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 29 
ABSTRACT   30 
Bayesian statistics, in contrast to classical statistics, uses probability to represent uncertainty 31 
about the state of knowledge.  Bayesian statistics has often been associated with the idea that 32 
knowledge is subjective and that a probability distribution represents a personal degree of belief.  33 
Dr. Daniel Goodman considered this viewpoint problematic for issues of public policy.  He 34 
sought to ground his Bayesian approach in data, and advocated the construction of a prior as an 35 
empirical histogram of “similar” cases.   In this way, the posterior distribution that results from a 36 
Bayesian analysis combined comparable previous data with case-specific current data, using 37 
Bayes’ formula.  Goodman championed such a data-based approach, but he acknowledged that it 38 
was difficult in practice.  If based on a true representation of our knowledge and uncertainty, 39 
Goodman argued that risk assessment and decision-making could be an exact science, despite the 40 
uncertainties.  In his view, Bayesian statistics is a critical component of this science because a 41 
Bayesian analysis produces the probabilities of future outcomes.  Indeed, Goodman maintained 42 
that the Bayesian machinery, following the rules of conditional probability, offered the best 43 
legitimate inference from available data.  We give an example of an informative prior in a recent 44 
study of Steller sea lion spatial use patterns in Alaska. 45 
 46 
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 52 
1. THE BAYESIAN PARADIGM 53 

The two most widely used statistical paradigms in natural resource management are 54 
classical methods, which include null hypothesis significance tests and maximum likelihood 55 
estimates, and Bayesian methods.  The pros and cons of Bayesian and classical methods have 56 
been debated for decades, both in ecology and other fields (Efron 1986, Reckhow 1990, Berger 57 
and Mortera 1991, Dennis 1996, Ellison 1996, Boyce 2002, Bayarri and Berger 2004).   Other 58 
methods that don’t fit into these two categories include machine-learning methods (Hastie et al. 59 
2001) such as maximum entropy modeling (Phillips et al. 2006) and Random Forests (Breiman 60 
2001).  In this essay we focus on how Bayesian methods differ from classical methods, why Dr. 61 
Daniel Goodman thought the Bayesian approach was important, and what Goodman contributed 62 
to the subject. 63 

At the time Goodman started using Bayesian ideas in the 1990s, the Bayesian paradigm 64 
was not widely accepted among ecologists.  However, the use of Bayesian methods in ecological 65 
analyses has been rapidly increasing in recent years (Figure 1), due partly to modern computing 66 
power, partly to the development of more accessible software, and partly to the growing 67 
appreciation of the advantages of the Bayesian approach.  There are even articles (Strogatz 2010, 68 
Carey 2011, Flam 2014) and books (McGrayne 2011, Silver 2012) for the general public about 69 
Bayesian ideas.  Some analysts use Bayesian methods pragmatically.  They might use Bayesian 70 
methods for complex hierarchical models, which are often easier to fit with Bayesian methods, 71 
but use non-Bayesian methods at other times.  Goodman was committed to the Bayesian 72 
approach for philosophical reasons, and he believed firmly that it offered the best inference from 73 
available data.  74 

The basic concept of the Bayesian approach is simple: after collecting data, we combine 75 
the new data with what is already known to arrive at an updated state of knowledge.  This 76 
process largely reflects the scientific method, in which hypotheses are formed, evaluated with 77 
data, refined, then evaluated again with more data.  Classical statistical methods (also called 78 
frequentist statistics) allow a null hypothesis to be rejected on the basis of observed data.  79 
However, rejection of the null hypothesis does not provide support for an alternative, nor does 80 
failure to reject the null hypothesis mean that it is true.  In contrast, the Bayesian framework 81 
allows a hypothesis to be supported (or not), and the degree of support to be sequentially 82 
updated, through Bayes’ formula, as more data become available.  Bayes’ formula is based on 83 
the axioms of conditional probability, and is mathematically uncontroversial.  Simply put, 84 
Bayesian inference just follows the rules of conditional probability.  Its adherents see that as its 85 
main strength; its detractors, while admitting its mathematical coherence, disagree with its use as 86 
a system of inference. 87 

