
FLIP: an Internet protocol for flat labels

In recent years the increasingly frequent use of the Web service, the advent of the cloud

computing, the exponential growing of mobile devices with the introduction of pervasive

and ubiquitous computing and the emergence of extreme distributed systems have

brought to light the problem of the no longer adequate distribution of data packets over

Internet and the related IP protocol issues. This paper promotes flat labels as a real

alternative to IP addresses for a future Internet architecture and proposes FLIP as first

network layer protocol for flat labels. Among several features absolutely not existing in IP

protocol, FLIP has a native support for crypto-currencies.
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1. INTRODUCTION 

<< No one knows the future, then you have to be ready 

for anything >>. With this sentence I would explain in 

two lines my membership at the school of thought 

favourable to general purpose architectures. My theory 

is that a future Internet architecture must preserve the 

attributes of independence and decentralization and 

lend itself to any kind of utilization that will be 

universally accepted as the current one; only after you 

have ensured that, it will be possible to improve 

performance, increase security, add new features and 

do anything else that might help and/or be innovative. 

Second school of thought is the one that comes closest 

to my theory on a global network infrastructure in a 

first time universally accepted and only in a second 

time performing, secure and innovative. FLIP (Flat 

Labels Internet Protocol), ROFL, Disco [13] and 

similar ones catch almost fully its axioms but before 

writing about them it’s better to introduce the two 

schools of thought, some of the major researches and 

related projects, and GVN [2] as possible “vehicle” for 

an easy large scale experimentation of many of these 

studies. 

1.1 The first school of thought looks for points where 

the actual Internet Network should be strengthened 

because most commonly used (Web content files 

sharing through P2P, mobile devices, etc.), and offer 

high performance architectures specifically for the 

above steps. Among the existing proposals, in this 

paper I cite CNN and CONET, both adopting division 

between identity and location. CCN (Content Centric 

Network [3]) is about content names routing and is 

very performant in terms of contents access speed. 

Content security also is remarkable even considering 

that CCN is actually a stack of protocols and security is 

postponed to a different layer from the network layer 

(the only one having to be universally acknowledged), 

called security layer; the strategy layer instead deals 

with the optimization of connections based on changes 

of some conditions (very useful for mobile devices). 

CCN stack can be layered over any other layer, 

including IP; its modus operandi is relatively simple: a 

request is forwarded from one node (Interest packet) 

through routers and you have an answer (Data packet, 

the requested content) that during the return path is 

stored in very large caches by routers as they consider 

beneficial to do so. CCN is a complex high-

performance architecture for findability of contents but 

requires huge hardware resources considering the size 

of the cache requested from each router; some ISPs 

may not endure so cheaply expensive investment and 

that can make the "new Internet" not for everyone. To 

work around this problem, CONET [4] introduces a 

template named "Lookup and cache" that allows the 

various cache sizes of routers to be reasonably reduced 

by splitting the entire domain architecture and by 

providing a centralized cache update engine for each 

domain, exclusive to the same routers. There are some 

possibilities to implement Lookup and cache such as 

making it depending on a naming service or building it 

on the basis of a protocol similar to BGP or OSPF; the 

first of these two examples of implementation seems to 

be the most popular and, if so, in the future the CONET 

would become an architecture depending on the 

authority of a service. In relation to the above 

described condition whereby a universally accepted 
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worldwide network should be independent of any 

centralized authority the question of success or 

failure of a proposal as stated above does not depend 

on the performance or the number of added features: in 

this specific case, if a naming system will act as engine 

for the Lookup and cache then you might meet several 

political problems as for example: 1) a domain with its 

centralized engine might prevent or restrict any 

communication from or to another domain for political 

reasons or for a choice of single administrator of the 

engine; 2) the authority that would manage the naming 

system, even if internationally, might impose payments 

as already happened for the DNS; 3) you could meet 

the implementation of other parallel naming systems as 

engine in certain domains splitting up so the Internet in 

several "non-interconnected networks". Still looking at 

CCN and CONET, it’s to note that being mainly 

directed towards a name based architecture, they 

provide for the names mutable semantics, and this 

could be a problem for a global agreement, for 

example, on which characters admit and which are not 

in namespace syntax (and this is a problem for a 

routing that depends in part or totally on names, while 

it is not so for simple name resolution). In addition, 

both proposed architectures do not have a well-defined 

transition from the old to the new architecture, and that 

could be an obstacle to the effective globalization of 

each since it will not be very clear to you whether 

investing on a new architecture will give up the old but 

pretty well working one. Collecting the peculiarity in 

common to all proposals in the first school of thought I 

might add that most of them are not designed for point-

to-point communications, and the latter, though still 

implementable, would be very inefficient. Voluntary 

exclusion of point to point communication precludes 

the possibility of architecture to be general purpose; 

both CCN and CONET for example do not allow not 

publishing nodes to be accessed from other nodes to 

start any data streaming. A acceptable solution in my 

opinion and belonging to this school of thought is that 

you should not change the current architecture (based 

on IP routing) but concentrate instead on improving the 

HTTP protocol, in such a way as not to affect the true 

soul of the Internet and at the same time as to approach 

a network based on content; the idea of improving the 

Web protocol (called "Narrow waist of the future 

Internet" [5]) is probably a good compromise for those 

who see in the ICN (Information Centric Networking) 

the right answer but still want the characteristic of 

general purpose, not introducing a new architecture but 

by improving the existing one. Table 1 shows a 

summary of the new architectures I’ve just quoted, 

related (in order): 1) to the existing three fundamental 

characteristics, 2) to the new fourth one, 3) and to other 

non-critical ones. 

 

 CCN CONET 

Decentralized Yes Maybe: it 
depends on the 
engine 
implementation 
(centralized in 
each domain?)

Does not relay 
on centralized 
authority 

Yes Maybe: it 
depends on the 
implementation 
(NS, BGP, etc.)

General 
purpose 

No: 1) Not publishing nodes 
aren’t contactable to start a data 
streaming; 2) there aren’t other 
service except the content 
accessing one 

   

Gradual 
migration 

No No 

   

Secured Yes: using 
security layer 

Yes 

Pro mobile Yes: using 
strategy layer 

Yes 

Normal 
amount of 
resource 
requested 

No: router 
caches must be 
very large 

Yes 

Not mutable 
address 
semantic 

No if it is 
name based

No if it is name 
based

Native crypto-
currencies 
support 

No No

Communication 
between 
network with 
different 
technologies 

No No

Table 1: Comparison between some proposed architecture of the 

first school of thought. 

