications, these indexes378

can still become quite large. To ensure that all such index nanopublications remain nano in size, we need379

to put some limit on the number of references, and to support sets of arbitrary size, we can allow indexes to380

be appended by other indexes. We set 1000 nanopublication references as the upper limit any single index381

can directly contain. This limit is admittedly arbitrary, but it seems to be a reasonable compromise between382

ensuring that nanopublications remain small on the one hand and limiting the number of nanopublications383

needed to define large indexes on the other. A set of 100,000 nanopublications, for example, can therefore384

be defined by a sequence of 100 indexes, where the first one stands for the first 1000 nanopublications,385

the second one appends to the first and adds another 1000 nanopublications (thereby representing 2000 of386

them), and so on up to the last index, which appends to the second to last and thereby stands for the entire387

set. In addition, to allow datasets to be organized in hierarchies, we define that the references of an index388

can also point to sub-indexes. In this way we end up with three types of relations: an index can append to389

another index, it can contain other indexes as sub-indexes, and it can contain nanopublications as elements.390

These relations defining the structure of nanopublication indexes are shown schematically in Figure 3.391

Index (a) in the shown example contains five nanopublications, three of them via sub-index (c). The latter392

is also part of index (b), which additionally contains eight nanopublications via sub-index (f). Two of393

these eight nanopublications belong directly to (f), whereas the remaining six come from appending to394

index (e). Index (e) in turn gets half of its nanopublications by appending to index (d). We see that some395

nanopublications may not be referenced by any index at all, while others may belong to several indexes at396

the same time.397

Below we show how this general concept of indexes can be used to define sets of new or existing398

nanopublications, and how such index nanopublications can be published and their nanopublications399

retrieved.400

3.4 Trusty Publishing401

Let us consider two simple exemplary scenarios to illustrate and motivate the general concepts. To402

demonstrate the procedure and the general interface of our implementation, we show here the individual403

steps on the command line in a tutorial-like fashion, using the np command from the nanopub-java404

9/19

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1760v1 | CC-BY 4.0 Open Access | rec: 19 Feb 2016, publ: 19 Feb 2016

library (Kuhn, 2015a). Of course, users should eventually be supported by graphical interfaces, but405

command line tools are a good starting point for developers to build such tools. To make this example406

completely reproducible, these are the commands to download and compile the needed code from a Bash407

shell (requiring Git and Maven):408

$ git clone https://github.com/Nanopublication/nanopub-java.git409

$ cd nanopub-java410

$ mvn package411

And for convenience reasons, we can add the bin directory to the path variable:412

$ PATH=‘pwd‘/bin:$PATH413

To publish some new data, they have to be formatted as nanopublications. We use the TriG format here414

and define the following RDF prefixes:415

@prefix : <http://example.org/np1#>.416

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.417

@prefix dc: <http://purl.org/dc/terms/>.418

@prefix pav: <http://purl.org/pav/>.419

@prefix prov: <http://www.w3.org/ns/prov#>.420

@prefix np: <http://www.nanopub.org/nschema#>.421

@prefix ex: <http://example.org/>.422

A nanopublication consist of three graphs plus the head graph. The latter defines the structure of the423

nanopublication by linking to the other graphs:424

:Head {425

: a np:Nanopublication;426

np:hasAssertion :assertion;427

np:hasProvenance :provenance;428

np:hasPublicationInfo :pubinfo.429

}430

The actual claim or hypothesis of the nanopublication goes into the assertion graph:431

:assertion {432

ex:mosquito ex:transmits ex:malaria.433

}434

The provenance and publication info graph provide meta-information about the assertion and the entire435

nanopublication, respectively:436

:provenance {437

:assertion prov:wasDerivedFrom ex:mypublication.438

}439

:pubinfo {440

: pav:createdBy <http://orcid.org/0000-0002-1267-0234>.441

: dc:created "2014-07-09T13:54:11+01:00"ˆˆxsd:dateTime.442

}443

The lines above constitute a very simple but complete nanopublication. To make this example a bit444

more interesting, let us define two more nanopublications that have different assertions but are otherwise445

identical:446

@prefix : <http://example.org/np2#>.447

...448

ex:Gene1 ex:isRelatedTo ex:malaria.449

...450

451

@prefix : <http://example.org/np3#>.452

...453

ex:Gene2 ex:isRelatedTo ex:malaria.454

...455

We save these nanopublications in a file nanopubs.trig, and before we can publish them, we have to456

assign them trusty URIs:457

$ np mktrusty -v nanopubs.trig458

Nanopub URI: http://example.org/np1#RAQoZlp22LHIvtYqHCosPbUtX8yeGs1Y5AfqcjMneLQ2I459

