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freely available at: http://bioinformatics.iyte.edu.tr/supplements/peerj/.
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Abstract 
Exact pattern matching aims to locate all occurrences of a pattern in a text. Many algorithms 
have been proposed, but two algorithms, the Knuth-Morris-Pratt (KMP) and the Boyer-Moore 
(BM), are most widespread. It is the basis of some approximate string matching algorithms 
like BLAST, and in many cases it is desirable to locate an exact rather than approximate 
matches. Although several studies included measures with small alphabets, none of them 
specifically designed an algorithm to target nucleotide sequences. Since there are also no 
application programming interfaces available for pattern matching in nucleotide sequences, 
these two issues were aimed to be resolved. A portion of the Chlamydomonas reinhardtii 
genome (30 mega bases) was searched with queries ranging from 10 to 2000 nucleotides and 
an alternating number of matches between one and 25000. The results indicate that the use of 
two of the algorithms developed in this study is sufficient to efficiently cover the complete 
search space as presented in the experiment conducted here. Thus the aim of implementing an 
algorithm specifically targeting pattern matching in nucleotide sequences and making it 
available to the general public as an advanced programming interface was achieved. All 
algorithms are freely available at: http://bioinformatics.iyte.edu.tr/supplements/peerj/. 
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Background 
Exact pattern matching aims to find all occurrences of a pattern located in a text. As proposed 
by Woo-Cheol et al., exact pattern matching may be useful in finding sequences in DNA 
(Woo-Cheol, et al., 2006). Although approximate pattern matching is currently prevailing, 
exact pattern matching forms the basis for some approximate pattern matching algorithms 
such as BLAST (Altschul, et al., 1990) and GPF (Allmer, et al., 2004). In many cases, a gene 
needs to be retrieved from a collection, for instance a FASTA file (Pearson and Lipman, 
1988), where part of the sequence is known; in these cases exact pattern matching can be 
helpful. Furthermore, it may be useful to perform exact pattern matching prior to approximate 
pattern matching to save computational time by removing queries which exactly match before 
employing algorithms with higher computational cost such as those of Smith and Waterman 
and Needleman and Wunsch {Needleman, 1970 #411; Smith, 1981 #412}. 
Two algorithms can be clearly distinguished from the mass of proposed methods for exact 
pattern matching. The Boyer-Moore (Boyer and Moore, 1977) algorithm (BM), and in general 
algorithms that compare the pattern to the text on a right to left basis, are well known for their 
fast run-time in practice (Lecroq, 1995). The Knuth-Morris-Pratt (Knuth, et al., 1977) 
algorithm, based on matching from left to right, is considered to be better suited for searching 
in streams although using buffering along with BM style algorithms should be able to change 
this assumption.  
Clearly, the best case complexity of BM alike algorithms of O(n / m) (Hume and Sunday, 
1991) cannot be improved upon. Variations of the BM algorithm, such as the Boyer-Moore-
Horspool (Horspool, 1980) (BMH) implementation, make it faster on the average (Apostolico 
and Giancarlo, 1986, Crochmore, et al., 1992, Galil, 1979).  
Nucleotides represent a very small alphabet (here 6 characters A,C,G,N,T,U) which may 
contain highly repetitive subsequences. Therefore, BMH, which removes the good suffix 
shift, may not be well suited for searching nucleotide sequences.  
Musser and Nishanov (Musser and Nishanov, 2002) claim that the skip loop of the fast BM 
algorithm performs poorly with small alphabets and long patterns, prevalent in searches in 
DNA. Their approach to solving the problem is straight forward and uses hashing. Clearly, 
transforming the alphabet to a different space, using hashing or so called q-grams (Kytojoki, 
et al., 2003) for example, can be useful in searching through DNA sequences. The drawback 
of using this approach is that several characters need to be evaluated in each step which 
usually involves an overhead of, for example, hashing. Two problems arise in strings from 
small alphabets: the time spent in the skip loop is reduced while the number of times that a 
match needs to be evaluated in detail is increased. This is even more pronounced when a large 
number of matches are expected in the text or if the suffix of the pattern is abundant in the 
text. 
Raita created a variant of the BMH algorithm which introduced sentinels in order to speed up 
searches by first comparing the parts of the pattern with the weakest dependencies (Raita, 
1992). He reported an improvement of approximately 25% over the BMH algorithm but it has 
been shown by Smith to be solely due to sentinel use, as opposed to character dependencies 
within the pattern, as Raita concluded (Smith, 1994). Small alphabets have been studied, but 
so far the Boyer-Moore algorithm has not been specifically adapted to work with small 
alphabets such as nucleotides {Hume, 1991 #395; Lecroq, 1995 #390}. 
As opposed to preprocessing the pattern as done in the algorithms above, in fact all algorithms 
in this study, the text can also be processed. Indexing makes it possible to quickly locate a 
pattern. This usually restricts the patterns that can be retrieved as using the appropriate index. 
Ricardo et al. pointed out that indices take extra space and time to build and update. They 
propose that plain text search may be fast enough for even larger texts (Baeza-Yates and 
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Navarro, 2004). In natural languages, words can be used to index a text; but so far a genome 
cannot be split into words, which makes indexing problematic. 
 