 

1.2 The second school of thought instead incorporates 

architectures designed for general purpose without 

privileging in any way their contents. To speak about it 

I’ve chosed ROFL and Internames, two elements in the 

collection that I think are the best. Internames [6] is the 

architectural model that, as we’ll see, more approaches 

FLIP: in that 1) each name is used to identify all 

identities involved in a communication (e.g. content, 

users, both physical and logical devices, etc.); 2) the 

identities are separate from the location being so really 
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mobile friendly; 3) there is a communication between 

different network technologies; 4) it is provided for a 

gradual migration from current IP-based technology. A 

perhaps negative note, always according to my theory, 

is to be reported for the necessity of a powerful name 

service called NRS in Internames. The dependence on 

the authority that manages that service, for some of the 

reasons already expressed in the case of CONET with 

its centralized engine, may assign this architecture a 

potentially approval rating equal to zero for some 

users. FLIP instead, whether layered on IP or on a flat 

label based protocol (ROFL, VRR [14], Disco, etc.), is 

only optionally supported by an ad hoc name service 

(see next paragraph) and that support does not affect 

packet routing or the full efficiency of one (i.e.: IPv4) 

or another (i.e.: ROFL) underlying architecture: the 

name service is only a second and faster choice in 

solving answers already available in first but slower 

choice using P2P network communication primitives 

that FLIP could implement. In addition, unlike 

Internames FLIP is not name based, but uses flat labels 

with unchanging semantics acting as addresses for its 

resources. ROFL and Disco do routing on flat labels 

too: ROFL suffers of the relatively large cache problem 

in routers, but the average size needed (host identity 

cache) is not comparable, because asymptotically lower 

(O (n) where n = "host" expected value), to the one 

necessary to CCN (O (n * m) where m = "expected 

value of content in a host"); Disco, instead, with its 

compact routing has very smaller states (authors of 

[13] analyze a state in terms of the number of entries in 

the protocol’s routing tables [13]). FLIP may instead 

suffer of excessive size of the cache for its routing 

based on resources (flat labels as not only hosts 

addresses like in ROFL) and its expected value would 

be asymptotically greater than CCN: O (n * m * (R-

m)), where R is the expected value of resources that 

include contents, published services, the amount of 

available hardware, and everything else is definable as 

resource for an user; this is why FLIP is optionally 

supported by a name service that can attach to any flat 

label any kind of metadata (including useful 

information regarding routes). An alternative or 

complemental solution to a name system is a smart 

partitioning system to store R between FLIP nodes, like 

Dynamo (see next) to provide an high availability of 

such data. Returning to ROFL, the only negative note 

is that it does not support a gradual migration from 

the current Internet architecture, which, in this case, 

might not provide any liking by some users. Table 2 

summarizes how the just described architectures of the 

second school of thought "approach" to the true soul of 

the Internet; as you can see only FLIP layered over a 

flat names based protocol like ROFL (or layered 

over IP) possesses all the requirements to be 

universally accepted among those cited, because 1) 

decentralized, 2) independent from authority, 3) 

designed for general purposes and 4) prepared for a 

gradual migration (the latter is the only characteristic 

that such flat label based protocols are missing and that 

maybe makes them only a fantastic utopia). 

 

 Internames ROFL, 
Disco 

FLIP 
(in 

GVN) 
over 
IPv4 
using 
Dyna
mo 

FLIP 
on 

ROFL, 
Disco 

Decentraliz
ed 

Yes Yes Yes Yes

Does not 
relay on 
centralized 
authority 

No: it 
depends on 
NRS 
authority

Yes Yes  Yes

General 
purpose 

Yes Yes Yes Yes 

     

Gradual 
migration 

Yes No Yes Yes

     

Secured Yes Yes, using 
asymmetric 
cryptography (a flat 
label is a public key 
too)

Pro mobile Yes Yes No Yes

Normal 
amount of 
resource 
requested 

Yes Yes Yes No, 
if not 
suppo
rted 
by a 
name 
servic
e

Not 
mutable 
address 
semantic 

No Yes Yes Yes

Native 
crypto-
currencies 
support 

No No Yes Yes

Communica
tion 
between 
network 
with 

Yes No Yes Yes
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 Internames ROFL, 
Disco 

FLIP 
(in 

GVN) 
over 
IPv4 
using 
Dyna
mo 

FLIP 
on 

ROFL, 
Disco 

different 
technologie
s 
Table 2: Comparison between some proposed architectures of 

the second school of thought. 

 

2. OVERVIEW 

As I said, I am convinced that a flat labels based 

protocol is the right way in order to start and end a 

complete redesign of the architecture of Internet 

with the consensus and the interests of all its users, 

without exclusions. The difference, however, between 

a beautiful utopia and a new reality in this case is 

binary and Internet could be moved from 0 to 1 by 

implementing gradually the FLIP protocol before on 

IPv4, IPv6, and then on flat labels architectures. Now 

let’s see FLIP Protocol applied to two different 

architectures using GVN before over IP (as a 3.5 layer 

level) and then, only theoretically, over ROFL. In the 

end, I’ll discuss about FLIP and GVN layered over 

Disco, that is a very performant flat labels compact 

routing and maybe the final target of a complete 

migration from IPs addresses to flat labels ones. 

2.1 A model of Generalized Virtual Network. The IP 

protocol is not designed to allow the layering of the 

protocols and services, so successful applications have 

approached the overlaying to overcome this limitation 

(e.g. Skype, CDNs, P2P file sharing system, etc.). The 

GVN began as an institutionalization of cross layer 

and overlay networking to facilitate a simple and 

efficient way to find the necessary information in the 

packet header, instead of conducting a thorough 

inspection of the protocol; the interesting thing is that it 

is completely independent from the under laying 

protocol (i.e.: IP) and from all previous lower level 

ones proving in the occasion a potential layer 2.5 level, 

good for a transition from the old Internet architecture 

to any new one. With these features, GVN allows the 

coexistence of different architectures (or, more in 

general, process logics) by assigning a process logic 

number (p.l.n.) to each of them: a logic or logical 

process, most suitably programmed as kernel modules 

and present in each GVN capable node, assures the 

node can handle the architecture (also experimental) 

chosen by the user; each GVN node can upload logic 

modules chosen by the owner of the node that manage 

data flows of new protocols without having to 

problems with the underlying architecture, such as 

IPv4 and IPv6. The best feature according to my 

opinion is that not GVN aware nodes simply manage 

the packet with the GVN header like other packets of 

its architectures (i.e.: IPv4 packets) making possible 

that a GVN packet can pass through not GVN aware 

nodes to reach a GVN aware one.  

 

Process Logic number

PL specific header

Fragmentation (optional)

PL spec. pre-header (opt.)

Length Next header Flag

 

Figure 1: the header of Generalized Virtual Network 

 

Besides the fact that all logics can be programmed 

freely, GVN also provides a library of functions to 

interact with GVN data streaming without having to 

worry about place them in layer 3 or lower protocols; 

FLIP uses this library that one of the keys of its gradual 

migration: there will be no work to do to pass to a new 

architecture (ROFL, Disco, etc.) that will provide the 

same GVN library. About process logic, FLIP uses 

p.l.n. 2006 with two specific process logic pre-headers 

to divide its inter-architectural GVN incoming packets 

(i.e.: from IPv4 to ROFL) from intra-architectural ones 

(i.e.: from IPv4 to IPv4): the firsts will be moved to a 

different network device of the receiving node (that in 

this case act as a gateway between two different 

architectures, see below) while the seconds will be 

managed because arrived to the effective end-node. 