Nanopub URI: http://example.org/np2#RAT5swlSLyMbuD03KzJsYHVV2oM1wRhluRxMrvpkZCDUQ460

Nanopub URI: http://example.org/np3#RAkvUpysi9Ql3itlc6-iIJMG7YSt3-PI8dAJXcmafU71s461

10/19

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1760v1 | CC-BY 4.0 Open Access | rec: 19 Feb 2016, publ: 19 Feb 2016

This gives us the file trusty.nanopubs.trig, which contains transformed versions of the three462

nanopublications that now have trusty URIs as identifiers, as shown by the output lines above. Looking463

into the file we can verify that nothing has changed with respect to the content, and now we are ready to464

publish them:465

$ np publish trusty.nanopubs.trig466

3 nanopubs published at http://np.inn.ac/467

For each of these nanopublications, we can check their publication status with the following command468

(referring to the nanopublication by its URI or just its artifact code):469

$ np status -a RAQoZlp22LHIvtYqHCosPbUtX8yeGs1Y5AfqcjMneLQ2I470

URL: http://np.inn.ac/RAQoZlp22LHIvtYqHCosPbUtX8yeGs1Y5AfqcjMneLQ2I471

Found on 1 nanopub server.472

This is what you see immediately after publication. Only one server knows about the new nanopublication.473

Some minutes later, however, the same command leads to something like this:474

$ np status -a RAQoZlp22LHIvtYqHCosPbUtX8yeGs1Y5AfqcjMneLQ2I475

URL: http://np.inn.ac/RAQoZlp22LHIvtYqHCosPbUtX8yeGs1Y5AfqcjMneLQ2I476

URL: http://ristretto.med.yale.edu:8080/nanopub-server/RAQoZlp22LHIvtYqHCosPbU...477

URL: http://nanopubs.stanford.edu/nanopub-server/RAQoZlp22LHIvtYqHCosPbUtX8yeG...478

URL: http://nanopubs.semanticscience.org:8082/RAQoZlp22LHIvtYqHCosPbUtX8yeGs1Y...479

URL: http://rdf.disgenet.org/nanopub-server/RAQoZlp22LHIvtYqHCosPbUtX8yeGs1Y5A...480

URL: http://app.tkuhn.eculture.labs.vu.nl/nanopub-server-2/RAQoZlp22LHIvtYqHCo...481

URL: http://nanopubs.restdesc.org/RAQoZlp22LHIvtYqHCosPbUtX8yeGs1Y5AfqcjMneLQ2I482

URL: http://nanopub.backend1.scify.org/nanopub-server/RAQoZlp22LHIvtYqHCosPbUt...483

URL: http://nanopub.exynize.com/RAQoZlp22LHIvtYqHCosPbUtX8yeGs1Y5AfqcjMneLQ2I484

Found on 9 nanopub servers.485

Next, we can make an index pointing to these three nanopublications:486

$ np mkindex -o index.nanopubs.trig trusty.nanopubs.trig487

Index URI: http://np.inn.ac/RAXsXUhY8iDbfDdY6sm64hRFPr7eAwYXRlSsqQAz1LE14488

This creates a local file index.nanopubs.trig containing the index, identified by the URI shown489

above. As this index is itself a nanopublication, we can publish it in the same way:490

$ np publish index.nanopubs.trig491

1 nanopub published at http://np.inn.ac/492

Once published, we can check the status of this index and its contained nanopublications:493

$ np status -r RAXsXUhY8iDbfDdY6sm64hRFPr7eAwYXRlSsqQAz1LE14494

1 index nanopub; 3 content nanopubs495

Again, after just a few minutes this nanopublication will be distributed in the network and available on496

multiple servers. From this point on, everybody can conveniently and reliably retrieve the given set of497

nanopublications. The only thing one needs to know is the artifact code of the trusty URI of the index:498

$ np get -c RAXsXUhY8iDbfDdY6sm64hRFPr7eAwYXRlSsqQAz1LE14499

This command downloads the nanopublications of the index we just created and published.500

As another exemplary scenario, let us imagine a researcher in the biomedical domain who is interested501

in the protein CDKN2A and who has derived some conclusion based on the data found in existing502

nanopublications. Specifically, let us suppose this researcher analyzed the five nanopublications specified503

by the following artifact codes (they can be viewed online by appending the artifact code to the URL504

http://np.inn.ac/ or the URL of any other nanopublication server):505

RAEoxLTy4pEJYbZwA9FuBJ6ogSquJobFitoFMbUmkBJh0506

RAoMW0xMemwKEjCNWLFt8CgRmg_TGjfVSsh15hGfEmcz4507

RA3BH_GncwEK_UXFGTvHcMVZ1hW775eupAccDdho5Tiow508

RA3HvJ69nO0mD5d4m4u-Oc4bpXlxIWYN6L3wvB9jntTXk509

RASx-fnzWJzluqRDe6GVMWFEyWLok8S6nTNkyElwapwno510

These nanopublications about the same protein come from two different sources: The first one is from511

the BEL2nanopub dataset, whereas the remaining four are from neXtProt.4 These nanopublications512