This study investigates the original fast Boyer-Moore algorithm, including skip loop, and 
compares it to versions including q-grams (infixes) and sentinels.  
Additionally, two changes to the Boyer-Moore algorithm are proposed which even allow for 
shifts when an initial match needs to be evaluated. The lookup table for the skip loop seems to 
be unnecessary and is therefore completely removed in most of the algorithms, slightly 
reducing the algorithm’s overhead. The semantics of the b1-shift table of the original BM 
algorithm is slightly changed so that it can be utilized for the skip loop as well as for all other 
evaluations. It also allows for shifts in case of partial matches which is a great benefit in case 
of small alphabets. It transpires that the shift can be calculated by using the maximum of the 
suffix shift and the shift at the position of the mismatch. In order to save computation, either 
the suffix shift or the mismatch shift is used in the algorithms developed in this study. In 
addition to the fast skip loop sentinels are employed in some of the algorithms, enabling more 
time to be spent in the skip loop, and less for extensive text character versus pattern character 
comparisons.  
Seven algorithms were implemented in this study and their details are provided in the 
Algorithms Section below. The algorithms developed in this study are compared to straight 
forward implementations of BM, and the often overlooked fast BM (Hume and Sunday, 1991, 
Baeza-Yates and Navarro, 2004) and BMH incorporating a three fold unrolled skip loop, 
which reduces the overhead of the skip loop, as proposed by Hume and Sunday (Hume and 
Sunday, 1991). For the comparison the experimental settings outlined in the Materials and 
Methods Section are used.  The results are presented and discussed in the Results and 
Discussion Section following the Algorithm Section finally Conclusion and Outlooks are 
provided. Due to the large search space represented by DNA sequences, KMP and brute force 
algorithms, as well as many other competing algorithms were not assessed since their 
predicted performance is too low to warrant evaluation. Although Davies and Bowsher 
propose to use KMP for small alphabets, this is ignored here since it seems to be due to the 
fact that only the first occurrence of the pattern in the text was desired and that only the bad 
character shift was employed as in BMH (Davies and Bowsher, 1986) which constantly 
performs worse than most other algorithms employed in this study.    
Since the knowledge of fast algorithms is not commonplace and their implementation requires 
a vast amount of research (Hume and Sunday, 1991) and to the best of my knowledgs, an 
advanced programming interface is not available, a library written in JAVA™ including all 
the algorithms presented in this study is provided and available for download at 
http://bioinformatics.iyte.edu.tr/supplements/peerj/ 
 

Algorithms 
The notations used in the following sections that describe the algorithms need some 
explanation which will be presented first. A text (t) is a sequence of characters (c) from an 
alphabet (∑) with the length of the text given as n. The size of the alphabet can be given using 
the number of distinct symbols (α) of which it consists. In exact pattern matching, the aim is 
to locate a pattern (p) in t where m is the length of the pattern and the alphabet of p is equal or 
a subset of the alphabet of t. Often it is beneficial to use a window of several characters whose 
size is specified as w in the following.  
The algorithms presented in this study can be thought of as being modular, consisting of 
several building blocks. Hume and Sunday as well as Cleophas et al. have previously broken-
up search algorithms into components (Hume and Sunday, 1991, Cleophas, et al., 2004). The 
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components used in this study are shift tables, skip loops, sentinels, and the character 
comparison. The latter is not listed in the table since the same character by character 
comparison was used in all algorithms. As an overview the general composition of the 
algorithms employed in this study is presented in Table 1.  
 
Table 1: shows the rough composition of the algorithms employed in this study. The table is a mere 
preview thus the abbreviations for the algorithms as well as skip loops and so forth need to be discussed in 
some more detail in the appropriate section below. 

Algorithm Shift tables Skip loop Sentinels 

bmOrg d1, d2 none none 
bmFast d0, d1, d2 yes none 
BMH d0, d1  three fold unrolled none 
bm4DNAHM similar d1 three fold unrolled none 
bm4DNAHMbs similar d1, suffix shift  three fold unrolled 1 
bm4DNA increment three fold unrolled w 
bm4DNAIS d0, d1 three fold unrolled w 
bm4DNADS d0, d1, suffix shift three fold unrolled w 

 
The Boyer-Moore algorithm will now be presented in more detail, such that the changes 
introduced by the algorithms developed in this study can be highlighted within this context.  
   

Boyer-Moore String Matching Algorithm 
A fast exact pattern matching algorithm was published by Boyer and Moore (Boyer and 
Moore, 1977). In fact, they proposed two algorithms, one for presentation and another which 
performs best in practical applications (Hume and Sunday, 1991). Since then, some 
improvements or modifications have been added and parts of the algorithm have been 
proposed as non beneficial in certain situation (Hume and Sunday, 1991, Horspool, 1980, 
Raita, 1992). In general, the algorithm and its variants build on the idea that comparing a 
pattern from its rightmost end to the text in question allows for larger shifts which can be pre-
computed from the pattern. Therefore, the best-case complexity is O(n / m) since a pattern of 
length m can be aligned n / m times with a text of length n. Given that there is no match 
between p and t, n / m is the amount of comparisons necessary to establish the fact that p is 
not in t. 
In brief, the basic algorithm preprocesses the pattern by creating two look-up tables. One (d1) 
holds the shifts that are possible if a character mismatch between pattern and text is 
encountered. The size of this table is equal to α. The other look-up table contains shifts based 
on reoccurring infixes also called “good suffix shift”. This table was introduced to improve on 
the worst case complexity, O(n * m) but was dropped by Horspool (Horspool, 1980). Cole 
showed that on the average the BM algorithm has a complexity of O(n) in regards to the 
number of character comparisons (Cole, 1990). In addition to d1 and d2, the fast BM 
algorithm makes use of a third look-up table called d0. 
After the look-up tables have been filled in the preprocessing phase, the pattern is aligned 
with the text and the right-most character of the pattern or q-gram is compared to the 
corresponding part of the text. If equal, the subsequent characters need to be compared. In the 
opposite case, the pattern may be shifted along the text by a shift whose step-size can be 
deduced as the maximum shift found in the two lookup tables, d1 and d2.  
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The Basic Boyer-Moore Algorithm 
The following definition of the Boyer-Moore algorithm omits a skip loop because it is widely 
ignored in practice (Lecroq, 1995). This problem, as pointed out by Horspool (Horspool, 
1980), is only present in this basic algorithm, all following algorithms contain a skip-loop. 
The basic algorithm, as shown below, will be referred to as bmOrg in the remainder of this 
paper. First the processing of the pattern will be detailed with the building of the look-up 
tables and then the algorithm for the searching phase will be given. The definition of the 
algorithm differs from the one given in the original paper but seems more appropriate in this 
context. The algorithms, developed in this study, are loosely built on the basic algorithm, and 
will be explained using references to locations in the basic algorithm (notice line numbers). 
 