Maximum-likelihood and Bayesian methods both use likelihood functions, which 88 
describe the relationship between the data (x) and the parameter(s) that generated the data, and 89 
possibly a hypothesis (H) that depends on the parameters.  Both methods condition on the 90 
observed data.  The difference is that the maximum-likelihood approach answers the question 91 
“How likely (in a relative sense) are the parameter values given the data?”, while the Bayesian 92 
approach answers the question “How probable (in an absolute sense) are the parameter values, 93 
given the data and previous knowledge of the parameter values?”  The Bayesian answer, the 94 
posterior probability distribution P(H|x), is computed via Bayes’ formula,  95 

P(H|x) ∝ P(H) P(x|H), 96 
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where P(H) is the prior distribution, representing what is known about the hypothesis 97 
(parameters) prior to the data, and P(x|H) is the likelihood.  The change between P(H) and P(H|x) 98 
can be viewed as the information content of the data (Gelman et al. 2013), and it can also be 99 
viewed as a measure of how much one “learns” by doing an experiment or collecting data 100 
(Ellison 1996). 101 

The form of the likelihood function is often determined by the data.  For example, the 102 
heights or lengths of members of a population may follow a normal or Gaussian distribution with 103 
parameters μ and σ2 that describe the mean and variance of the distribution.  The sexes of 104 
individuals in a group could be described with a binomial distribution with parameter θ that 105 
describes the probability that an individual is male.  The ages or weights of members of a 106 
population may have a positively skewed distribution, which could be represented by a 107 
lognormal or gamma distribution, again described with mean and variance parameters. 108 

The most straightforward example of the concept of updating occurs with time series 109 
models. Many populations are monitored through time (annual counts, for instance), and typical 110 
quantities of interest are population size or a trend in population size.  Naturally, the model may 111 
be run after all data are collected, in which case all data are included in the likelihood function.   112 
Alternatively, the model may be run sequentially: when the population count is made at time t, 113 
the likelihood can be evaluated at this single data point, with priors specified as the posterior 114 
distributions from the model up to time t-1 (Wright et al. 2002, Goodman 2009).   The result of 115 
analyzing the data sequentially agrees with analyzing the data all at once only in a system which 116 
follows the rules of conditional probability.  Such coherence was one of the reasons that 117 
Goodman felt that using Bayesian methods offered the best legitimate inference from available 118 
data. 119 
 120 
2. CONCEPTS OF PROBABILITY 121 

Probability has been defined as a limiting frequency, which can be called an objectivist or 122 
frequentist point of view, but it has also been defined as a degree of belief, which is considered a 123 
belief-based or subjectivist point of view (Bernardo and Smith 2000).  Historically, the 124 
objectivist view has been associated with classical statistical methods, and the subjectivist view 125 
with Bayesian methods.  Goodman espoused a view which combined the objective rigor of a 126 
frequency-based concept of probability with the inferential coherence of the Bayesian approach 127 
(Goodman 2002b) 128 

The concept of probability as limiting frequency is easily exemplified by flipping a fair 129 
coin.  On a single flip, the proportion of heads can only be 0 or 1, not 0.5.  In a series of ten flips, 130 
the proportion can still be far from 0.5.  However, in the limit, that is, as the number of flips 131 
becomes larger and larger, the proportion of flips that comes up heads becomes closer and closer 132 
to 0.5, leading to the conclusion that the probability of heads is one half.  Thus the frequency-133 
based definition of probability is framed in terms of a very large number of replications under 134 
constant conditions.  In practice this is a problem because, unlike simple coin-flipping, we 135 
cannot increase our sample size or replicate our experiments until we see a series of numbers 136 
converging on a true probability. 137 

On the other hand, the view that probability represents a degree of belief which varies 138 
from person to person is incompatible with the scientific method.  In particular, a personal belief-139 
based view of knowledge is unacceptable for assessing risk and making decisions on issues of 140 
public policy.  As Goodman put it “Subjective probability can lead to internally consistent 141 
systems relating belief and action for a single individual; but severe difficulties emerge in trying 142 
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to extend this model to justify public decisions. Objective probability represents probability as a 143 
literal frequency that can be communicated as a matter of fact and that can be verified by 144 
independent observers confronting the same information” (Goodman 2004). 145 