4See https://github.com/tkuhn/bel2nanopub and http://nextprot2rdf.sourceforge.n
et, respectively, and Table 1

11/19

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1760v1 | CC-BY 4.0 Open Access | rec: 19 Feb 2016, publ: 19 Feb 2016

https://github.com/tkuhn/bel2nanopub
http://nextprot2rdf.sourceforge.net
http://nextprot2rdf.sourceforge.net

can be downloaded as above with the np get command and stored in a file, which we name here513

cdkn2a-nanopubs.trig.514

In order to be able to refer to such a collection of nanopublications with a single identifier, a new515

index is needed that contains just these five nanopublications. This time we give the index a title (which is516

optional):517

$ np mkindex -t "Data about CDKN2A from BEL2nanopub & neXtProt" \518

-o index.cdkn2a-nanopubs.trig cdkn2a-nanopubs.trig519

Index URI: http://np.inn.ac/RA6jrrPL2NxxFWlo6HFWas1ufp0OdZzS_XKwQDXpJg3CY520

The generated index is stored in the file index.cdkn2a-nanopubs.trig, and our exemplary researcher521

can now publish this index to let others know about it:522

$ np publish index.cdkn2a-nanopubs.trig523

1 nanopub published at http://np.inn.ac/524

There is no need to publish the five nanopublications this index is referring to, because they are already525

public (this is how we got them in the first place). The index URI can now be used to refer to this new526

collection of existing nanopublications in an unambiguous and reliable manner. This URI can be included527

in the scientific publication that explains the new finding, for example with a reference like the following:528

[1] Data about CDKN2A from BEL2nanopub & neXtProt. Nanopublication index http://np.i529

nn.ac/RA6jrrPL2NxxFWlo6HFWas1ufp0OdZzS XKwQDXpJg3CY, 14 April 2015.530

In this case with just five nanopublications, one might as well refer to them individually, but this is531

obviously not an option for cases where we have hundreds or thousands of them. The given web link532

allows everybody to retrieve the respective nanopublications via the server np.inn.ac. The URL will533

not resolve should the server be temporarily or permanently down, but because it is a trusty URI we can534

retrieve the nanopublications from any other server of the network following a well-defined protocol535

(basically just extracting the artifact code, i.e. the last 45 characters, and appending it to the URL of536

another nanopublication server). This reference is therefore much more reliable and more robust than537

links to other types of data repositories. In fact, we refer to the datasets we use in this publication for538

evaluation purposes, as described below in Section 4, in exactly this way (NP Index RAY lQruua, 2015;539

NP Index RACy0I4f w, 2015; NP Index RAR5dwELYL, 2015; NP Index RAXy332hxq, 2015; NP540

Index RAVEKRW0m6, 2015; NP Index RAXFlG04YM, 2015; NP Index RA7SuQ0e66, 2015).541

The new finding that was deduced from the given five nanopublications can, of course, also be542

published as a nanopublication, with a reference to the given index URI in the provenance part:543

@prefix : <http://example.org/myfinding#>.544

...545

@prefix nps: <http://np.inn.ac/>.546

@prefix uniprot: <http://purl.uniprot.org/uniprot/>.547

...548

:assertion {549

uniprot:P42771 a ex:proteinWithPropertyX.550

}551

:provenance {552

:assertion prov:wasInfluencedBy553

nps:RA6jrrPL2NxxFWlo6HFWas1ufp0OdZzS_XKwQDXpJg3CY.554

}555

:pubinfo {556

: pav:createdBy <http://orcid.org/0000-0002-1267-0234>.557

: dc:created "2015-04-14T08:05:43+01:00"ˆˆxsd:dateTime.558

}559

We can again transform it to a trusty nanopublication, and then publish it as above.560