Figure 1 shows a GVN header. The fragmentation 

field has been a my co-working experience with GVN 

team because while developing FLIP primitives I 

noticed that a real FLIP packet was often greater than 

common 1500 bytes MTU of Internet: needing 

fragmentation, I helped the team to develop it on GVN 

instead. The fragmentation field now let FLIP and 

whatever other protocol to have packets length great 

enough. Thanks to GVN each FLIP node won't have to 

worry about the architecture on which "will travel" its 
PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1749v1 | CC-BY 4.0 Open Access | rec: 16 Feb 2016, publ: 16 Feb 2016



protocol because it will be totally transparent. 

2.2 FLIP over GVN routing on IP. Is it a gamble to 

give the pillars of Internet, the IP addresses, some 

features remotely attributable to elements that are part 

of the peer-to-peer architecture? We note that each IP 

address is "equal" to other addresses; no one exists, 

either IPv4 or IPv6 address, which has an influence of 

any kind on the other of the same version. 

Unfortunately, IP addresses do not provide separation 

between location and identity, so any device identified 

with one of them is forced to change its ID every time 

it travel between geographically distant areas (i.e.: the 

smartphones). In a complete vision of pervasive 

computing and ubiquitous computing not only each 

device should be able to retain their own identity 

regardless of its location, to communicate with any 

other and wherever it is without any intervention, and 

to provide every service that the rest of the devices 

offer, but the concept of "reachable host" should 

embrace more than a single category, the devices one, 

and should expand itself to user contents or, more 

generally, user resources. Thanks to the flat labels, 

FLIP uses addresses suitable to peer-to-peer based 

architectures, allows the separation of identity and 

location, offers autonomy and dispenses the needed 

primitives to allow each device to provide those 

resources that the rest of the devices provide. Its three 

main objectives are: 1) aiding the migration from IPs 

to flat labels addresses 2) ensuring since fourth or 

equivalent OSI level a transparent asymmetrical 

encryption, always active and not constrained to a 

single subset of algorithms; 3) providing an on-

demand payment system for data transfer with every 

crypto-currency. The first goal is achieved thanks to 

GVN that will easily support FLIP on IP and will 

provide its libraries for the destination flat label 

architecture. On IP, each FLIP node (peer) allows you 

to  associate a fixed-length numeric address (flat 

label, that is also a public key) to each IP address in a 

dynamic way (associated IP can be changed on 

demand); different speech you will do for destination 

flat label architecture where the dynamic association 

“FLIP address” <-> “flat label destination address” 

may be not necessary (that’s because both may be the 

same). Inside and outside IP, each flat label is managed 

by a peer-to-peer network implemented by FLIP 

primitives. The primitives will then assign to each 

entity an unique alphanumeric public address and a 

secret (private) key. Device, users, files, other data 

structures, etc. will possess a pair of public and private 

keys and packets sent from a public address to another 

will be always encrypted with the secret address 

(private key) of the sender, ensuring that each packet 

received should have been definitely sent (because 

signed) from anything else apart from the sender and 

thus satisfying the second target (there will be no more 

need for SSL, HTTPS, SSH, etc.). As regards the third 

goal, however, it is my opinion that the birth of crypto-

currencies was a real revolution for the Internet, 

perhaps having greater importance than Web 2.0 and 

social networks; the potentials hidden behind crypto-

currencies are not only of economic nature and FLIP 

use one of these: a low (or network) level 

manageability of transactions. With FLIP is possible to 

send and receive packets after having sent or 

received money; it is a payment that can be made at 

protocol level and this is to say that: sent (or received) 

packets carry money. FLIP primitives implement the 

transfer of a string which is the result of a series of 

hashes and digital signatures used in crypto-currency 

technology; this string represents a payment transaction 

and its destination will insert it in the last block of the 

chain strings of the crypto-currency used and propagate 

it to all the other clients who will in turn add it on top 

of the last block of their copy of the chain (Figure 2), 

thus providing a computationally difficult not 

refutability of the payment sent by the sender. 

  

In addition to these three main objectives, FLIP offers 

other important features: as mentioned above each 

entity (resource) has an alphanumeric address; even the 

entity types are definable in an abstract manner by 

the user and can be identified and published: the user is 

not limited to a little group of entity-types such as 

device, users, files or content, but can if necessary 

create a resource type X with alphanumeric address K 

and another one can find it on the network by 

identifying it with K. An example among thousands 

ones of the relevance of this potential (the only limit is 

Figure 2: Chain template blocks of a crypto-coin. Every client of 

crypto-coins has a copy. On FLIP viaggerebbe the last rectangle 

"transaction" for each new payment.  
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the imagination) could be the resource type X: 

”computing power hired for the program P” where P 

is in turn identified as a resource; the user who will run 

the program P can do a search through the P2P FLIP 

network for resource type X, or between all nodes that 

offer (paid or not) computing power for P and choose 

between the found resources most advantageous ones. 

For each type of resource created the primitives will 

create a new P2P DHT (in case of DHT based 

primitives). FLIP also offers the chance to "bypass" the 

firewalls (at network level, not at HTTP protocol level 

as [5] does) because active encryption makes the 

sender always identifiable: a user can send packets 

signed with his private key instead signing them with 

the private key of the device that he uses (ubiquitous 

computing), making his data flow recognizable by 

firewalls that will enforce or not appropriate policies. 
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Figure 3: FLIP over GVN (over  IP). 

 

Figure 3 shows FLIP protocol over GVN layered on 

the version 4 IP protocol. For a correct usage of the 

protocol following is needed: 1) a set of clients (peers), 

each of which can act as a source, destination, 

publisher of resources and gateway; 2) a set of 

gateways that are responsible to communicate between 

two different network technologies; 3) finally, although 

optional, the set of name servers: suitably programmed 

(one among many: FNS [9]), they maintain “FLIP 

address” <--> “domain name” matches and “FLIP 

address” <-> “network address” matches and accelerate 
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operations of FLIP gateways. Closing the IP address 

speech, it is important to note that existing routing 

functions are not affected in any way prior to migrating 

to destination flat label architecture. Now I’ll show the 

description of the most important fields that make up 

the protocol of course independent from the different 

packet based communication technologies: 