However, the belief-based concept of probability also maintains that the state of our 146 
knowledge should be reflected by probabilities (De Finetti 1970a, b).  De Finetti (2008, p. 212) 147 
said that it is “senseless to speak of the probability of an event unless we do so in relation to the 148 
body of knowledge [already] possessed”.  Representing state of knowledge by a probability 149 
distribution does not mean that knowledge (or “belief”) has to be personal (or “subjective”).  It 150 
can be objective and empirical, and this is what Goodman tried to implement.  Probability as the 151 
state of knowledge may be most easily imagined as the assignment of values that account for all 152 
relevant information (or lack thereof) before placing a bet.  For example, an intuitively appealing 153 
expression of complete ignorance is to assign equal probabilities to all possible outcomes.  In the 154 
case of flipping a fair coin, assigning equal probabilities to heads or tails is one way of 155 
expressing complete ignorance, and it would, in fact, give us the best information with which to 156 
assess a bet based on the toss of a fair coin.  However, the task of assigning a probability to all 157 
outcomes, or even defining all possible outcomes, quickly becomes complicated.  Suppose we 158 
suspect that the coin flipper may be a charlatan, and that his jar of coins contains some unknown 159 
proportion of fair coins, weighted coins (in which case there can be an infinite number of 160 
weightings) or trick coins (same face on both sides).  Now our assessment of possible outcomes 161 
must include some assessment of what may be in the jar, which, in turn, depends on our 162 
assessment of how likely the coin flipper is to be a con artist.  163 

The Bayesian characterization of state of knowledge as a probability is a belief-based 164 
tenet, yet Bayesian inference does contain elements of frequency-based probabilities, provided 165 
the likelihood function contains a sample of data which were generated by an inherently random 166 
process.  In contrast to the classical statistician, the Bayesian considers the parameter itself to be 167 
a random variable.  A Bayesian is interested in realizations of that parameter, as opposed to 168 
multiple realizations of the data.  The different questions posed by Bayesian and classical 169 
methods reflect the Bayesian interest in answering questions within the parameter space (and 170 
resulting willingness to represent knowledge, or its converse, uncertainty, as a probability) and 171 
the classical preference for a strict frequentist definition of probability (and resulting choice of 172 
inference to the data space).  The conceptual difference can be illustrated succinctly by 173 
considering a single flip of a fair coin.  After the coin is flipped, the coin is covered so the result 174 
can’t be seen.  The question is: “What is the probability that the result is heads?”  A Bayesian 175 
says 0.5, because that probability represents our knowledge of the result.  A classical statistician 176 
should refuse to answer the question, because it is an improper use of “probability.”  In the 177 
classical view, there is no uncertainty: the result is either heads or tails with probability one. 178 

Goodman’s resolution of objectivist and subjectivist concepts of probability sought to 179 
combine the strengths of both approaches.  He argued that a Bayesian analysis could fulfill both 180 
the belief-based tenet of representing the uncertainty associated with making a decision (i.e., 181 
correctly assessing the risk and placing a rational bet) and a frequency-based definition of 182 
probability, because the frequency of interest was not based on hypothetically unlimited 183 
replication over the data space but rather on the frequency of estimated parameters in an 184 
indefinitely large sample from the prior parameter space (Goodman 2002b, 2004).  In other 185 
words, if the prior parameter space were sampled enough by previous research, then a prior 186 
distribution based on these comparative parameter estimates should converge to the unknown 187 
parameter’s true distribution.  Bayes’ formula then updates the frequency-based prior distribution 188 
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with the case-specific data of interest, producing a fully frequency-based posterior, which is the 189 
distribution of the parameter, given that the data were exactly as observed (Goodman 2004).  190 
Thus, Goodman emphasized “taking the prior seriously” by using an informative prior driven by 191 
an empirical frequency of actual prior cases.  In Section 5 we discuss ways of doing this, 192 
including the situation where case-specific data are limited, and in Section 6, we give an example 193 
of using informative, data-driven priors to strengthen an analysis.   194 