Preprocessing Phase 
First the delta1 (d1) table, also called bad character shift, for looking up a shift value given a 
mismatch between two characters will be defined. Obviously, the table requires an extra space 
of O(α) and is preprocessed in time O(m + α).  
 
 10 foreach c in ∑ do 
 20  let d1[c] = m 
 30 end foreach 
 40 for i from 0 to m do  
 50  let d1[p[i]] = m - i 
 60 end for 
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Now the delta2 (d2) table, also called good suffix shift, for looking up a shift value given a 
mismatch position as an index of p will be defined. An extra space of O(m) is obviously 
needed to represent this table. The time complexity to construct this table is also O(m). 
 
 10 i = m, j = m + 1 
 20 fbm[i] = j 
 30 do while i > 0 
 40  do while j <= m and p[i-1] != p[j-1] 
 50   if d2[j] = 0 then 
 60    d2[j] = j – i 
 70   end if 
 80   j=fbm[j] 
 90  end while 
100  i-- 
110  j-- 
120  fbm[i] = j 
130 end while 
140 j = fbm[0]; 
150 for i:0 to m do 
160  if d2[i] = 0 then 
170   d2[i] = j 
190  end if 
190  if i = j then 
200   j = fbm[j] 
210  end if 
220 end for 

 
The two shift tables, d1 and d2, are needed in the search phase to determine the amount of 
characters the pattern can be progressed along t for the next attempt given a mismatch or a 
complete match in the previous attempt.  
 
Search Phase 
The algorithm used in the searching phase will be detailed next. The algorithm’s best and 
worst case complexities have been established previously (see above). 
 
 10 let tp = 0 //tp: text pointer 
 20 do while tp < n - m 
 30  let j = m 
 40  do while j>0 and t[tp+j] = p[j] 
 50   j-- 
 60  end while 
 70  if j <= 0 then 
 80   reportMatch(tp+1) 
 90   let tp = tp +  d2(0) 
100  end if 
110  let tp = tp + max(d1(tp+j),d2(j)) 
120 end while 
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Fast Boyer-Moore 
This implementation of the BM algorithm, abbreviated as bmFast, incorporates the fast loop 
as described in the original paper(Boyer and Moore, 1977). 
 
Preprocessing Phase 
In addition to the d1 and d2 table of bmOrg, a table called d0 is needed which will be used 
during the skip loop. It needs an extra space of O(α) and can be constructed in O(α) time as a 
deep copy of the d1 table.  
 
10 Let d0 = d1 
20 Let d0[p[m]] = 2 * n 

 
Search Phase 
The skip loop in the fast BM algorithm has been proposed since most time is spend in sliding 
the pattern along t due to immediate mismatches. The skip loop can be implemented as an 
addition to the basic algorithm. Note, that the line numbers can be inserted into the basic 
algorithm and that if line numbers are equal they supersede the original definition. 
 
Start with bmOrg 
21 do while tp < n 
22  let tp = tp + d0[t[tp]] 
23 end while 
24 if tp < 2 * n then 
25  break 
26 end if 
27 let tp = tp – 2 * n - 1 
30 let j =  m - 1 
Continue with bmOrg 

Boyer-Moore-Horspool 
Preprocessing Phase 
The Boyer-Moore algorithm, abbreviated as BMH, was altered by Horspool by simply 
dropping the good suffix shift (d2) and by reintroducing the skip loop. The good suffix shift 
may not be of practical value in larger alphabets where no extensive internal repeats may be 
expected. In DNA sequences composed of a very small alphabet, even in short query 
sequences internal repeats can be abundant therefore the good suffix shift may be beneficial. 
Nonetheless it has not been implemented in this algorithm.  
 
Start with bmOrg and initialize d1 
 10 Let d0 = d1 
 20 Let d0[p[m]] = 0 

 
Search Phase 
The implementation here, unlike the one given by Horspool, uses three fold unrolling of the 
skip loop as proposed by Hume and Sunday (Hume and Sunday, 1991). It depends on the 
suffix being set to zero in the d0 table (see Preprocessing Phase). The complexity is the same 
as established previously for bmOrg and bmFast. 
 
Start with bmOrg 
 21 k = d0[t[tp]] 
 22 do while k != 0 
 22  let tp = tp + (k = d0[t[tp]]) 
 23   let tp = tp + (k = d0[t[tp]]) 
 24  let tp = tp + (k = d0[t[tp]]) 
 25 end while 
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Continue with bmOrg 

 
The next algorithm that will be discussed has been designed in this study to specifically adapt 
the BM algorithm for best performance while searching nucleotide sequences. 
 

Boyer-Moore-HM 
This algorithm, abbreviated bm4DNAHM, uses a hash table (shift table) to store windows of 
size w from the pattern. Hashing has been used in exact pattern matching from the beginning 
but the complete pattern was hashed which has led to a large overhead during searching (Karp 
and Rabin, 1987). Here, only subsets of the pattern are used and the size of the word w is 
calculated from m and α as described in Wu and Manber (Wu and Manber, 1994). From left 
to right, the sequences are extracted; their hash value and the potential shift along t are 
calculated and stored in the shift table, excluding the suffix. This has two advantages, one 
being that occurrences of a pattern that has been encountered before will update the shift 
value in the shift table, and the other being that the shift table can almost directly be used and 
the actual shift values need not be repeatedly calculated in the search phase. Therefore, only a 
single pass over the pattern is necessary. Finally, the hash value of the suffix is calculated and 
stored in the shift table. If the hash is associated with another substring of p, then the shift 
value present in the table is stored as the suffix shift otherwise the suffix shift is set to m - w. 
In every case, the value in the shift table is set to zero. The complexity for the preprocessing 
phase is O(m * w) where w << m. 
During the matching phase, the algorithm makes use of the shift table, the details of which are 
outlined below. Processing the text from left to right, w sized portions of t are extracted from 
the right most position of the alignment of t and p, ending at the current position of the text 
pointer. The hash value for the w sized portion of t is calculated using the function as 
specified below and then the shift is determined using the shift function detailed below. It 
returns the largest possible shift for the hash value given or zero if the hash cannot be found in 
the shift table. In order to diminish the overhead introduced through the skip loop, the 
statement is repeated 3 times. Hume and Sunday determined three-fold unrolling as the best 
value in their assessment (Hume and Sunday, 1991). In case a potential match is encountered, 
it is first determined whether it is the suffix of p or an infix. If it is indeed the suffix, the 
remainder of p is compared character by character against t until the end of p or a mismatch is 
encountered. Any matches encountered are reported. Regardless of match or mismatch, p is 
progressed along t by the shift value stored for the suffix hash. 
Two functions are needed for this algorithm which will be shown first. Afterwards the 
algorithms for preprocessing phase and search phase are defined. 
 