 Header length: FLIP header length (in 

words) 
 Algorithm length: length of the input string 

of the chosen asymmetric encryption 

algorithm (in bytes). 
 Join (J) Flag: if set to 1 it asks the target node 

to join the network. 
 Proof Request (Q): if set to 1 then a proof is 

required from the destination. For example, 

such proof can be requested as identity 

evidence of a node that attempts a Join, or to 

authenticate a query that will update a record 

in a name server, or an user to bypass a 

firewall, etc. 
 Proof Flags Response (S): if set to 1 it 

declares that the FLIP packet contains the 

proof requested. 
 Leave (L) Flag: if set to1 then the source tells 

a client or a server name that is going to leave 

the network. 
 Flag Resource Request (RQ): this can be set 

to 4 values: 

o 00: no request 

o 01: a response is required from nodes 

that are more close and from which 

you can take advantage for the 

resource that follows the FLIP header 

(in DATA section) 

o 10: the node is responding as a 

possible beneficiary of the requested 

resource in the DATA section 

o 11: reserved for future purposes 

 Payment Session Flag Type (PST): this can 

be set to 4 values too: 

o 00: no payment request. 
o 01: time based. Payment will be 

required at equal time intervals. 
o 10: now. Payment is required now. 
o 11: on demand. Payment will be 

required several not specified times 

(by setting this flag to 10 every time 

it is needed). 
 Algorithm Type Flag (A) : kind of 

asymmetric cryptographic algorithm used. 
 Crypto-currency code: crypto-currency code 

used for transactions (e.g.: 01: Bitcoin, 02: 

Litecoin, etc.) 
 Gateway address: 1) the gateway to reach the 

next gateway to the destination, 2) or the 

destination itself if no gateway is required. 
 Proof. Phrase: a random string that is 

encrypted with the private key of the source 

and that will be signed by the destination with 

its private key and then returned to the source 

in the same field. 
 Payment. Address: the address of the e-

wallet to which send the payment. 
 The payload (DATA Section): all data in this 

area are encrypted with the private key of the 

sender (whether it is a device, a user or 

otherwise). 

 

2.3 FLIP over GVN routing on flat labels. FLIP 

would be the first communication protocol to use flat 

labels based routing; migration from IP routing to 

Disco for example would simply carry a next 

generation Internet in our everyday life: before 

reaching this final step, let’s consider a not efficient but 

interesting predecessor of VRR and Disco in order to 

have an exact idea of what is really meaning routing on 

flat labels: ROFL. Although not being a high-

performance architecture according to some studies 

[10], ROFL (as Disco does too) preserves all three 

fundamental characteristics described in the previous 

paragraph and with FLIP is able to guarantee fourth 

(slow migration) still required; however, there are 

some aspects in ROFL and Disco that should be 

modified to solve redundancy problems or to improve 

performance. Access control, for instance, can be 

managed both by ROFL or Disco routers or at network 

level by FLIP; a risk/benefit ratio to delete the access 

control from the architecture (that could not be 

removed from the protocol because it is needed by the 

migration from IP) could be therefore evaluated. In 

terms of performance it is also important to modify 

ROFL or Disco so that routing can be done on all 

resource IDs and not only on the IDs of the various 

devices; to do this, each router should have as many 

DHT as the types of existing resources in FLIP giving 

so rise to what I'd call multi-dimensional routing 

where for each resource type (dimension) there are 

some defined routes. A practical example is feasible 

thanks to the difference between user resources and 

device resources: as already mentioned device IDs are 

not related to the IDs of the users, and a user can 

geographically move himself and be accessible via the 

address of another device (in this paper ID, public 

address and flat label are synonyms). In the scenario 

only routes of user resources change because one of the 

lasts has moved; routes of device resources and their 

DHTs remain unchanged. Finally, in the context of the 

problems to be solved about FLIP over both ROFL or 

Disco, a key issue could be the temporary mismatch of 

elements of a given DHT in FLIP with the 

corresponding element in ROFL or Disco; in fact, 

applying the multi-dimensional routing both to FLIP 
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and to the flat label based architecture in case of failure 

of a device, an element may be temporarily present in 

one and absent in the other until both will report the 

failure. 

 

3. FLAT LABELS 

Flat labels are bit strings of variable and finite length. 

Unlike in IP addresses, their variable size allows an 

additional flexibility for DHT-based architecture or 

protocol that uses them (e.g.: ROFL, VRR); this 

flexibility belongs to the use of hash functions that 

"normalize" the size of the flat label to one length 

while retaining the uniqueness, thus making them 

usable in DHTs. With regard to safety and in order to 

maintain a level of the latter almost equal to that 

provided by the symmetrical one, asymmetrical 

encryption requires much longer keys sizes: in 2003 

the RSA stated that a 1024-bit asymmetric key is 

equivalent to an 80-bit symmetric key; a 2048-bit 

asymmetric key is equivalent to a 112-bit symmetric 

key and 3072-bit asymmetric key is equivalent to a 

128-bit key. RSA recommends using at least a 1024-bit 

asymmetric key if you plan to keep your documents 

safe until 2010 and use a 2048-bit asymmetric key if 

you want to secure documents until 2030; the 3072-bit 

asymmetric key is suitable for documents that should 

remain confident beyond 2030. A NIST document 

defines an asymmetric key of 15360-bit equivalent to a 

256-bit symmetric key. As a result, each FLIP packet 

could have larger IP packets sizes in order of several 

kilobytes, since the protocol has three fields that 

contain flat label: popular 1500-byte limit is exceeded 

only by the overhead (so without payload) and this 

could be a problem for networks with relatively low 

MTU (e.g. Ethernet) to divide the IP packet containing 

FLIP in multiple frames. The use of GVN solves the 

problem highlighted thanks to its transparent 

fragmentation feature: everyone can send and receive 

big FLIP packets without warring about fragmentation. 

Using FLIP, the network would manage variable sized 

addresses according to the size of asymmetric key 

used: the safer must be the FLIP payload, the longer 

will the address, the more computing capacity and 

bandwidth will be needed for those who want to take 

advantage of that. From the perspective of a complete 

migration to Disco anyway, the size of a new version 

of the protocol should be reduced because it will no 

longer require the next gateway field. For simplicity in 

this paper I will use, where not otherwise specified, to 

1024-bit FLIP addresses and the asymmetric 

encryption algorithm will be RSA. The only limit to 

the FLIP protocol based on DHTs with asymmetric 

cryptography is the choice of the length of the resulting 

string of the hash function and the type of DHT to be 

used for the main DHT: once you have made these 

choices, they can no longer be changed. 

 

4. ROUTING ON IP 

The heart of the flat label system that uses current 

routing Internet architecture is the DHT of standard 

labels which includes the addresses of hosts and users, 

named main DHT; algorithms for handling it are those 

of Chord [11] with some editing. The choice fells on 

Chord because it is the most commonly used and its 

maximum number of hops, although not optimal, is 

O(log N), where N is the total number of flat labels: 

however, it is not difficult to use other topologies of 

DHT. This chapter will explain through intuitive codes 

written in pseudo-c++ the various ways to take 

advantage of the potential of FLIP; the first 

demonstrations that follow relate to the management of 

the main DHT. 