 195 
3. BAYESIAN STATISTICS AND DECISIONS 196 

Decision making in natural resources involves uncertainty, risk, and updating knowledge 197 
with new data. As Goodman (2002b) noted, “each management decision is equivalent to the 198 
placing of a bet, and the measure of success isn’t so much winning every bet, which is 199 
impossible, but rather, success lies in evaluating the odds well enough to place our bets so that in 200 
the long run our gains exceed our losses.”  Thus, the key element science can contribute is an 201 
improved understanding of the odds. These odds may generally be interpreted as the effects of 202 
management actions (including the status quo) in setting harvest levels, setting recovery targets, 203 
or deciding whether species should be given protected status.  If uncertainty is properly 204 
represented, Goodman maintained that the decision process could, in its own way, be an exact 205 
science despite the uncertainty involved in these management decisions (Goodman 2002b).  206 
Similarly, effective policy development can be viewed as a scientific research enterprise 207 
(Goodman 2005). 208 

A scientific approach to management decisions weights value statements (utility 209 
functions) about potential outcomes by the probabilities that they will occur (Berger 1985).  210 
Thus, the proper estimation of uncertainty, of both current and future states of nature, is central 211 
to the science of decision-making.  In nearly all ecological studies, measurement uncertainty is 212 
large because of observation or sampling errors. For example, many species exist in complex 213 
food webs, and our understanding of these linkages, as well as the role of environmental 214 
variation, is poor.  Further, because natural processes are inherently stochastic, prediction of 215 
future states is uncertain even if the current state and the processes leading to future states are 216 
known.  Bayesian methods allow future uncertainty to be partitioned between the component due 217 
to inherent stochastic processes and the component due to parameter uncertainty (Goodman 218 
2002a).  Thus, risk can be reduced by the collection of more data (Goodman 2002b). 219 

Estimation of the state of nature depends on data and statistical models. More (and better) 220 
data allow increasingly complex statistical models to be developed. In the simplest form, annual 221 
population counts can be analyzed in a linear regression framework (Goodman 2009), and at 222 
their most complex, advanced fisheries stock assessment models can be built, incorporating 223 
multiple types of data and complex population processes, such as movement and variation in 224 
recruitment (Hilborn and Walters 1992).  Regardless of model complexity, all population models 225 
are capable of estimating the current population size, as well as forecasting future population 226 
sizes (e.g., PVAs for extinction risk assessment).   227 

The key difference between Bayesian and other methods is how uncertainty is treated in 228 
the models.  Goodman talked about the correct calculation of uncertainty (Goodman 2002b, 229 
2004).  Just as we cannot win every bet, we cannot always correctly estimate the true state of 230 
nature.  What we can do on each occasion, however, is to account correctly for what we know 231 
and what we do not know.  Goodman felt strongly that Bayesian methods were the way to do 232 
this, and he did not hesitate to use words like “correct,” “honest,” and “legitimate” to describe 233 
the Bayesian accounting of uncertainty via the rules of probability. 234 
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While classical statistical methods (e.g., likelihood ratio tests, p-values) have been used 235 
to make decisions about natural resource management, there are critical problems in using these 236 
methods, often with arbitrary significance levels, to make decisions.  Small significance levels 237 
(e.g,. α = 0.05) have been shown to over-penalize certain decisions, leading to management costs 238 
that are upwardly biased relative to optimal decisions (Field et al. 2004).  Statistically, because 239 
these classical methods do not generate probabilities of states of nature, they cannot be used to 240 
express the expected utility of management actions.  Because of this limitation, Bayesian 241 
methods provide the only statistical framework that is compatible with decision analysis – both 242 
in the natural resources and other fields (Goodman 1999). 243 
 Translating statistical output from a Bayesian analysis to decisions about natural 244 
resources requires several key elements (Punt and Hilborn 1997, Goodman 2002b).  First, there 245 
must be uncertainty about the true state of nature (e.g., population abundance).  Second, a natural 246 
resource manager must specify a range of discrete management actions.  For harvested fish 247 
stocks, these may involve alternative harvest regimes, and for species of conservation concern, 248 
this may involve various restoration actions or protections.  Third, an expected utility function 249 
must be specified.  The utility function represents the benefit of each action, and must be 250 
expressed in a common currency, such as dollars, biomass, expected catch, species diversity or 251 
relative ranking (Possingham et al. 2002, Burgman 2005), for each management action.  252 
Equivalently, a loss or cost function may be specified as a penalty for each decision (Dorazio and 253 
Johnson 2003).  The fourth component of a decision analysis is the probability distribution of 254 
alternative states of nature (e.g., population abundance, stock biomass).  Given the expected 255 
utility (or cost) of each management action and the posterior probabilities of states of nature, the 256 
utility (or cost) of each management action can be calculated (Hilborn et al. 1994, Punt and 257 
Hilborn 1997).  The majority of Bayesian decision analyses to date have been in a single species 258 
framework, but ecosystem-based management applications may require more complex multi-259 
criteria utility functions (Mendoza and Martins 2006). 260 