Shift function 
 10 shift(key) { 
 20  let res = d1[key] 
 30  if res = notFound then 
 40   return m - w 
 50  end if 
 60  return 0 
 70 } 

 
Hash function 
 10 hash(p) { 
 20  let hashVal = 0 
 30  for j:0 to w do 
 40   let hashVal = (hashVal * 128 + p[j]); 
 50  end for 
 60  return hashVal 
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 70 } 

 
Preprocessing phase 
A single shift table is created in the preprocessing phase, which needs an extra space of O(m) 
and can be created in O(m) time. This table is similar to the bad character shift table in bmOrg 
except for the transformed alphabet and shall therefore be referred to as d1. Only the infixes 
of p are represented in d1 which leads to the small extra space. Another extra space of O(m) is 
needed since p is appended to t.  
  
 10 append p to t 
 20 roreach infix of size w in p, excluding the suffix (from left to right) 
 30  let key = hash(infix) 
 40  let s = shift(key) 
 50  let d1[key] = s 
 60 end foreach 
 70 let key = hash(suffix) 
 80 if key not in d1 then 
 90  let suffixShift = m-w  
100 end if 
110 suffix = key 

 
 
Search Phase 
The search phase introduces an unspecified function getWindow(int,int), which in practice is 
implemented as an inline for loop, and returns the w sized string portion of t at the specified 
position in t. Clearly the best case complexity reduces to O(n / (m - w)) due to the w sized 
suffix that needs to be checked. Here, the array operations for getting the w sized portion are 
included. If only the number of comparisons is considered, the best case complexity is equal 
to bmOrg’s.  
 
Start with bmORG 
 21 key = hash(getWindow(tp,w)) 
 22 k = shift(key) 
 23 do while k != 0  
 24  let tp += (k = d1[hash(getWindow(tp,w)))] 
 25  let tp += (k = d1[hash(getWindow(tp,w)))] 
 26  let tp += (k = d1[hash(getWindow(tp,w)))] 
 27 End while 
 28 If key != suffix then 
 29  let tp += d1[key] 
 30  continue 
 31 end if 
 32 If tp > n then 
 33  break 
 34 End if 
 35 let j = m 
Continue with bmOrg 
110 let tp += d1[key] 
Continue with bmOrg 
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Boyer-Moore-HM best solution 
This algorithm, abbreviated as bm4DNAHMbs, is rather similar to the algorithm described 
above. A significant difference is that only the encounter of the suffix will halt the skip loop 
which means that this algorithm has the highly desirable potential to remain in the skip loop 
longer than the previous one. Another advantage is that the check for the hash being the suffix 
is removed, which requires a slight adaptation of the preprocessing phase is necessary because 
of this. The shift for the suffix is now zero and the real shift that would be possible needs to 
be stored in an extra variable. A sentinel chosen as p[0] is installed and checked after a suffix 
match has been established. The value stored in suffixShift can be used to progress the pattern 
along the text since it would align with the first following internal repeat, if any. 
The complexity for both preprocessing and matching phase remains unchanged for the best 
case, but improvements on the average can be expected.  
The hash function is equal to the previous algorithm. 
 
Shift function 
The shift function is different from the one used in bm4DNAhm and always returns a positive 
shift unless the suffix is encountered which then returns 0 (see Preprocessing Phase). 
 
 10 shift(key) { 
 20  let res = d1[key] 
 30  if res = notFound 
 40   return m-w 
 50  return res 
 60 } 

 
 
Preprocessing phase 
In contrast to the bm4DNAhm a sentinel is used in this algorithm which is defined during 
preprocessing. Furthermore, the suffixKey member is removed and instead the suffix shift is 
stored. 
 
  5  Let sentinel = p[0] 
Continue with bm4DNAhm 
 80 if key not in d1 then 
 90  let suffixShift = m - w  
100 else 
110  let suffixShift = d1[key] 
120 end if 
130 let d1[key] = 0 

 
Search Phase 
Although only a small number of changes have been made to bm4DNAhm but they may 
prove to be crucial for the practical behavior of the algorithm in the average case while the 
best case complexity remains unchanged. The suffix shift is used since it can potentially 
provide the largest shifts. Similar to the d2 table which considers subsequences, the suffix 
shift aligns the text with the next occurrence of the suffix in p. It is to be expected that the 
algorithm would perform better, on the average, than bm4DNAHM. An improvement would 
be to shift the maximum of suffixShift and the shift determined from d1 however this was 
beyond the scope of this study. The complexity of the algorithm remains unaffected by these 
changes. 
 