Some of the features of the presented command-line interface are made available through a web561

interface for dealing with nanopublications that is shown in Figure 4. The supported features include562

the generation of trusty URIs, as well as the publication and retrieval of nanopublications. The interface563

allows us to retrieve, for example, the nanopublication we just generated and published above, even though564

we used an example.org URI, which is not directly resolvable. Unless it is just about toy examples, we565

should of course try to use resolvable URIs, but with our decentralized network we can retrieve the data566

even if the original link is no longer functioning or temporarily broken.567

12/19

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1760v1 | CC-BY 4.0 Open Access | rec: 19 Feb 2016, publ: 19 Feb 2016

http://np.inn.ac/RA6jrrPL2NxxFWlo6HFWas1ufp0OdZzS_XKwQDXpJg3CY
http://np.inn.ac/RA6jrrPL2NxxFWlo6HFWas1ufp0OdZzS_XKwQDXpJg3CY
http://np.inn.ac/RA6jrrPL2NxxFWlo6HFWas1ufp0OdZzS_XKwQDXpJg3CY

Figure 4. The web interface of the nanopublication validator can load nanopublications by their trusty

URI (or just their artifact code) from the anopublication server network. It also allows users to directly

publish uploaded nanopublications.

4 EVALUATION568

To evaluate our approach, we want to find out whether a small server network run on normal Web servers,569

without dedicated infrastructure, is able to handle the amount of nanopublications we can expect to570

become publicly available in the next few years. At the time the evaluation was performed, the server571

network consisted of three servers in Zurich, New Haven, and Ottawa. Seven new sites in Amsterdam,572

Stanford, Barcelona, Ghent, Athens, Leipzig, and Haverford have joined the network since. The current573

network of 15 server instances on 10 sites (in 8 countries) is shown in Figure 5, which is a screenshot of a574

nanopublication monitor that we have implemented5. Such monitors regularly check the nanopublication575

server network, register changes (currently once per minute), and test the response times and the correct576

operation of the servers by requesting a random nanopublication and verifying the returned data.577

4.1 Evaluation Design578

Table 1 shows seven existing nanopublication datasets, five of which we used for the first part of the579

evaluation (the other two were not yet available at the time this evaluation was conducted). These five580

datasets consist of a total of more than 5 million nanopublications and close to 200 million RDF triples,581

including nanopublication indexes that we generated for each dataset. The total size of these five datasets582

when stored as uncompressed TriG files amounts to 15.6 GB. Each of the datasets is assigned to one of the583

three servers, where it is loaded from the local file systems. The first nanopublications start spreading to584

the other servers, while others are still being loaded from the file system. We therefore test the reliability585

and capacity of the network under constant streams of new nanopublications coming from different586

servers, and we use two nanopublication monitors (in Zurich and Ottawa) to evaluate the responsiveness587

of the network.588

In the second part of the evaluation we expose a server to heavy load from clients to test its retrieval589

capacity. For this we use a service called Load Impact6 to let up to 100 clients access a nanopublication590

server in parallel. We test the server in Zurich over a time of five minutes under the load from a linearly591

5https://github.com/tkuhn/nanopub-monitor
6https://loadimpact.com

13/19

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1760v1 | CC-BY 4.0 Open Access | rec: 19 Feb 2016, publ: 19 Feb 2016

https://github.com/tkuhn/nanopub-monitor
https://loadimpact.com

Figure 5. This screenshot of the nanopublication monitor interface (http://npmonitor.inn.ac)

showing the current server network. It currently consists of 15 server instances on 10 physical servers in

Zurich, New Haven, Ottawa, Amsterdam, Stanford, Barcelona, Ghent, Athens, Leipzig, and Haverford.

increasing number of clients (from 0 to 100) located in Dublin. These clients are programmed to request592

a randomly chosen journal page, then to go though the entries of that page one by one, requesting the593

respective nanopublication with a probability of 10%, and starting over again with a different page.594

As a comparison, we run a second session, for which we load the same data into a Virtuoso SPARQL595

endpoint on the same server in Zurich (with 16 GB of memory given to Virtuoso and two 2.40 GHz Intel596

Xeon processors). Then, we perform exactly the same stress test on the SPARQL endpoint, requesting597

the nanopublications in the form of SPARQL queries instead of requests to the nanopublication server598

interface. This comparison is admittedly not a fair one, as SPARQL endpoints are much more powerful599

and are not tailor-made for the retrieval of nanopublications, but they provide nevertheless a valuable and600

well-established reference point to evaluate the performance of our system.601

4.2 Evaluation Results602

The first part of the evaluation lasted 13 hours and 21 minutes, at which point all nanopublications were603

replicated on all three servers, and therefore the nanopublication traffic came to an end. Figure 6 shows604

the rate at which the nanopublications were loaded at their first, second, and third server, respectively.605