 261 
4. GOODMAN’S EMPIRICAL APPROACH 262 

Goodman sought an approach that combined the mathematical rigor of the Bayesian 263 
process with empirical observations.  A central issue is the prior.  Most Bayesian analyses use 264 
“weakly informative” or “vague” priors.  (The term “noninformative” is sometimes used, but all 265 
priors contain information.)  The idea behind vague priors is to minimize the influence of the 266 
prior, so that results depend only on the data for the case at hand.  In a sense, trying to minimize 267 
the influence of the prior does not fully embrace the Bayesian paradigm.  Goodman, who did 268 
embrace the paradigm, advocated using all available data, and that included before-the-fact 269 
comparative data.  This is called an “informative” prior. 270 

With a large amount of case-specific data, the likelihood term in Bayes’ formula can 271 
overwhelm the prior, and the influence of the prior, even an informative prior, is small.  With 272 
sparse data, however, an informative prior can strongly influence the posterior.   To avoid 273 
“running aground on the rocks of subjective probability” (Goodman 2002a), Goodman advocated 274 
that an informative prior should be based, whenever possible, on “an empirical histogram of 275 
comparative information obtained from actual experience” (Goodman 2002b).  Such an 276 
empirical prior should be based on a large number of “similar” cases (Goodman 2004, 2009).  277 
Goodman acknowledged, however, that the construction of such a data-based prior was difficult.  278 
In the next two sections we discuss construction of data-based priors and give an example based 279 
on Steller sea lion spatial use patterns.  280 
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A simple example may help make these abstract ideas concrete.  Suppose we have to 281 
make a decision which depends on the number of dolphins in an area.  There are some data about 282 
the density of animals in the area, but the data are sparse.  Consequently our knowledge of the 283 
number of dolphins is quite uncertain.  What should we do?  One solution is to make the best 284 
estimate we can with the available data from the area, together with an honest reporting of the 285 
large uncertainty.  But another possibility, and one Goodman would have advocated, would be to 286 
bring in comparative data, via the prior, about dolphin density in other areas.  The comparative 287 
data, combined with the local data using Bayes’ formula, should produce an improved estimate.  288 
It is important to note, however, that “comparative” is an imprecise term, and care should be 289 
taken in choosing the data that are used to construct a prior (Goodman 2004) 290 

Bayes’ formula is not the only way to combine previous and current data.  We could 291 
combine a previous estimate of population size and a new estimate by simply taking the average 292 
of the two, for example.  Or we could combine them in some way that weights one estimate more 293 
than the other, say by using the inverse of the variances of the estimates.  Which way of 294 
combining the estimates is best?  Bayes’ formula tells us how to do it in a recognizably optimal 295 
way which is consistent with the laws of probability.  The idea of updating the state of 296 
knowledge with new information is so natural and intuitive that the concept has been repeatedly 297 
re-discovered in various business, military and scientific situations, sometimes without realizing 298 
that it was Bayesian (McGrayne 2011).   299 