 
Start with bm4DNAhm 
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28 If(t[p - m) != sentinel) 
29  let tp += suffixShift 
30  continue  
31 end if 
Continue with bm4DNAhm 
110 let tp += suffixShift 
Continue with bm4DNAhm 

 

Boyer-Moore-4DNA 
Instead of using hashing and extracting w sized portions from t to speed up processing, the 
following algorithm uses sentinels, which are created by storing the first w characters of p 
from left to right in separate variables that can be quickly checked prior to comparing the 
remaining characters of p to t. Sentinels are checked from left to right which while not being 
detrimental, may or may not be beneficial (Hume and Sunday, 1991). In case a sentinel 
determines a mismatch, p is progressed along t. In case none of the sentinels report, the 
remainder of the pattern is checked against t until a match or mismatch is determined. 
The complexity of the preprocessing phase is O(2 α + m) where α is 128 since the ASCII 
character set was used for simplicity. In this specific case, however, α should be much smaller 
than m (α = 6; 9 < m < 2000). In the best case the complexity is the same as determined for 
BMH while on the average runtime some improvements should be observed. In the following 
this algorithm will be referred to as bm4DNA. 
 
Preprocessing Phase 
In the preprocessing phase w sentinels must be installed. This increases the extra space needed 
by w and increases the extra time needed by w as well 
 
1 Append p to t 
2 sentinel0 = p[0] 
3 sentinel1 = p[1] 
//Until desired number of sentinels has been established 
contiune with BMH 

 
Search phase 
In the search phase each sentinel is checked prior to entering the check loop as in bmOrg 
which here is reduced by w since the sentinels have already been checked (not shown below). 
The shifts in this algorithm are mere increments of one. Due this the best case complexity 
reduces to O(n). 
  
Start with BMH 
 26  if t[tp - m] != sentinel0 then , 
 27   let tp++ 
 28   contiune 
 29  end if 
check for all sentinels 
contiune with BMH 
110  tp++ 
contiune with BMH 

 

Boyer-Moore-IS 
This variation of the 4DNA algorithm, termed bm4DNAIS, uses sentinels as well but differs 
in several other aspects. In the preprocessing phase, it is little different from BMH except for 
dropping the d0 table and instead using a negative value to represent the suffix’s membership 
to p. The preprocessing complexity is thus reduced to O(α + m). Dropping the d0 table 
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however leads to the problem that the skip loop cannot be unrolled since the values returned 
may be negative rather than zero. Nonetheless, by merely multiplying the shift by -1 it can be 
used to progress p along t in case a mismatch, or when a complete match is encountered, 
which is better than increments by one as in bm4DNA. Using only a negative value for the 
suffix also guaranteed that in further processing at least the suffix of p matches t in the 
alignment. 
In case a mismatch or match is encountered the shift can be determined by multiplying the 
shift value of the suffix by -1. 
 
Preprocessing phase 
 
1 Append p to t 
2 sentinel0 = p[0] 
3 sentinel1 = p[1] 
//Until desired number of sentinels has been established 
continue with bmOrg 
70 Let d1[p[m]] = d1[p[m]] * -1 

 
Search phase 
Instead of using simple increments for shifting as in bm4DNA, the d1 shift table is used and 
thus the best case complexity is the same as for bmOrg.  
 
Start with bmFast 
 26  if t[tp - m] != sentinel0 then , 
 27   let tp += d1[t[tp]] * -1 
 28   contiune 
 29  end if 
check for all sentinels 
contiune with BMH 
110  let tp += d1[t[tp]] * -1 
contiune with BMH 

 

Boyer-Moore-DS 
Although reasonably similar to the algorithm above, some changes in the algorithm should 
lead to significant differences in runtime. Instead of using just one shift table, two tables are 
used, one representing the potential shifts with the suffix set to zero (d0) and the other 
representing the potential shifts with the suffix containing a valid shift value similar to the 
basic algorithm introduced at the beginning (bm4DNA). Some space is wasted in this case 
since two tables of size α need to be maintained. In addition, some time needs to be spent for 
cloning the array and adjusting the suffix to zero which leads to a slightly different 
complexity of O(2 α + m).  
The gain is that during the search phase the skip loop can be unrolled again which should lead 
to improvements on the average, while leaving best case complexity of BMH uneffected. 
In contrast to the basic algorithm, previously introduced (4DNA) the increments for 
progressing p along t are taken from the shift table whereas they are increments by one in the 
basic version. This algorithm will be referred to as bm4DNADS. 
 
Preprocessing phase 
Initially, the sentinels and the d1 table are created as in bm4DNAIS. Afterwards the d0 table 
is created and the suffix is set to zero as in BMH.  
 
Start with bm4DNAIS 
Contiune with BMH 
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Search phase 
Instead of using simple increments for shifting as in bm4DNA or shifting character dependent 
as in bm4DNAIS, the shift is always the value stored for the suffix. This is potentially the 
largest possible shift if there are no repetitions of the suffix in the pattern. The complexity is 
the same as for bmOrg. 
 
Start with BMH 
 26  if t[tp - m] != sentinel0 then , 
 27   let tp += d1[p[m]] 
 28   contiune 
 29  end if 
check for all sentinels 
contiune with BMH 
110  let tp += d1[p[m]] 
contiune with BMH 
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Setup for Experimental Study 
The variations of the Boyer-Moore algorithm were implemented in JAVA™. A library is 
provided on the projects webpage for ease of use. All algorithms were used to find exact 
patterns within 30,000,000 nucleotides which were read into memory and processed before 
timing the algorithms. A section of the genome of Chlamydomonas reinhardtii was used for 
the analysis (chlre2.fasta, JGI). All characters that were not nucleotides, such as whitespace, 
as well as all N’s (wildcard for any nucleotide) were removed. The length of the patterns 
ranged from 10 to 2000 and the number of expected matches within the nucleotide sequences 
varied between 10 and 25000, where the pattern is a random string from the nucleotide 
sequence. A pattern length of 2000 was chosen as the upper bound due to an analysis done by 
Woo-Cheol et al. (Woo-Cheol, Sanghyun, Jung-Im, Sang-Wook and Jee-Hee, 2006). The 
matches were introduced into the sequence by replacing parts of it with the expected 
sequence. The expected sequences were equally distributed over the range of the sequence. 
The runtime of the algorithms was measured using the JAVA™ system function nanoTime(). 
Each measurement was repeated 16 times, and the three lowest and three highest values were 
discarded and the remaining 10 values were averaged. Note that this runtime measurement 
corresponds neither to seconds nor to any other lesser unit of time. Measurements may 
therefore only be used to establish differences in runtime of various algorithms measured with 
highly similar environmental constraints (e.g. same computer). 
The analysis was performed for ten different queries on a personal computer running a 
Microsoft Windows™ operating system. Another set of 10 different queries was analyzed on 
a UNIX™ system. On both systems the analysis was done with as few other processes 
competing for the processor time as possible.  
For each algorithm which allows for the setting of a window, its size was calculated as 
proposed in Wu and Manber (Wu and Manber, 1994) where w = logα2m (see Algorithms 
section for explanation of the variables). Patterns were  
Number of hits  [10,100,1000,10000,25000] 
Pattern lengths  [20,50,100,500,1000,2000] 
 