The network was able to handle an average of about 400,000 new nanopublications per hour, which606

corresponds to more than 100 new nanopublications per second. This includes the time needed for loading607

each nanopublication once from the local file system (at the first server), transferring it through the608

network two times (to the other two servers), and for verifying it three times (once when loaded and609

twice when received by the other two servers). Figure 7 shows the response times of the three servers as610

measured by the two nanopublication monitors in Zurich (top) and Ottawa (bottom) during the time of611

the evaluation. We see that the observed latency is mostly due to the geographical distance between the612

servers and the monitors. The response time was always less than 0.21 seconds when the server was on613

the same continent as the measuring monitor. In 99.77% of all cases (including those across continents)614

the response time was below 0.5 seconds, and it was always below 1.1 seconds. Not a single one of the615

4802 individual HTTP requests timed out, led to an error, or received a nanopublication that could not be616

successfully verified.617

Figure 8 shows the result of the second part of the evaluation. The nanopublication server was able to618

handle 113,178 requests in total (i.e. an average of 377 requests per second) with an average response time619

of 0.12 seconds. In contrast, the SPARQL endpoint answering the same kind of requests needed 100 times620

14/19

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1760v1 | CC-BY 4.0 Open Access | rec: 19 Feb 2016, publ: 19 Feb 2016

http://npmonitor.inn.ac

dataset # nanopublications # triples used for

name and citation index content index content evaluation

GeneRIF/AIDA 157 156,026 157,909 2,340,390 X

(NP Index RAY lQruua, 2015)

OpenBEL 1.0 53 50,707 51,448 1,502,574 X

(NP Index RACy0I4f w, 2015)

OpenBEL 20131211 76 74,173 75,236 2,186,874 X

(NP Index RAR5dwELYL, 2015)

DisGeNET v2.1.0.0 941 940,034 951,325 31,961,156 X

(NP Index RAXy332hxq, 2015)

DisGeNET v3.0.0.0 1,019 1,018,735 1,030,962 34,636,990

(NP Index RAVEKRW0m6, 2015)

neXtProt 4,026 4,025,981 4,078,318 156,263,513 X

(NP Index RAXFlG04YM, 2015)

LIDDI 99 98,085 99,272 2,051,959

(NP Index RA7SuQ0e66, 2015)

total 6,371 6,363,741 6,444,470 230,943,456 5

Table 1. Existing datasets in the nanopublication format that were used for the first part of the evaluation.

Figure 6. This diagram shows the rate at which nanopublications are loaded at their first, second, and

third server, respectively, over the time of the evaluation. At the first server, nanopublications are loaded

from the local file system, whereas at the second and third server they are retrieved via the server network.

longer to process them (13 seconds on average), consequently handled about 100 times fewer requests621

(1267), and started to hit the timeout of 60 seconds for some requests when more than 40 client accessed622

it in parallel. In the case of the nanopublication server, the majority of the requests were answered within623

less than 0.1 seconds for up to around 50 parallel clients, and this value remained below 0.17 seconds all624

the way up to 100 clients. As the round-trip network latency alone between Ireland and Zurich amounts625

to around 0.03 to 0.04 seconds, further improvements can be achieved for a denser network due to the626

reduced distance to the nearest server.627

The first part of the evaluation shows that the overall replication capacity of the current server network628

is around 9.4 million new nanopublications per day or 3.4 billion per year. The results of the second629

part show that the load on a server when measured as response times is barely noticeable for up to 50630

parallel clients, and therefore the network can easily handle 50 · x parallel client connections or more,631

where x is the number of independent physical servers in the network (currently x = 10). The second632

part thereby also shows that the restriction of avoiding parallel outgoing connections for the replication633

between servers is actually a very conservative measure that could be relaxed, if needed, to allow for a634

higher replication capacity.635

15/19

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1760v1 | CC-BY 4.0 Open Access | rec: 19 Feb 2016, publ: 19 Feb 2016

Ottawa

(6129 km)

New Haven

(6212 km)

Zurich

(0 km)

0 200 400 600 800 1000

response time (in milliseconds) from monitor in Zurich

Zurich

(6129 km)

New Haven

(507 km)

Ottawa

(0 km)

0 200 400 600 800 1000

response time (in milliseconds) from monitor in Ottawa

Figure 7. Server response times under heavy load, recorded by the monitors during the first evaluation

time from start of test in seconds

re
s
p

o
n

s
e

 t
im

e
 i
n

 s
e

c
o

n
d

s

0 50 100 150 200 250 3000 50 100 150 200 250 300

0.1

1

10

100

0 20 40 60 80 100

number of clients accessing the service in parallel

Virtuoso triple store with SPARQL endpoint

nanopublication server

Figure 8. Results of the evaluation of the retrieval capacity of a nanopublication server as compared to a

general SPARQL endpoint (note the logarithmic y-axis)