 300 
5. METHODS FOR INFORMING PRIORS:  EXPERT OPINION, EMPIRICAL AND 301 
HIERARCHICAL BAYES 302 

Much of Goodman’s work involved examples with limited data.  When case-specific data 303 
are limited, Bayesian analyses can be used to guide decision-makers by incorporating 304 
comparative data to inform prior distributions.  Comparative data may come from multiple data 305 
cases within the same dataset or from a meta-analysis of multiple data sets(Myers et al. 2002).  306 
As the complexity of population models has increased, particularly in fields such as fisheries, 307 
some model parameters may not be estimable for data-limited stocks. In these cases, meta-308 
analyses have been developed for specific model parameters (Liermann and Hilborn 1997, 309 
Helser and Lai 2004, Thorson et al. 2013), and posterior distributions from these meta-analyses 310 
can be turned into priors at different focal levels (e.g., population, species, genus) for the case of 311 
interest. 312 

“Empirical Bayes” methods encompass a wide collection of techniques, all of which 313 
estimate the parameters of the prior distribution (hyperparameters) using non-Bayesian 314 
procedures (Casella 1992).  A simple example of parameterizing an informative prior 315 
distribution through empirical Bayes methods is to equate the mean and variance of the prior 316 
distribution to the sample mean and variance of the data.  While it is possible to use empirical 317 
Bayes methods to construct an informative prior from strictly comparative, not case-specific, 318 
data (Goodman 2004, Gelman et al. 2013), the term “empirical Bayes” often refers to analyses in 319 
which the case-specific data are used both in the likelihood function, and again with the 320 
comparative data, when estimating the hyperparameters (Carlin and Louis 2000).  The word 321 
“empirical” in the phrase “empirical Bayes” describes a method and should not be confused with 322 
our description of Goodman’s “empirical approach”.  Goodman’s use of the term meant that 323 
prior information should be based on data rather than a belief system. 324 

The fully Bayesian method of informing prior distributions is termed “hierarchical 325 
Bayes” (Gelman et al. 2013).  In a hierarchical Bayes analysis, each hyperparameter is itself 326 
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drawn from a distribution called the hyperprior (Figure 2).  The hyperprior is parameterized by 327 
fixed values that are generally chosen to give broad coverage across the hyperparameter support.  328 
This allows the comparative data, rather than the fixed values chosen for the hyperprior, to 329 
contribute the most information to the prior distribution.  Notably, a hierarchical Bayes analysis 330 
can be viewed either as an inference on a single case-specific parameter, with an informative 331 
prior based exclusively on comparative data, or as a joint inference on the hyperparameter, using 332 
all of the data cases together.    Some consider empirical Bayes methods approximations to a 333 
hierarchical Bayes analysis (Gelman et al. 2013), to be implemented when computational 334 
requirements or the format of the available data prohibit a hierarchical analysis. 335 

In agreement with hierarchical Bayes theory, Goodman thought that case-specific data 336 
should be used exactly once (Goodman 2004).  Above all, however, he emphasized the need to 337 
ground the prior in data.  For practical reasons, empirical Bayes techniques might have to be 338 
used, but in these instances the amount of comparative data should be sufficient so that double 339 
inclusion of case-specific data does not influence the results of the analysis (Goodman 2004). 340 
 341 
6. AN APPLICATION TO STELLER SEA LION SPATIAL USE 342 

While the fully Bayesian analysis advocated by Goodman is theoretically sound, 343 
implementation remains challenging due both to limitations of computational power and to the 344 
difficulty in acquiring data or appropriate relationships for priors.  Raw data may not be available 345 
to perform a hierarchical analysis, or it may take a considerable amount of time to gather such 346 
data, even when found in publications.  Appropriate priors can sometimes be found from only 347 
one previous analysis, but those results may be reported without uncertainty.  Oftentimes a data-348 
informed prior simply does not exist.  Expert opinion based on well-thought-out expert 349 
solicitation can aid in building priors (Martin et al. 2005, Choy et al. 2009), but the process can 350 
be time-consuming.  Partly because of such challenges, the practical application of Goodman’s 351 
approach to Bayesian analyses has only just begun, at least in ecology.  Indeed, Goodman 352 
himself had yet to implement fully a hierarchical Bayes model with priors based on data from 353 
similar cases. 354 