In a second experiment fewer hits were introduced into the sequence. Two algorithms more 
(fast BM and bm4DNAHMbs) were evaluated but the pattern lengths as well as the hits were 
chosen from finer grained sets. 
Number of hits  [ 1,10,100,200,300,400,500,600,700,800,900,1000] 
Pattern lengths  [ 10,20,30,40,50,60,70,80,90,100,250,500,750,1000,2000]  
Instead of 10 different patterns for the two environments, 34 (Microsoft Windows™) and 40 
(UNIX™) distinct patterns were evaluated.  

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1758v1 | CC-BY 4.0 Open Access | rec: 19 Feb 2016, publ: 19 Feb 2016



Results and discussion 
The algorithms developed in this study and the algorithms implemented as references were 
evaluated in regards to their runtime usually given in milliseconds per megabyte. For each 
search space here, given by the length of the query, the length of the text, and the number of 
hits, the runtime of all algorithms was measured. 
 
Table 2: For each input space composed of query length and number of hits, the algorithm with the 
highest speed is shown (ms/ MB), along with its average performance and how many times it performed 
best out of  74 experiments (experiment 2, see experimental setup). Next to the best algorithm, the 
algorithm which won most or at least an equal amount of times is listed. The overall fastest processing 
time is highlighted. Not all data are shown for simplicity, but is available in the online supplement.  