Algorithm 1. Aggregation of a node n connected to the 

Internet with FLIP address fl_addr and IP address 

ip_addr having an already known node n1. (Pseudo-

code) 

 n = new Node(hash(fl_addr)); 

 n.ipaddr = ip_addr; 

 n.flipaddr = fl_addr; 

 n.join(n1); 

 updateNS(); //optional 

The first algorithm shows the connection of a FLIP 

entity (a host, an user, etc.) to Chord ring: to be an 

element of the ring the node must have a key that is the 

result of a hash function, which in this case is applied 

at the FLIP node itself. The join, stabilize, notify and 

fix_fingers functions belong to the upgraded version of 

Chord for the managing of concurrent operations and 

network errors [11]. The function updateNS() updates 

the records in the name system by connecting to a 

name server with an already known FLIP address; 

updating records can publish both only the aggregation 

of the node, or even the election of it as gateway (see 

below): all these operations are carried out using 

asymmetric encryption that guarantees the identity of 

involved nodes. 

Algorithm 2. Pseudo-code of the changes in stabilize() 

function of Chord. 

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1749v1 | CC-BY 4.0 Open Access | rec: 16 Feb 2016, publ: 16 Feb 2016



 x = successor.predecessor; 

 if (x  (n, successor)) 

o rndstr=n.crypt(random-string, 

n.PRIVATE_KEY) 

o proof = x.crypt(x.decrypt(rndstr, 

n.fl_addr), x.PRIVATE_KEY); 

o if (random_string is equal to 

n.decrypt(proof, x.fl_addr)) 

 successor = x; 

 successor.notify(n); 

 notifyNS(); //optional 

The main DHT is the first element of FLIP to use 

asymmetric encryption: algorithm 2 is a modification 

of the stabilize() function of Chord where a node n 

authenticates another node x before setting it as his 

successor. Authentication is performed with the classic 

style of asymmetric cryptography i.e. requiring the 

signature (proof) of a string, that is randomly generated 

(random_string) and then encrypted by the 

authenticating node n, from the authenticated node x 

that uses its private key (x.PRIVATE_KEY) to sign it. 

In this example the two generic functions: crypt() and 

decrypt() represent the ideal mechanism for signing 

and signature verification in asymmetric cryptography. 

If the signature decrypted with public key (i.e. with the 

FLIP address) of the node to be authenticated will 

correspond to the randomly generated string then 

authentication will success. The last function, 

notifyNS(), asks to a server name with already known 

FLIP address to authenticate the node x and possibly 

update the record (a failure may be noticed); this single 

function delegated to the server name the responsibility 

to verifying the existence and authenticity of node x, 

and optionally to change or to add the record; on 

multiple requests in a short period, the name server 

may decide, for example, whether to run all these tests 

or just the first one, or discard each of them. 

Algorithm 3. Pseudo-code of the changes to notify() 

function. 

 if (predecessor is nil or n1  (predecessor, n)) 

o proof = n1.crypt(random-string, 

n1.PRIVATE_KEY), 

o if (random_string is equal to 

n.decrypt(proof, n1.fl_addr)) 

 predecessor = n1; 

Algorithm 3 implements the same modification used 

for the authentication of a node but in this case it is 

applied to the notify() function of Chord. This modify 

is expensive in terms of bandwidth overhead and of 

computing capacity but necessary and sufficient to 

certify the identity of the main entities of the ring; for 

greater security, however, you might consider the 

possibility to apply it also to the fix_fingers() function 

of Chord with the cost of a further reduction of the 

above resources. Now, returning to main DHT protocol 

usage I will do an example written in a pseudo-C++ 

style code that relates to the authentication request that 

a node sends to another one; please considered it purely 

indicative because programming style is personal and 

combinations of the instructions necessary for the 

implementation of a function may be manifold. 

Pseudo-code 1. Code written in pseudo-c++ of a 

function that uses the FLIP. This example function 

shows a node n while creates and sends a FLIP packet 

to authenticate another but already known node n1, and 

then awaiting for reply. The node n has only an IPv4 

address (in addition to FLIP address) as well as the 

node n1. 

 pkt = new FlipPacket(); 

 pkt.setProofReq(1); 

 pkt.alg_length = lalg1 ; 

 pkt.alg_type = alg1; 

 pkt.source = n.flipaddr; 

 pkt.dest = n1.flipaddr; 

 pkt.proof = crypt(random_string, 

n.PRIVATE_KEY, k1, x1); 

 if (n1.ipaddr != NULL) 

o n.send(pkt, n1. flipaddr); 

 else 

o gw = n.select_next_gateway(n1); 

o if (gw == NULL) 

 if (gateway != NULL) 

 gw = gateway; 

 else 

 return FALSE; 

o n.send(pkt, gw); 

 rcvpkt = n.wait_for_proof_res(); 

 if ( (rcvpkt != NULL) AND 

(rcvpkt.getProofRes() == 1) ) 

o str = decrypt(rcvpkt.proof, 

n1.flipaddr, k1, x1); 

o if (str == random_string) 

 return TRUE; 

o return FALSE; 

Building the packet the bit for the authentication 

request is set to 1 and the various fields are filled, in 

particular those describing the chosen algorithm for 

encryption are filled with the well known code number 

alg1 (e.g.: 1 = RSA, etc.) and with its length (e.g. 1024 

bit) lalg1. If the chosen algorithm for the main DHT is 
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different from that presented in this paper and the 

authentication request was made in order to aggregate a 

node, then you may need to set the Join bits to 1 too. In 

this function the condition of existence of an IP address 

always bypasses the call of the function 

select_next_gateway() (described later) simply sending 

the packet through the send() function; since in this 

example the target node has certainly an IP address, 

that condition is unhelpful and here is implemented 

only to introduce the next paragraph about the send() 

and its use of the name system. Then if the rcvpkt 

object contains the response packet (for completeness 

you might also verify the correspondence between the 

source and the node n1) and the response bit for 

authentication is set to 1 then you can proceed with 

verification: the string in the proof field is properly 

decoded by the instructions within the ad hoc function 

decrypt() that you can implement as needed. The return 

value will be TRUE if the node n1 will be 

authenticated, FALSE otherwise. 

4.1 Dynamo. This is the Amazon’s high availability 

key-value store with incremental scalability, symmetry, 

decentralization and heterogeneity. Actually, it is used 

only by the Amazon’s internal services, but for my 

goal in this paper I need two assumption: first is that it 

is available worldwide. Data is partitioned and 

replicated using consistent hashing and consistency is 

facilitated by object versioning and among replicas is 

maintained by a quorum-like technique and a 

decentralized replica synchronization protocol. Second 

assumption that I need is that Dynamo can be built for 

the destination flat labels based routing architecture (if 

it is so functionally over IP, why not over Disco too?). 