5 DISCUSSION AND CONCLUSION636

We have presented here a low-level infrastructure for data sharing, which is just one piece of a bigger637

ecosystem to be established. The implementation of components that rely on this low-level data sharing638

infrastructure is ongoing and future work. This includes the development of “core services” (see Section639

3.1) on top of the server network to allow people to find nanopublications and “advanced services” to640

query and analyze the content of nanopublications. In addition, we need to establish standards and best641

practices of how to use existing ontologies (and to define new ones where necessary) to describe properties642

and relations of nanopublications, such as referring to earlier versions, marking nanopublications as643

retracted, and reviewing of nanopublications.644

Apart from that, we also have to scale up the current small network. As our protocol only allows for645

simple key-based lookup, the time complexity for all types of requests is sublinear and therefore scales up646

well. The main limiting factor is disk space, which is relatively cheap and easy to add. Still, the servers647

will have to specialize even more, i.e. replicate only a part of all nanopublications, in order to handle really648

large amounts of data. In addition to the current surface feature definitions via URI and hash patterns, a649

number of additional ways of specializing are possible in the future: Servers can restrict themselves to650

16/19

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1760v1 | CC-BY 4.0 Open Access | rec: 19 Feb 2016, publ: 19 Feb 2016

particular types of nanopublications, e.g. to specific topics or authors, and communicate this to the network651

in a similar way as they do it now with URI and hash patterns; inspired by the Bitcoin system, certain652

servers could only accept nanopublications whose hash starts with a given number of zero bits, which653

makes it costly to publish; and some servers could be specialized to new nanopublications, providing654

fast access but only for a restricted time, while others could take care of archiving old nanopublications,655

possibly on tape and with considerable delays between request and delivery. Lastly, there could also656

emerge interesting synergies with novel approaches to internet networking, such as Content-Centric657

Networking (Jacobson et al., 2012), with which — consistent with our proposal — requests are based on658

content rather than hosts.659

We argue that data publishing and archiving can and should be done in a decentralized manner. We660

believe that the presented server network can serve as a solid basis for semantic publishing, and possibly661

also for the Semantic Web in general. It could contribute to improve the availability and reproducibility of662

scientific results and put a reliable and trustworthy layer underneath the Semantic Web.663

REFERENCES664

Banda, J. M., Kuhn, T., Shah, N. H., and Dumontier, M. (2015). Provenance-centered dataset of drug-drug665

interactions. In Proceedings of the 14th International Semantic Web Conference (ISWC 2015), pages666

293–300. Springer.667

Belhajjame, K., Corcho, O., Garijo, D., Zhao, J., Missier, P., Newman, D., Palma, R., Bechhofer, S.,668

Garcıa, E., Cuesta, J. M. G.-P., et al. (2012). Workflow-centric research objects: First class citizens in669

scholarly discourse. In Proceedings of SePublica 2012. CEUR-WS.670

Berners-Lee, T. (2006). Linked data — design issues. http://www.w3.org/DesignIssues/Linked671

Data.html.672

Bradley, J. (2005). Documents and data: Modelling materials for humanities research in xml and relational673

databases. Literary and linguistic computing, 20(1):133–151.674

Buil-Aranda, C., Hogan, A., Umbrich, J., and Vandenbussche, P.-Y. (2013). SPARQL web-querying675

infrastructure: Ready for action? In The Semantic Web–ISWC 2013, pages 277–293. Springer.676

Carroll, J., Bizer, C., Hayes, P., and Stickler, P. (2005). Named graphs, provenance and trust. In677

Proceedings of WWW ’05, pages 613–622. ACM.678

Chichester, C., Gaudet, P., Karch, O., Groth, P., Lane, L., Bairoch, A., Mons, B., and Loizou, A. (2014).679

Querying nextprot nanopublications and their value for insights on sequence variants and tissue680

expression. Web Semantics: Science, Services and Agents on the World Wide Web.681

Chichester, C., Karch, O., Gaudet, P., Lane, L., Mons, B., and Bairoch, A. (2015). Converting neXtProt682

into linked data and nanopublications. Semantic Web.683

Clarke, I., Sandberg, O., Wiley, B., and Hong, T. W. (2001). Freenet: A distributed anonymous information684

storage and retrieval system. In Designing Privacy Enhancing Technologies, pages 46–66. Springer.685

Cohen, J. P. and Lo, H. Z. (2014). Academic torrents: A community-maintained distributed repository. In686

