
A simple scaling normalization for comparing ChIP-Seq samples

Paul Manser, Mark Reimers

In ChIP-Seq and DNase-Seq experiments, the density of background reads can vary from sample to
sample. Differences in background read densities between samples do not necessarily correspond to
proportional changes of read densities in true ChIP-Seq peaks. Therefore, scaling by total library size as
a means for normalizing called ChIP-Seq peaks across samples may be ineffective. We suggest a simple
easily implemented alternative to scaling by total library size that scales only by the total number of
reads mapped to called peaks. We then demonstrate the effectiveness of the modified scaling in K4me3
and K27ac ChIP-Seq data from the BrainSpan project as well as DNase-Seq data from the ENCODE
project.
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1. Introduction7

8

Although most ChIP-Seq experiments focus on finding ‘peaks’ of enrichment, a growing number of9

studies compare ChIP-Seq data across samples (Creyghton et al 2010). A natural step in normalizing10

ChIP-Seq data when comparing peaks between samples is to scale by library size as is commonly done11

for RNA-Seq data (Mortazavi et al. 2008). However different samples have different signal-to-noise ratios12

(SNRs) i.e. different levels of background reads. Therefore, peaks in different samples with the same13

heights can have different relative heights compared to their respective background levels. This issue was14

recognized by (Zhen et al. 2012), but their method allows one to compare only two samples at a time,15

and is thus unsuitable for group comparisons.16

Figure 1 shows a one megabase region from chromosome 13 from two K27Ac biological replicates from17

the BrainSpan data (brainspan.org). The y-axes are scaled so that the peaks are visually comparable.18

We can see that the relationship between peak height and background level differs substantially between19

the two samples. Peaks called by MACS are indicated below the X-axis (Zhang et al. 2008). We can20

see in this case that an increase in library size does not imply proportional increases in both peaks and21

in background. Although background is typically low, it extends over the vast majority of the genome -22

typically less than 2% of the genome lies in peaks - and therefore a substantial fraction of reads (up to23

half) may count as background. Therefore, scaling by total library size for each sample will not neces-24

sarily make peak heights comparable across samples.25

26

Figure 1: A one megabase region of chromosome 13 from two K27Ac cerebellum samples27

shows differing levels of background relative to peak heights. Called peaks using MACS28

are indicated at the bottom.29

2. Methods30

31

We suggest a modified scaling factor that scales only by the total number of reads mapped into called32

peaks rather than by whole library size. The set of called peaks for a set of samples is taken to be the33

union of the set of called peak intervals for each sample. This is typically only 1-2% of the genome. By34

effectively ignoring the differing levels of background, our method implicitly accounts for the different35
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SNRs across samples. Since our method is implemented after peak calling, control samples used for peak1

calling are not required for normalization for purposes of comparing samples. Additionally, our method2

allows for implementation of standard downstream statistical analyses such as sample clustering and3

linear model fitting, as distinct from MAnorm, another ChIP-Seq normalization method, which allows4

only for pairwise comparison of peaks between two samples after normalization (Zhen et al. 2012). If5

we find N called peaks, we compute the scaled peak height for sample i and peak j as the original peak6

height Xij scaled by the sum of all peak heights for that sample:7

Zij =
Xij∑N
j=1 Xij

(1)

3. Results8

9

We demonstrate the effectiveness of our modified approach on K4me3 and K27ac data sets from10

BrainSpan (to appear on brainspan.org) and ENCODE DNase-Seq data (genome.ucsc.edu/ENCODE).11

The BrainSpan data consists of samples from 3 post-mortem brains, each sampled at cerebellum and12

prefrontal cortex. Our goal is to detect differences between these two brain regions. The ENCODE data13

consists of pairs of technical replicates of HeLa, GM12878, and two different astrocyte samples (NH-A14

and HAc) for which we want to again find peaks with different heights (Thurman et al 2012). Total read15

depths for DNase-Seq were estimated from a random sample of 1 kilobase intervals from chromosome 2116

as the actual total read depths were not provided by ENCODE.17

Scaling only by reads mapped to peaks decreases within group variability and increases power to detect18

differences between groups. For each peak in the master list, a standard two sample t-test was performed19

to detect differences between regions of cerebellum and prefrontal cortex in the BrainSpan data. Similarly,20

a one-way ANOVA was performed to test for differences in peaks between sample types for the ENCODE21

data. Figure 2 gives empirical cumulative density functions (ECDFs) of p-value distributions for each22

data set showing that there are more small p-values using the modified scaling method and therefore that23

our method increases power to detect differences for all three data types. Choosing a p-value level on the24

X-axis, the corresponding curve indicates the proportion of peaks with p-values less than the specified25

X-axis value. Therefore, a relative increase in power to detect differences is indicated by a steeper curve26

on the left side of the plot. The dashed black line indicates the theoretical ECDF corresponding to a27

completely flat p-value distribution which we would expect under the null hypothesis of no differences28

between groups.29

3

PeerJ PrePrints | https://peerj.com/preprints/175v1/ | v1 received: 27 Dec 2013, published: 27 Dec 2013, doi: 10.7287/peerj.preprints.175v1

P
re
P
rin

ts



Figure 2: Empirical CDFs of p-value distributions testing for group differences show1

improved power when scaling by reads mapped to peaks compared to scaling using total2

read depth. Note that a larger fraction of differences between distinct groups, relative to3

differences between replicates, appear statistically significant.4

4. Discussion5

6

We have shown that differing signal to noise ratios occur in several widely-used data types used to7

assess chromatin modification using DNA sequencing. Our proposed modified scaling is a simple and8

effective method for accounting for read depths in a way that is robust to differing signal to noise ratios9

across samples. Furthermore it is simpler to compute than normal scaling in cases where the true read10

depths may not be known, and must be estimated from a subset of the data; this situation is common11

when using public data. Our approach reduces within-group variability and increases power to detect12

differences across groups.13

14
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