4.2 Name System. Conceptually the name system that 

should help the main DHT to improve FLIP 

performance is not different from the actual DNS; I 

might talk about it as a DNS extension because what 

should be in the new system would not change 

anything in the present one, while adding more 

potential features. To simplify the explanation you 

might reduce the concept of Internet DNS to the 

management of the following match: domain name <-> 

IPv4 address, as shown in table 1. 

Domain name IPv4 address 

www.uniroma2.eu 160.80.1.246 
Table 1. A simple domain name  <-> IPv4 address match in 

actual DNS. 

The matches needed to an NS redesigned for FLIP 

would instead be five, as shown in the example table 2 

where you maintain other domain features for each NS 

record. Of course, new name system  may have 

different semantics. 

NS name FLIP 
add
ress 

Archite
cture 
type 

Address Resource 
or 

gateway 
type 

Next  
gate
way 

www.uni
roma2.e

u 

FL1 IPv4 160.80.1.246   

gw1.ipv4
v6.net 

FL2 IPv4 123.123.123.
123 

IPv4v6  

gw2.ipv4
v6.net 

FL3  2001:0DB8:0
000:0000:000
0:0000:0000:

0001 

IPv6v4  

www.ipv
6.com 

FL4  4002:1EF8:00
00:0000:0000
:0000:0000:0

002 

IPv6v4 FL3 

www.flip
.net 

FL5 Disco  DiscoIPv4 FL7 

gw3.ipv4
flip.net 

FL6  124.124.124.
124 

IPv4Disco  

gw4.ipv4
flip.net 

FL7   DiscoIPv4  

Table 2. Examples of the new NS record to FLIP; being very 

long, FLIP addresses are here represented by tags that begin to 

FL. 

Coexistence of different network architectures is made 

possible by gateways; each peer can begin a gateway if 

has at least two concurrent connections to different 

architectures and has updated its status in the name 

system. In this regard, I would like to notice that the 

need of a gateway exists only in condition of having 

different architectures using FLIP: in the perspective of 

a complete migration to a flat label based routing 

architecture the name system (if used) would only act 

as an helper to improve performance since, at the 

migration end, its records will not contain more data 

about gateways, the only ones whose specifications 

aren’t recoverable  from the peer-to-peer FLIP network 

but from NS before or while migrating. In table 2 it is 

possible to understand the design of the architecture of 

a new Internet with only (but not necessarily) three 

architectures that could be similar to that shown in the 

following figure 4 . It’s considerable the fact that in 

table 2 there is a simple key-value storing scheme and 

that’s the only thing FLIP need to work: there is no 

complex query management to achieve and so it’s 

possible to think to the DNS extension not as a 

hierarchical system built on centralized servers in 

which unique key is a NS name, but as a scalable peer-

to-peer key value store like Dynamo where the unique 

key is a FLIP address. According to that, using 

Dynamo instead of FNS or similar for example will 

guarantee that FLIP will not relay on a centralized 

authority. 
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Figure 4. State of migration from IP to Disco for coexisting 

architectures using FLIP. 

Intersections of clouds are hosts connected to multiple 

architectures; in that example central intersection 

shows hosts that can be elected as gateway for all 

architectures. 

Algorithm 4. select_next_gateway() function. 

 If (n.ARCH is not qual to n1.ARCH) 

o For A in (n, ARCH) 

 if A is equal to n1.ARCH  

 return n; 

o For A in (n, ARCH) 

 gw = 

nsget_next_gateway(n1, A); 

 if (gw is not nil) 

 return gw; 

o return nil; 

 return n; 

If in pseudo-code 1 node address no1 had not belonged 

to the IPv4 class then it would be necessary to select an 

intermediate node denominated: “gateway” with ability 

to communicate with both IPv4 and the architecture of 

the target node. Each node can be elected as gateway or 

give up this function, and can publish or delete his 

election in name system; therefore nodes can exist with 

gateway function that are not published. The 

publication and the election are borne by the node itself 

which can also ask for money to carry out this service 

for other nodes (see below). In the pseudo-code 1 

example a particular case is shown too, i.e. one in 

which the source node architecture finds no gateway to 

reach the destination node architecture: this occurs 

when both architectures have no common gateway and 

must resort to nodes in intermediate architectures. The 

need for intermediate architectures is rare and usually 

occurs when one of the two architectures is not 

widespread or is in a small "neighboring" network, as 

in a scheme similar to that in Figure 5 only where a 

small LAN with IPv6 addresses and an IPv4v6 

gateway tries  to reach a node with an IPv6 Internet 

address. To handle situations of intermediate 

architectures there are two possible solutions: first, that 

I suggest, is to manually set the best gateways path so 

that every node in the LAN can reach the destination 

without travelling through too many intermediate 

nodes; second would be to make the name system 

processing a shortest path through various gateways, 

dramatically increasing the workload of servers. Since 

these situations as mentioned above may be rare, 

evaluating the manual selection of the gateways path 

would be a better choice. 

 

Figure 5. Example of a LAN with IPv6 addresses that tries to 

contact an IPv6 Internet node but that is only connected to an 

IPv4 Internet host. In this case, you must manually set the FLIP 

gateway for the LAN which then will call 

nsselect_next_gateway() function. 

On success algorithm 4 returns the FLIP address of the 

gateway to insert in the gateway address field of the 

protocol. You can immediately deduce that often,  

when the packet is distributed among the hosts on a 

single architecture, the value of the gateway address is 

the same as that of the destination address; this 

redundancy may be deleted with an improvement of 

the protocol, for example adding a control bit. As first 

step, select_next_gateway() function checks the 

existence of the latter case before starting a first control 

cycle between the architectures that are actually 

connected to n and so returning still n; the next step 

involves the execution of a last cycle during which for 

each architecture to which n is linked, a name server 

will be queried about destination node architectures 

(here calling a custom function nsget_next_gateway() 

whose implementation is easy and so not described) in 

order to find a match and get the gateway which will 

then be returned to the calling function. The worst case 

is, therefore, when the second cycle fails finding an 

intermediate host which can act as a gateway: this case 

is rare and as mentioned above occurs more in 

configurations like that illustrated in Figure 5 . 