Proceedings of XSEDE ’14, page 2. ACM.687

Feigenbaum, L., Williams, G. T., Clark, K. G., and Torres, E. (2013). SPARQL 1.1 protocol. Recommen-688

dation, W3C.689

Filali, I., Bongiovanni, F., Huet, F., and Baude, F. (2011). A survey of structured P2P systems for RDF690

data storage and retrieval. In Transactions on large-scale data- and knowledge-centered systems III,691

pages 20–55. Springer.692

Freedman, R. (2014). The renaissance chanson goes digital: digitalduchemin. org. Early Music, 42(4):567–693

578.694

Fu, K., Kaashoek, M. F., and Mazières, D. (2002). Fast and secure distributed read-only file system. ACM695

Transactions on Computer Systems, 20(1):1–24.696

Golden, P. and Shaw, R. (2016). Nanopublication beyond the sciences. PeerJ Computer Science.697

Groth, P., Gibson, A., and Velterop, J. (2010). The anatomy of a nano-publication. Information Services698

and Use, 30(1):51–56.699

Harris, S. and Seaborne, A. (2013). SPARQL 1.1 query language. Recommendation, W3C.700

Hartig, O. (2013). An overview on execution strategies for Linked Data queries. Datenbank-Spektrum,701

13(2):89–99.702

Jacobson, V., Smetters, D. K., Thornton, J. D., Plass, M., Briggs, N., and Braynard, R. (2012). Networking703

named content. Commun. ACM, 55(1):117–124.704

17/19

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1760v1 | CC-BY 4.0 Open Access | rec: 19 Feb 2016, publ: 19 Feb 2016

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html

Kuhn, T. (2014). A survey and classification of controlled natural languages. Computational Linguistics,705

40(1):121–170.706

Kuhn, T. (2015a). nanopub-java: A Java library for nanopublications. In Proceedings of the 5th Workshop707

on Linked Science (LISC 2015).708

Kuhn, T. (2015b). Science bots: A model for the future of scientific computation? In WWW 2015709

Companion Proceedings, pages 1061–1062. ACM.710

Kuhn, T., Barbano, P. E., Nagy, M. L., and Krauthammer, M. (2013). Broadening the scope of nanopubli-711

cations. In Proceedings of ESWC 2013, pages 487–501. Springer.712

Kuhn, T., Chichester, C., Krauthammer, M., and Dumontier, M. (2015). Publishing without publishers: a713

decentralized approach to dissemination, retrieval, and archiving of data. In Proceedings of the 14th714

International Semantic Web Conference (ISWC 2015), Lecture Notes in Computer Science. Springer.715

Kuhn, T. and Dumontier, M. (2014). Trusty URIs: Verifiable, immutable, and permanent digital artifacts716

for linked data. In Proceedings of ESWC 2014, pages 395–410. Springer.717

Kuhn, T. and Dumontier, M. (2015). Making digital artifacts on the web verifiable and reliable. IEEE718

Transactions on Knowledge and Data Engineering, 27(9).719

Kuhn, T., Royer, L., Fuchs, N. E., and Schroeder, M. (2006). Improving text mining with controlled720

natural language: A case study for protein interations. In Proceedings DILS’06. Springer.721

Ladwig, G. and Harth, A. (2011). CumulusRDF: linked data management on nested key-value stores. In722

Proceedings of SSWS 2011.723

Markman, C. and Zavras, C. (2014). BitTorrent and libraries: Cooperative data publishing, management724

and discovery. D-Lib Magazine, 20(3):5.725

McCusker, J. P., Lebo, T., Krauthammer, M., and McGuinness, D. L. (2013). Next generation cancer data726

discovery, access, and integration using prizms and nanopublications. In Proceedings of DILS 2013,727

pages 105–112. Springer.728

Miller, A., Juels, A., Shi, E., Parno, B., and Katz, J. (2014). Permacoin: Repurposing Bitcoin work for729

data preservation. In Proceedings of the IEEE Symposium on Security and Privacy (SP), pages 475–490.730

IEEE.731

Mons, B., van Haagen, H., Chichester, C., den Dunnen, J. T., van Ommen, G., van Mulligen, E., Singh, B.,732

Hooft, R., Roos, M., Hammond, J., et al. (2011). The value of data. Nature genetics, 43(4):281–283.733

NP Index RA7SuQ0e66 (2015). Linked Drug-Drug Interactions (LIDDI). Nanopublication index734

http://np.inn.ac/RA7SuQ0e661LJdKpt5EOS2DKykf1ht9LFmNaZtFSDMrXg.735

NP Index RACy0I4f w (2015). Nanopubs converted from OpenBEL’s Small and Large Corpus 1.0. Nano-736

publication index http://np.inn.ac/RACy0I4f wr62Ol7BhnD5EkJU6Glf-wp0oPbDbyve7P6o.737