Input Space Fastest Algorithm Prevalent Algorithm 

Query 
Length Hits w Algorithm 

Highest 
Speed 

Average 
Speed 

# of 
Wins Algorithm 

Highest 
Speed 

Average 
Speed 

# of 
Wins 

10 1 2 bm4DNAIS 1.61 2.78 19 bm4DNADS 2.68 3.77 27

10 10 2 bm4DNAIS 1.62 2.84 21 bm4DNADS 2.73 3.84 26

10 100 2 bm4DNAIS 1.62 2.81 19 bm4DNADS 2.72 3.71 27

10 500 2 bm4DNAIS 1.61 2.76 19 bm4DNADS 2.73 3.81 27

10 1000 2 bm4DNAIS 1.62 2.90 18 bm4DNADS 2.73 3.72 26

50 1 3 bm4DNADS 1.11 2.40 8 bmFast 1.94 2.51 31

50 10 3 bm4DNA 1.32 2.00 8 bmFast 1.90 2.36 29

50 100 3 bm4DNA 1.31 1.98 10 bmFast 1.92 2.37 28

50 500 3 bm4DNA 1.33 1.95 11 bmFast 1.94 2.37 30

50 1000 3 bm4DNA 1.34 1.88 10 bmFast 1.96 2.38 31

70 1 3 bm4DNAIS 1.24 1.82 12 bmFast 1.93 2.34 41

70 1 3 bm4DNAIS 1.06 1.47 9 bm4DNAHMbs 1.52 1.87 55

70 10 3 bm4DNAIS 1.06 1.55 8 bm4DNAHMbs 1.52 1.87 54

70 100 3 bm4DNAIS 1.06 1.51 8 bm4DNAHMbs 1.52 1.89 53

70 500 3 bm4DNAIS 1.07 1.51 8 bm4DNAHMbs 1.53 1.89 53

70 1000 3 bm4DNAIS 1.08 1.45 8 bm4DNAHMbs 1.55 1.90 53

100 1 3 bm4DNADS 1.15 1.15 1 bm4DNAHMbs 1.49 1.73 62

100 10 3 bm4DNAIS 1.08 1.37 2 bm4DNAHMbs 1.46 1.65 66

100 100 3 bm4DNAIS 1.08 1.26 2 bm4DNAHMbs 1.47 1.66 68

100 500 3 bm4DNA 1.09 1.32 2 bm4DNAHMbs 1.48 1.66 68

100 1000 3 bm4DNAIS 1.09 1.42 3 bm4DNAHMbs 1.48 1.67 68

500 1 4 bm4DNAHMbs 0.71 1.14 73 bm4DNAHMbs 0.71 1.14 73

500 10 4 bm4DNAHMbs 0.69 0.82 73 bm4DNAHMbs 0.69 0.82 73

500 100 4 bm4DNAHMbs 0.70 0.83 73 bm4DNAHMbs 0.70 0.83 73

500 500 4 bm4DNAHMbs 0.73 0.87 73 bm4DNAHMbs 0.73 0.87 73

500 1000 4 bm4DNAHMbs 0.78 0.91 73 bm4DNAHMbs 0.78 0.91 73

1000 1 5 bm4DNAHMbs 0.36 0.43 73 bm4DNAHMbs 0.36 0.43 73

1000 10 5 bm4DNAHMbs 0.37 0.40 73 bm4DNAHMbs 0.37 0.40 73

1000 100 5 bm4DNAHMbs 0.38 0.42 73 bm4DNAHMbs 0.38 0.42 73

1000 500 5 bm4DNAHMbs 0.45 0.49 73 bm4DNAHMbs 0.45 0.49 73

1000 1000 5 bm4DNAHMbs 0.53 0.56 73 bm4DNAHMbs 0.53 0.56 73

 
For each of the 74 runs (34 on Microsoft Windows™ and 40 on UNIX™) that were 
evaluated, the best algorithm was determined for the various search spaces. Table 2 presents 
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the fastest algorithm and how often it performed best, as well as showing, which was most 
frequently the best. In the smaller search spaces (up to a pattern length of 100) algorithms 
including sentinels, perform better than the algorithm employing hashing. At pattern lengths 
of 100, these algorithms, namely bm4DNA, bm4DNAIS, and bm4DNADS present the fastest 
algorithms, but they do not consistently perform well. Here, in most cases, bm4DNAHMbs 
outperforms all other algorithms. The search speed for this algorithm increases with longer 
patterns since the word size w is adaptive and shifts are therefore greater with increasing 
pattern length. Runtime increases slightly with increasing number of hits. Since all measured 
data points would overload Table 2 too much, only a small selection of results is shown but 
the complete set of results can be found in the online supplement. 
The runtime increases with the number of hits as can be seen in Table 2 but this is more 
pronounced in experiment 1 where greater numbers of hits were studied. This effect can be 
seen for all algorithms most dramatically at 25000 hits. Note that 25000 hits multiplied by a 
pattern length of 1000 means that the text almost exclusively consists of concatenated 
patterns, leading to a large number of character comparisons and thus an extended runtime. In 
the case of 25000 matches for a pattern length of 2000 the experiment could not be performed 
since the text was too small to accommodate this amount of matches. Interestingly, the fast 
Boyer-Moore algorithm performed well with a pattern length of 50. Although not being the 
fastest algorithm overall for this search space it outperforms all others in the majority of 
experiments. This is not as pronounced as the performance of bmDNAHMbs at larger query 
lengths yet approximately 40% of the time bmFast is the prevalent algorithm at a query length 
of 50. This factor can be explained by the preprocessing, which because of the b2 table is 
more involved for bmFast as compared to the algorithms which employ sentinels such as 
bm4DNA. Once the gain in processing speed, due to using the b2 table, eats up the extra time 
needed to build this table, bmFast becomes faster than the algorithms employing sentinels. 
The same is true for the algorithms using hashing, where this overhead takes slightly longer to 
be compensated. At a query length of 70 bm4DNAHMbs is already the prevalent, but not the 
fastest algorithm, yet. Therefore, the space occupied by bmFast as the prevalent algorithm is 
restricted to a small area of input space. 
 
In an assessment of the first experiment the relative performance of the algorithms were 
compared for a number of different pattern lengths. Since for smaller pattern lengths the best 
algorithm was not as decisive as with longer patterns where the algorithm involving hashing 
performed best in almost all cases, the majority of pattern lengths compared in Figure 1 is 
rather short.  
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Figure 1: The relative performance of five algorithms is shown for query lengths of 20 upper left, 50 upper 
right, 100 lower left, and 1000 lower right. Symbols are the same for all graphs but scaling is different.  
The unit of the y-axis is ms/ MB and the unit of the x-axis is number of matches.  
 
Interestingly, the performance of the algorithms was relatively comparable on the two 
computers employed in this study, for both experiments 1 and 2, hence the results for all 20 
queries of experiment 1 and all 74 queries in experiment 2 were averaged. 
Figure 1 shows the averaged results giving the runtime for the algorithm for different number 
of hits. For a pattern length of 20 bm4DNAIS and bm4DNADS perform best approximately 
23% better than bmOrg and almost 30% better than the optimized version of BMH. At this 
pattern length bm4DNAHM takes approximately 200% as long for the pattern matching as all 
the competing algorithms. With a slight increase in pattern length to 50 nucleotides, 
bm4DNAHM is no longer the slowest algorithm. At this pattern length, BMH performs least 
effectively, which may be due to the absence of the d2 shift table. Many larger shifts may be 
missed and smaller shifts may be abundant because of the small alphabet investigated here. 
As compared to a pattern length of 20, the overall performance decreased by almost 20% and 
the differences between bm4DNADS and bmOrg decreased to about 6% whereas the 
difference to BMH remained almost constant at 30%. The largest difference to the 
performance with a pattern length of 20 is apparent for bm4DNAHM where the difference in 
speed falls from 200% to less than 25% slower than bm4DNADS and even more than 5% 
faster than BMH. This trend continues with longer pattern lengths; at a length of 100 
nucleotides, bm4DNAHM is the fastest algorithm. The overall speed increases by 20% as 
compared to the initial pattern length of 20 and bm4DNAHM is approximately 20% faster 
than bmOrg. The latter algorithm in turn performs slightly better than bm4DNADS and 
bm4DNAIS, which were more efficient with shorter pattern lengths. With a further increase in 
pattern length to 1000, the overall speed increases again so that the necessary runtime is only 
20% of that needed to solve a problem of pattern length 20. The relative performance 
difference of bmOrg and bm4DNAHM also increases to about 76%. 
It would appear that bm4DNADS and bm4DNAIS, which employ sentinels, perform very 
well with short pattern lengths whereas bm4DNAHM performs rather less sound in those 
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search spaces. Once the overhead incurred by hashing is amortized, as it is with pattern 
lengths somewhere in-between 50 and 100 (for bm4DNAHM), the performance is unequalled. 
The overhead may also be overcome by increasing the text length instead of the pattern 
length, which will be a topic for future investigation. 
 
For the second experiment, the average of the standard deviation in percent across all the 
measurements was calculated for about 4000 sets of 16 measurements for each algorithm. 
Again, the three highest and the three lowest measurements were discarded, while the 
remaining measurements were averaged and the standard deviation was calculated. Although 
the averages across different search spaces may not be computable into an overall average, the 
standard deviation can be used in this manner. Thus, across all queries and all search spaces 
the average of the standard deviation in percent of the average was calculated and can be seen 
in Table 3. 
 