IPv4 Disco 

IPv6 

IPv4 Disco 

IPv6 LAN

IPv6 
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4.3 Crypto-coins and cash flows. Acting as a gateway 

is a service that could be sold: the money used to 

purchase it are the ones provided by peer to peer 

systems of crypto-currencies, first among them Bitcoin 

[12] created from a.k.a. Satoshi Nakamoto in 2009 and 

become popular worldwide. Base of this system is also 

asymmetric encryption and its peers make wide use of 

it to support a mathematically hard to break and 

authority independent monetary system. Implementing 

this system to be used on FLIP is relatively simple: 

every time you want a payment, for example to allow 

the continuation of a gateway service or to sell 

resources (see below), the requesting host adds the 

necessary data in first ready to be sent packet 1) setting 

payment session type field to a value that depends on 

the type of required payment, 2) indicating the code of 

the crypto-currency needed in crypto-currency code, 3) 

setting the amount of money in units and cents in their 

respective fields payment units and payment cents, 4) 

filling the fields Payment address with the address of 

own electronic wallet and Payment ID with a value 

other than zero, then 5) awaiting for the packet 

carrying money from the host that will (or will not) 

send them. The latter will in turn decide whether or not 

to pay and to risk an interruption of the data flow of 

data or less; in the latter case, the host must make a 

regular payment and somehow recover the transaction 

string shown in Figure 2 (that is not difficult: crypto-

currencies software is open source). The retrieved 

string will be part of the next FLIP packet that is sent 

to the requesting host using payment address field as 

proof of payment; in addition, Payment ID field must 

contain the same value as that in the packet containing 

the request citing a reference for the transaction. In the 

case of fixed-term payments (payment session = 10), 

the same value of payment ID filed will be sent through 

multiple packets at regular intervals along with always 

different transaction strings without need of further 

requests by the receiver. Check of the transaction 

strings is borne by the receiver; at present, in various 

crypto-coins systems a transaction takes from a few 

seconds to several minutes to be confirmed: it follows 

that the recipient will have to wait a certain amount of 

time before you receive the money, so the transaction 

string is more useful as a payment notification rather 

than as an immediate proof of the same. 

 

5. THE RESOURCES 

Except for the gateway which as mentioned can be 

published in name servers, all FLIP resources are first 

published in peer-to-peer network using DHT and later 

in the name system in order to improve the 

performance of the protocol and therefore of the 

architecture that the latter uses. 

5.1 User resources. The most important resource is 

undoubtedly the user: it owns a FLIP address (and 

therefore the user owns a private key) and its 

publication occurs before in peer to peer, and then in 

name system by the call to a joining function like that 

in algorithm 1. The fact that a user and a host have 

two FLIP addresses but the same host as destination 

modifies the search time of  Chord algorithm used in 

this paper: if u is the number of users and h is the 

number of hosts in the main DHT then finding one of 

these two resources takes O (log (h)) hop (where each 

hop is a FLIP packet that starting from source arrives 

to destination) because the hop from a host to the user 

published by the latter actually does not exist. Until 

migration to Disco will not be complete, however, in 

the previous calculation you have to add the number of 

eventually traversed gateways while searching: in a 

drastic hypothesis where the maximum number of 

publishable and intermediate gateways between source 

and destination is 1 and where all the h nodes have 

another default gateway (for example, because each of 

them is in a LAN with different architecture 

connections as in Figure 5) needed time is O (2 (log 

(h) -1) + log (h)) hop where for each hop you must 

travel through 2 gateways. Implementing a system of 

calculation of shortest paths in a name system to 

manage more than one FLIP gateway between source 

and target is therefore not recommended also to avoid a 

considerable decline in the FLIP packets distribution 

performances when looking for a resource that is in a 

drastic hypothesis already assuming the existence of a 

single gateway: (2 (log (h) -1) + log (h)), without 

considering the packets distribution of the underlying 

architectures, because the latter still hardly could 

improve the result. Of course, using the name system 

instead of using Chord for the search with the 

maximum number of intermediate and publishable 

gateways set to 1 and according to the LAN example in 

Figure 5, then the number of nodes used to reach the 

name server is Θ (2). In case of temporary 

inconsistency between peer to peer query results and 

name system ones, firsts are to be considered reliable 

and that explains how FLIP has the feature to be before 

partially, and in the migration end totally, independent 

from central authorities. 

5.2 Other resources. The main DHT is composed of 

three types of resources: the first two, those of the hosts 

and users, have already been discussed. The third type 

is actually a meta-resource: its function is to identify 
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another DHT and the host that publics it is its first node 

and must remain on the net as much as possible, like a 

beacon for anyone who wanted to use it but don't know 

where to join. Let p be the node that wants to publish a 

resource: first of all p creates the resource using the 

DHT algorithm 5, a version that takes cue from the 

Chord join algorithm [11]. 

Algorithm 5. newDHT function algorithm that 

instantiates a DHT for a resource. Node n1 belongs to 

main DHT as well as node n that creates a new DHT 

and joins to it, owning the same resource_flip_addr 

addres in both DHTs. 

 n = new Node(hash(resource_flip_addr)); 

 n.n = newNode(hash(resource_flip_addr)); 

 n.flipaddr = resource_flip_addr; 

 n.n.flipaddr = n.flipaddr; 

 for i = 1 to n.n.m 

o n.n.finger[i].node = n; 

 n.n.predecessor = n; 

 n.join(n1); 

 updateNS(); 

The new resource becomes a node of the main DHT 

and the host that joins it become a reference node for 

accessing or searching on the new DHT; the type of the 

new resource is also identifiable through its FLIP 

address (in algorithms 5 a resource of type 

resource_flip_addr). All nodes belonging to the new 

DHT will have their FLIP addresses to be identified: 

therefore it is impossible for a node in a resource DHT 

not to belong to the main DHT, as you can see in 

algorithm 6 in which a FLIP node joins a resource 

DHT. After setting various finger of the new DHT, the 

n node joins the main DHT and updates a name server 

to improve the search performance of the resource type 

giving to the latter a name associated to its FLIP 

address in the name system. 

Algorithm 6. FLIP node n joins a resource DHT of 

type resource_flip_addr. 

 n.n = newNode(hash(n.flipaddr)); 

 n.n.flipaddr = n.flipaddr; 

 n1 = rsqueryNS(resource_flip_addr); 

 n.n.join(n1); 

 rsupdateNS(n.flipaddr, resource_flip_addr); 

In the previous algorithm n node is a “container” of 

another node that will be created and attached to 

resource_flip_addr resource DHT. To join, the node 

queries a name server to locate a FLIP node that 

already joined the DHT of resource_flip_addr type 

which will allow joining through a normal call to join 

Chord algorithm. Finally, n updates the name system 

via an ad hoc function: rsupdateNS adding a resource 

record that indicates its promotion as node that has 

joined the resource_flip_addr resource type; now it is 

possible to take advantage from that resource type from 

the last joined node too. NS records will be stored as 

well as in the example in table 3 that completes the 

table 2 used for the examples with gateways. 

NS name FLIP 
add
ress 

Archite
cture 
type 

Address Resource 
or 

gateway 
type 

Next 
gate
way 

www.uni
roma2.e

u 

FL1 IPv4 160.80.1.246   

gw1.ipv4
v6.net 

FL2 IPv4 123.123.123.
12 

IPv4v6  

gw2.ipv4
v6.net 

FL3  2001:0DB8:0
000:0000:000
0:0000:0000:

0001 

IPv6v4  

www.ipv
6.com 

FL4  4002:1EF8:00
00:0000:0000
:0000:0000:0

002 

IPv6v4 FL3 

www.flip
.net 

FL5 Disco  DiscoIPv4 FL7 

gw3.ipv4
flip.net 

FL6  124.124.124.
12 

IPv4Disco  

gw4.ipv4
flip.net 

FL7   DiscoIPv4  

www.file
share.net 

FL8 IPv4 125.125.125.
12 

FL8  

 FL9 IPv4 126.126.126.
12 

FL8  

Table 3. A node with FL9 address joins a FL8 type DHT and is 

added to the example in the previous table. 