 Bayesian analyses that obtain multiple data cases from within the same dataset are a 355 
potentially more tractable way to inform priors with data, and their use is increasing (Cressie et 356 
al. 2009, Ogle 2009).  Although this requires large datasets, priors for one case are derived from 357 
other cases within the dataset.  The following empirical Bayes example, inspired by Goodman’s 358 
teachings, exemplifies how a Bayesian analysis using multiple cases from within the same data 359 
set provides us with answers to important ecological questions. In this example, data were 360 
available across a broad spatial domain, but inference was conducted at a much smaller local 361 
scale. As a result, point estimates of hyperparameters were calculated from the entire dataset, and 362 
the data-driven priors were then combined with the local case-specific data to derive posterior 363 
distributions. Given the large sample size (> 18,000 cases), a hierarchical analysis was not 364 
tractable.  Details of this analysis follow. 365 

In April 1990, National Marine Fisheries Service (NMFS) listed the Alaska Steller sea 366 
lion (Eumetopias jubatus) as Endangered due to a rapid and dramatic decline in abundance in the 367 
western portion of its range (75% decline over 14 years). NMFS decided in 1997 to split the 368 
species into two distinct population segments (Western and Eastern DPS, divided at 144°W) 369 
based on further declines in the western region, as well as information about genetic and 370 
morphological differences between the populations. Increasing numbers in a large portion of the 371 
range led NMFS to delist the Eastern DPS in October 2013, whereas in some areas the Western 372 
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DPS continues to decline (NOAA 2013).  The Steller sea lion was a species on which Goodman 373 
attempted to put his ideas into practice (Himes Boor and Wade 2015). 374 

Understanding the distribution of the Western DPS is of paramount importance when 375 
determining critical habitat and potentially limiting fisheries activities in response to the needs of 376 
the sea lions. Until recently, critical habitat had been mostly determined via satellite telemetry 377 
data. While the telemetry data were comparatively rich (n = 302), those data did not represent all 378 
age classes or sexes equally nor cover the extensive range of the Steller sea lion (Himes Boor 379 
and Small 2012).  Using an empirical Bayes approach, Himes Boor and Small (2012) were able 380 
to quantify Steller sea lion relative spatial density using platform of opportunity (POP) data that 381 
covered extensive ranges of the Pacific Ocean and was not selective with respect to age or sex. 382 

The POP data analyzed in Himes Boor and Small (2012) were assembled by NMFS and 383 
spanned years 1958 – 2000.  The data represented standardized records of marine mammal at-sea 384 
sightings from many types of survey platforms (vessels, aircraft, shore) and by observers with 385 
varying degrees of training. While data were well vetted for quality control, two analytical 386 
challenges presented themselves. First, effort was never recorded, so data were not available for 387 
cases where an observer was looking in an area, but no animals were seen. Second, surveys were 388 
not conducted in a systematic format, with some areas receiving frequent visits by opportunistic 389 
platforms, and other areas few or none. 390 

To address both issues, Himes Boor and Small (2012) divided the North Pacific Ocean 391 
into 15 x 15 km cells and limited their analysis to cells with any marine mammal sighting 392 
records (not just Steller sea lions).  A sighting within a cell indicated some form of effort 393 
occurred in that cell (N = 18,321).  Each cell could have sightings from multiple platforms and/or 394 
multiple days, called platform-days. From these data, the posterior distribution of Steller sea lion 395 
encounter rate (number of animals seen per day, y) was estimated for each cell j with i platform-396 
days.  The likelihood is a negative binomial distribution on data yj with unknown parameters mj 397 
and kj. 398 
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where n is the number of platform-days. The number of platform-days varied by cell, between 1 399 
and 236.  To build an informative prior for mj, which represents the mean of the negative 400 
binomial distribution, Himes Boor and Small (2012) calculated the mean encounter rate for each 401 
cell 402 

𝑦𝑦𝚥𝚥� =
∑ 𝑦𝑦𝑖𝑖𝑗𝑗
𝑛𝑛𝑖𝑖
𝑖𝑖=1
𝑛𝑛𝑖𝑖

 , 403 

and fit a gamma distribution to the histogram of the mean encounter rates across all cells. The 404 
parameter values from the fitted gamma distribution were used as the hyperparameters of the 405 
gamma prior. To create a prior for the negative binomial dispersion parameter kj, the authors 406 
calculated the method of moments estimate (MME) across all cells (𝑘𝑘�), and used it as the mode 407 
of a gamma distribution prior 408 