NP Index RAR5dwELYL (2015). Nanopubs converted from OpenBEL’s Small and Large Corpus738

20131211. Nanopublication index http://np.inn.ac/RAR5dwELYLKGSfrOclnWhjOj-2nGZN 8B739

W1JjxwFZINHw.740

NP Index RAVEKRW0m6 (2015). Nanopubs extracted from DisGeNET v3.0.0.0. Nanopublication index741

http://np.inn.ac/RAVEKRW0m6Ly PjmhcxCZMR5fYIlzzqjOWt1CgcwD 77c.742

NP Index RAXFlG04YM (2015). Nanopubs converted from neXtProt protein data (preliminary). Nano-743

publication index http://np.inn.ac/RAXFlG04YMi1A5su7oF6emA8mSp6HwyS3mFTVYreDeZRg.744

NP Index RAXy332hxq (2015). Nanopubs extracted from DisGeNET v2.1.0.0. Nanopublication index745

http://np.inn.ac/RAXy332hxqHPKpmvPc-wqJA7kgWiWa-QA0DIpr29LIG0Q.746

NP Index RAY lQruua (2015). AIDA Nanopubs extracted from GeneRIF. Nanopublication index747

http://np.inn.ac/RAY lQruuagCYtAcKAPptkY7EpITwZeUilGHsWGm9ZWNI.748

Paskin, N. (2005). Digital object identifiers for scientific data. Data Science Journal, 4:12–20.749

Patrinos, G. P., Cooper, D. N., van Mulligen, E., Gkantouna, V., Tzimas, G., Tatum, Z., Schultes, E., Roos,750

M., and Mons, B. (2012). Microattribution and nanopublication as means to incentivize the placement751

of human genome variation data into the public domain. Human mutation, 33(11):1503–1512.752

Proell, S. and Rauber, A. (2014). A scalable framework for dynamic data citation of arbitrary struc-753

tured data. In 3rd International Conference on Data Management Technologies and Applications754

(DATA2014).755

Queralt-Rosinach, N., Kuhn, T., Chichester, C., Dumontier, M., Sanz, F., and Furlong, L. I. (2015).756

Publishing DisGeNET as nanopublications. Semantic Web — Interoperability, Usability, Applicability.757

Speicher, S., Arwe, J., and Malhotra, A. (2015). Linked data platform 1.0. Recommendation, W3C.758

Verborgh, R., Hartig, O., De Meester, B., Haesendonck, G., De Vocht, L., Vander Sande, M., Cyganiak,759

18/19

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1760v1 | CC-BY 4.0 Open Access | rec: 19 Feb 2016, publ: 19 Feb 2016

http://np.inn.ac/RA7SuQ0e661LJdKpt5EOS2DKykf1ht9LFmNaZtFSDMrXg
http://np.inn.ac/RACy0I4f_wr62Ol7BhnD5EkJU6Glf-wp0oPbDbyve7P6o
http://np.inn.ac/RAR5dwELYLKGSfrOclnWhjOj-2nGZN_8BW1JjxwFZINHw
http://np.inn.ac/RAR5dwELYLKGSfrOclnWhjOj-2nGZN_8BW1JjxwFZINHw
http://np.inn.ac/RAR5dwELYLKGSfrOclnWhjOj-2nGZN_8BW1JjxwFZINHw
http://np.inn.ac/RAVEKRW0m6Ly_PjmhcxCZMR5fYIlzzqjOWt1CgcwD_77c
http://np.inn.ac/RAXFlG04YMi1A5su7oF6emA8mSp6HwyS3mFTVYreDeZRg
http://np.inn.ac/RAXy332hxqHPKpmvPc-wqJA7kgWiWa-QA0DIpr29LIG0Q
http://np.inn.ac/RAY_lQruuagCYtAcKAPptkY7EpITwZeUilGHsWGm9ZWNI

R., Colpaert, P., Mannens, E., and Van de Walle, R. (2014). Querying datasets on the Web with high760

availability. In Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth,761

P., Noy, N., Janowicz, K., and Goble, C., editors, Proceedings of the 13th International Semantic Web762

Conference, volume 8796 of Lecture Notes in Computer Science, pages 180–196. Springer.763

Williams, A. J., Harland, L., Groth, P., Pettifer, S., Chichester, C., Willighagen, E. L., Evelo, C. T.,764

Blomberg, N., Ecker, G., Goble, C., et al. (2012). Open PHACTS: semantic interoperability for drug765

discovery. Drug discovery today, 17(21):1188–1198.766

19/19

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1760v1 | CC-BY 4.0 Open Access | rec: 19 Feb 2016, publ: 19 Feb 2016