The new name system thus becomes a resource system 

for FLIP too; in Figure 6 you can see a model that 

describes how the new resource DHTs are distributed 

within the main DHT . 

 

Figure 6. Main DHT nodes joined to other FL9, FL10 and FL11 

type DHTs. 

The name system offers strong performance increase 

but the system that uses the FLIP protocol is 

autonomous and allows searching for a resource type 

Main DHT 

DHT FL9 

DHT FL10 

DHT FL11 
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node knowing the FLIP address of the latter, which is 

actually the address of the publishing node; if there 

wasn't the name system, that node would be borne by 

all search requests. By examining in detail the search 

time without the support of a name system you note a 

duplication of hops: let m be the number of nodes that 

have the resource; the publishing node will be first 

contacted as explained in the previous case drastic 

during (2 (log (h) -1) + log (h)) hop, where h is the 

number of hosts on the main DHT. Next, the publishing 

node will search for a node (besides itself) that offers 

the type of the published resource in O (2 (log (m) -1) 

+ log (m)) hops because the fingers of the various 

nodes in the DHT will not refer to nodes in the main 

DHT not providing that resource, and the whole 

operation will be so ended in (2 (log (h) -1) + log (h) 

+2 (log (m) -1) + log (m))) hops. Even for not standard 

type resources (not users, neither hosts type resources), 

in case of inconsistency between the various DHTs 

nodes and the name system records, only data in the 

DHT nodes are reliable. I conclude this chapter finally 

reporting that each resource is accessible only via FLIP 

protocol and then each data stream that takes advantage 

of such resource may be subject to payment using 

crypto-currencies as described above for gateway 

services; requiring or not requiring a payment is a 

choice of the node that offers that resource. 

 

6. ROUTING ON FLAT 

LABELS 

Now that I’ve discussed about FLIP giving an idea of 

how generally layering it over IP, let’s see what I think 

should be the real destination of IP to flat labels 

migration: Disco. After that, I’ll talk about how 

layering FLIP on it. 

6.1 Disco. Disco is a scalable routing protocol. Its 

authors have achieved what until now was considered 

an opened issue: a scalable, low-stretch, routing on flat 

names protocol; they define “stretch” as the ratio of the 

protocol’s route length to the shortest path length. 

Since shortest-path routing is theoretically achievable 

but practically impossible due to immense memory 

requirements and even more communication and 

computation work, Disco limit itself to guarantee a low 

stretch of 7 (according on its authors evaluations) in 

worst case on flow’s first packet, and 3 on subsequent 

packets. There are two “ways” of routing in Disco: first 

is a name-dependent compact routing, second instead is 

name-independent; that’s because Disco is comprised 

of NDDisco, a name-dependent compact routing 

protocol and it’s possible make an initial choice on 

what of them to use. Even if using a consistent hashing 

distributed name database that associate node names to 

flat labels (addresses), name-dependent compact 

routing may be dangerous for a security issue: a node 

can arbitrary change data related to hashes of the 

portion of database that it stores. Name-independent 

compact routing is what I prefer: Disco can maintain 

state of routing tables of every node with high probably 

without using name resolution; obviously, there is a 

vanishingly small but nonzero probability that 

destination’s route is not found, but in this case authors 

advise to recur to name resolution as a fallback. Now I 

think: will be possible to change consistent hashing 

distributed database used in NDDisco with a flat label 

version of Dynamo? This will solve previous security 

issue because: 1) NDDisco utilizes simple key-value 

queries and 2) Dynamo has gossip-based membership 

protocol that avoids having centralized registry for 

storing membership and node liveness information 

(that’s what NDDisco needs in this case). 

6.2 FLIP over GVN routing on Disco. As about 

ROFL, I don’t know what can be Disco network level 

protocol, but I don’t care about that: maybe it will be 

FLIP, in the other case I would wait for GVN’s authors 

to use libraries built for it, if tomorrow Disco were a 

reality. In both cases, important things are two: 1) how 

to match FLIP host addresses with Disco host 

addresses? obviously, an easy way is that both 

addresses of a node are the same and I will take that as 

an assumption because both are flat names and Disco 

does not set limits their length or semantic. 2) How to 

add what I defined “multi-dimensional routing” in 

Disco? Since Disco has addresses for internal use only 

because such addresses are flat labels containing 

portions of paths and are updated dynamically, we can 

think to them as IP addresses: the idea is to associate 

FLIP addresses to Disco internal addresses, not to its 

real addresses (we may presume that such real 

addresses could be FLIP addresses and in table 3, for 

example, a Disco real address and a FLIP address are 

the same), so we can build FLIP’s main DHT. 

Algorithm 7 is a Disco version of Algorithm 1. 

Algorithm 7. Aggregation of a node n connected to the 

Internet with FLIP address fl_addr and Disco internal 

address di_addr having an already known node n1. 

(Pseudo-code) 

 n = new Node(hash(fl_addr)); 

 n.diaddr = di_addr; 

 n.flipaddr = fl_addr; 

 n.join(n1); 
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 updateNS(); //optional 

A difference from IP is that Disco internal addresses  

have dynamic labels, so one of them can change its 

label when already a FLIP node has joined the main 

DHT; this is not a problem because the primary key of 

the main DHT is a FLIP address, not a Disco internal 

address, so the change can be propagated through the 

peer-to-peer FLIP network as a normal attribute 

associated with the primary key (that, if using a Disco 

version of Dynamo, will be very fast). On this way 

Disco name resolution needed by Disco is done at 

“FLIP level” instead of at “Disco level”, aided by the 

faster Dynamo. Of course, another choice is to leave to 

NDDisco this work removing second line from 

Algorithm 7 so that NDDisco can update its consistent 

hashing database, but that maybe will be slower. In 

both cases however, all other algorithms shown for IP 

are the same for Disco, maybe with little and easy to 

discover differences. That’s all. 

 

7. CONCLUSIONS 

The purpose of this paper is not to criticize harshly the 

various architectures to highlight the qualities of FLIP 

protocol. I wrote this document to raise the problem of 

the various aspects to consider while designing a new 

architecture for the Internet, which should not be 

limited to the performances of most used services or to 

innovations. Only after that, I propose a solution that 

could, if not take place between the various proposals, 

at least give an input to design a policy that considers 

also and above all the Internet community approval. 

Having said that I conclude with the hope that my idea 

of FLIP will not be a flop (computer humor). 
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