𝑘𝑘� = 𝑌𝑌�2

𝑆𝑆2−𝑌𝑌�
, 409 

where 𝑌𝑌� = 1
𝑐𝑐
∑ 𝑦𝑦𝚥𝚥�𝑐𝑐
𝑗𝑗=1   ,  𝑆𝑆2 = 1

𝑐𝑐
∑ �𝑦𝑦�𝑗𝑗 − 𝑌𝑌��

2𝑐𝑐
𝑗𝑗=1 , and c is the total number of cells. The variance of 410 

the gamma distribution was set to 100 to allow for the wide range of values for kj calculated in 411 
the individual cells j for which the MME could be obtained. This led to prior distributions of the 412 
negative binomial parameters mj ~ Gamma(α=0.0216, β=0.0396) and kj ~ Gamma(α=1.001558, 413 
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β=0.1), and the parameters of interest were mj.  In cells with few platform-days, i.e., few data, 414 
posterior distributions of encounter rate estimates were similar to the prior (Figure 3).  In such 415 
cases the use of a well-informed prior was particularly advantageous. 416 

Results indicated that while current delineations of critical habitat do encompass areas of 417 
high sea lion encounter rates, many high encounter rate areas are not defined as critical habitat 418 
(Figure 4).   This analysis provides an excellent example of using empirical Bayes methods to 419 
approximate a hierarchical Bayes analysis when computational requirements made the latter 420 
intractable.  Notably, the large sample size (>18,000 data points) that complicated the use of a 421 
hierarchical analysis also made results of the empirical analysis robust to using both the case-422 
specific data and the comparative data in estimating the gamma hyperparameters.  In other 423 
words, the contribution of the encounter rate observed in any particular cell to the prior 424 
distribution would be negligible given that the prior was determined by >18,000 values.  In 425 
addition, a hierarchical Bayes analysis would not have changed the important result that potential 426 
areas of high sea lion use were outside the boundaries of defined critical habitat.  The 427 
informative prior was specifically useful in identifying potential critical habitat in areas where 428 
sampling was not as frequent.  Without the informative prior, posterior uncertainty in encounter 429 
rates in these regions would have been higher, providing less information for the decision-430 
making process. 431 
 432 
CONCLUSIONS 433 

In this document we, as Dr. Goodman’s students, have tried to summarize his thoughts 434 
about how Bayesian statistics should be used for risk assessments and for making decisions for 435 
natural resource management.  For all of us, Goodman influenced the way we think about and 436 
use Bayesian methods for the analysis of ecological data.  We hope that this article may inspire 437 
some readers to consider Bayesian statistics as a useful and viable approach in risk assessment, 438 
ecology and other fields. In Goodman’s view, Bayesian statistics was the only legitimate way to 439 
deal with uncertainty, correctly and honestly.  440 
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 449 

 450 
Figure 1. Web of Science citations with “Bayesian” and either “ecology” or “fisheries” in the 451 
title, abstract or keywords, 2000-2013. 452 
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 454 

 455 
Figure 2.  Hierarchical Bayes set-up.   Each data set, yi, is generated by a case-specific 456 
parameter, θi. Each parameter, θi, is drawn from a prior distribution governed by a 457 
hyperparameter, µ, and µ is drawn from a hyperprior distribution governed by fixed values. 458 
 459 
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  461 

 462 

Figure 3. Posterior distribution of mean Steller sea lion encounter rate given different number of 463 
platform days: a) one platform day with two sea lion sightings, b) 180 platform days with 345 464 
sea lion sightings. Orange line indicates the point estimate of encounter rate. Red lines are 465 
posterior modal values, and blue lines bound the 95% posterior interval.  466 
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 468 

Figure 4. a) Sea lion sightings (red dots) and marine mammal sightings without sea lions (gray 469 
dots) from platform of opportunity data. b) posterior modes of sea lion encounter rate for each 470 
grid cell.  471 
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