Table 3: Shows the average of the standard deviations for the individual measurements which were 
repeated 16 times for each search space for both Microsoft Windows™ and UNIX™. The last column 
shows the average of the standard deviation, given in percent of the average across different patterns. 

 
Average of standard  

deviation in % 

 
Across 

measurements 
Across 
patterns 

Algorithm 
Microsoft 
Windows™

UNIX™ 
 

All 
Experiments 

bm4DNA 2.26 0.22 36.55 
bmFast 2.11 0.28 23.26 
bm4DNADS 2.34 0.27 30.85 
bm4DNAHM 3.32 0.30 15.70 
bm4DNAHMbs 3.38 0.33 14.85 
bm4DNAIS 2.41 0.30 33.09 
bMH 2.58 0.30 35.69 
bmOrg 2.69 0.28 26.12 

 
Table 3 clearly shows that the measurements made in the UNIX™ environment are 
significantly more homogeneous. Although the standard deviation and here the average of the 
standard deviations in percent of the average across the experiment within Microsoft 
Windows™ was almost an order of magnitude higher than within UNIX™, it does not 
invalidate the analysis of either since this error is almost an order of magnitude smaller than 
the spread across measuring different patterns. Across different patterns an additional error 
was introduced due to combining results from the two systems employed in the experiment. 
This additional error was however small compared to the difference across measured patterns. 
Clearly, patterns must have features which influence their search speed, one could be the 
occurrence of the suffix within the text being searched or more severely, within the pattern 
itself. Each time the suffix is encountered in the text a large number of computations need to 
be performed, potentially increasing the runtime. Depending on the distribution of the suffix 
in the text this may largely influence the runtime. This can be seen by the fact that standard 
deviation in algorithms using hashing is a fully 50% less than for the remaining algorithms. 
Across different search spaces and different sizes of w it can be seen that with smaller w the 
deviation increases for all algorithms that use infixes. The remaining deviation cannot be 
explained with the data gathered at this point and will be subject to further investigation. For a 
w of 5 one would expect to find about 30000 occurrences in a text with n equal to 30000000, 
purely by chance. This number obviously increases as w decreases. The chance of the suffix 
also being an infix, which leads to smaller shifts, also increases accordingly. For a query 
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length of 1000 and a w of 5, one may expect to find the suffix in the query approximately one 
time in addition to the suffix itself. Both these events are detrimental to searching and will 
increase the overall runtime of the algorithms. 
The results of Experiment 2 were plotted showing the time (milliseconds) necessary to 
process one mega byte of text against different number of expected hits (Figure 2). Here the 
number of forced hits is rather low compared to the first experiment, which makes the results 
appear as almost horizontal lines. The standard deviation is not shown since it is stable across 
the different points measured and can thus be deduced from Table 3.  
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Figure 2: Processing speed in milliseconds per megabyte (y-axis) of text for a selected number of query 
lengths (10 upper left, 50 upper right, 100 lower left, 1000 lower right) in regards to a the number of hits 
(x-axis); compare for Figure 1. Note, that a larger number of algorithms are compared here and that less 
matches have been forced, with respect to Figure 1.  
 
While being slowest at a query length of 10, algorithms employing partial hashing rapidly 
become competitive in the region of pattern length 50, outperforming all other algorithms 
with increasing pattern length. The opposite is true for algorithms only employing sentinels. 
These are competitive for small pattern lengths, but are quickly outperformed by most other 
algorithms when greater pattern lengths are present.  
In order to better assess the relative performance of the algorithms the fast BM algorithm was 
taken as a standard and the relative performance was plotted (Figure 3). It can be seen that 
bm4DNADS performs best for small query lengths and is not significantly slower than fast 
BM up to a query length of around 60. At that point the bm4DNAHMbs algorithm 
outperforms all others across the remaining experimental space. The bm4DNAHM algorithm 
performs this transition slightly later around a query length of 100 and across the whole 
experiment performs less effectively than the bm4DNAHMbs algorithm. This was expected 
since using the suffix shift and an additional sentinel were envisioned to speed up 
bm4DNAHMbs. Although for a small pattern lengths bm4DNA is slightly faster than bmOrg 
it consistently performs less well than bmFast. This is also true for bmOrg and BMH, whose 
design was clearly not optimal for searches in small alphabets. This can be explained by the 
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missing b2 shift table for BMH, and for bmOrg by the absence of a skip loop, which would 
appear to accelerate the search over the whole search space. Since bmOrg seems to be 
converging against bmFast with increasing pattern length, the advantage of incorporating the 
skip loop seems to be diminishing on the same terms. Finally, bm4DNA performs worse than 
bmFast although it uses even three times unrolling of the skip loop since the skips that are 
possible are mere increments by one. For all other algorithms the skips are potentially larger. 
If compared to BMH the gain in performance due to using of sentinels can be seen. 
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Figure 3: Relative performance of the algorithms in regard to the fast version of the Boyer-Moore 
algorithm.  Vertical axis shows times faster (positive) and times slower than the fast BM algorithm. 
Horizontal axis is logarithmic and shows the pattern length. 
 
Overall, it can be deduced from Figure 3 that with increasing pattern length the algorithms 
that perform significantly better are those employing transformation of the alphabet by 
hashing windows of the text. It is also clear that the overhead needs to be amortized first but 
general searches in nucleotide sequences involve long rather than short patterns.  
 

Conclusions 
A number of experiments were conducted which define the input spaces in which the 
algorithms work efficiently. These were compared and it was shown that using two 
algorithms from the set created in this study suffices to cover most of this space. Practical 
considerations lead to the conclusion that even though there are outliers for some input spaces 
these can be safely ignored. Thus choosing in-between bm4DNAHMbs (query length >= 50) 
and bm4DNADS (query length < 50) depending on the input will greatly accelerate exact 
pattern matching in nucleotide sequences. The algorithms are provided as a JAVA™ library 
and can thus be directly used on for example web servers providing DNA search facilities. 
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