
FLIP: an Internet protocol for flat labels

In recent years the increasingly frequent use of the Web service, the advent of the cloud

computing, the exponential growing of mobile devices with the introduction of pervasive

and ubiquitous computing and the emergence of extreme distributed systems have

brought to light the problem of the no longer adequate distribution of data packets over

Internet and the related IP protocol issues. This paper promotes flat labels as a real

alternative to IP addresses for a future Internet architecture and proposes FLIP as first

network layer protocol for flat labels. Among several features absolutely not existing in IP

protocol, FLIP has a native support for crypto-currencies.

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1749v1 | CC-BY 4.0 Open Access | rec: 16 Feb 2016, publ: 16 Feb 2016

FLIP: an Internet protocol for flat labels

Giovanni Bembo - Department of computer engineering, University of Rome "Tor Vergata", Rome, Italy.

ABSTRACT

In recent years the increasingly frequent use of the

Web service, the advent of the cloud computing, the

exponential growing of mobile devices with the

introduction of pervasive and ubiquitous computing

and the emergence of extreme distributed systems have

brought to light the problem of the no longer adequate

distribution of data packets over Internet and the

related IP protocol issues. This paper promotes flat

labels as a real alternative to IP addresses for a future

Internet architecture and proposes FLIP as first

network layer protocol for flat labels. Among several

features absolutely not existing in IP protocol, FLIP

has a native support for crypto-currencies.

Keywords – GVN, Generalized Virtual Network, Flat

Labels, DHT, ROFL, Dynamo, VRR, Scalable compact

routing, Disco, Routing on identities, Name based,

Internet architectures, Network layer, Name system,

Crypto-currencies

1. INTRODUCTION

<< No one knows the future, then you have to be ready

for anything >>. With this sentence I would explain in

two lines my membership at the school of thought

favourable to general purpose architectures. My theory

is that a future Internet architecture must preserve the

attributes of independence and decentralization and

lend itself to any kind of utilization that will be

universally accepted as the current one; only after you

have ensured that, it will be possible to improve

performance, increase security, add new features and

do anything else that might help and/or be innovative.

Second school of thought is the one that comes closest

to my theory on a global network infrastructure in a

first time universally accepted and only in a second

time performing, secure and innovative. FLIP (Flat

Labels Internet Protocol), ROFL, Disco [13] and

similar ones catch almost fully its axioms but before

writing about them it’s better to introduce the two

schools of thought, some of the major researches and

related projects, and GVN [2] as possible “vehicle” for

an easy large scale experimentation of many of these

studies.

1.1 The first school of thought looks for points where

the actual Internet Network should be strengthened

because most commonly used (Web content files

sharing through P2P, mobile devices, etc.), and offer

high performance architectures specifically for the

above steps. Among the existing proposals, in this

paper I cite CNN and CONET, both adopting division

between identity and location. CCN (Content Centric

Network [3]) is about content names routing and is

very performant in terms of contents access speed.

Content security also is remarkable even considering

that CCN is actually a stack of protocols and security is

postponed to a different layer from the network layer

(the only one having to be universally acknowledged),

called security layer; the strategy layer instead deals

with the optimization of connections based on changes

of some conditions (very useful for mobile devices).

CCN stack can be layered over any other layer,

including IP; its modus operandi is relatively simple: a

request is forwarded from one node (Interest packet)

through routers and you have an answer (Data packet,

the requested content) that during the return path is

stored in very large caches by routers as they consider

beneficial to do so. CCN is a complex high-

performance architecture for findability of contents but

requires huge hardware resources considering the size

of the cache requested from each router; some ISPs

may not endure so cheaply expensive investment and

that can make the "new Internet" not for everyone. To

work around this problem, CONET [4] introduces a

template named "Lookup and cache" that allows the

various cache sizes of routers to be reasonably reduced

by splitting the entire domain architecture and by

providing a centralized cache update engine for each

domain, exclusive to the same routers. There are some

possibilities to implement Lookup and cache such as

making it depending on a naming service or building it

on the basis of a protocol similar to BGP or OSPF; the

first of these two examples of implementation seems to

be the most popular and, if so, in the future the CONET

would become an architecture depending on the

authority of a service. In relation to the above

described condition whereby a universally accepted

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1749v1 | CC-BY 4.0 Open Access | rec: 16 Feb 2016, publ: 16 Feb 2016

worldwide network should be independent of any

centralized authority the question of success or

failure of a proposal as stated above does not depend

on the performance or the number of added features: in

this specific case, if a naming system will act as engine

for the Lookup and cache then you might meet several

political problems as for example: 1) a domain with its

centralized engine might prevent or restrict any

communication from or to another domain for political

reasons or for a choice of single administrator of the

engine; 2) the authority that would manage the naming

system, even if internationally, might impose payments

as already happened for the DNS; 3) you could meet

the implementation of other parallel naming systems as

engine in certain domains splitting up so the Internet in

several "non-interconnected networks". Still looking at

CCN and CONET, it’s to note that being mainly

directed towards a name based architecture, they

provide for the names mutable semantics, and this

could be a problem for a global agreement, for

example, on which characters admit and which are not

in namespace syntax (and this is a problem for a

routing that depends in part or totally on names, while

it is not so for simple name resolution). In addition,

both proposed architectures do not have a well-defined

transition from the old to the new architecture, and that

could be an obstacle to the effective globalization of

each since it will not be very clear to you whether

investing on a new architecture will give up the old but

pretty well working one. Collecting the peculiarity in

common to all proposals in the first school of thought I

might add that most of them are not designed for point-

to-point communications, and the latter, though still

implementable, would be very inefficient. Voluntary

exclusion of point to point communication precludes

the possibility of architecture to be general purpose;

both CCN and CONET for example do not allow not

publishing nodes to be accessed from other nodes to

start any data streaming. A acceptable solution in my

opinion and belonging to this school of thought is that

you should not change the current architecture (based

on IP routing) but concentrate instead on improving the

HTTP protocol, in such a way as not to affect the true

soul of the Internet and at the same time as to approach

a network based on content; the idea of improving the

Web protocol (called "Narrow waist of the future

Internet" [5]) is probably a good compromise for those

who see in the ICN (Information Centric Networking)

the right answer but still want the characteristic of

general purpose, not introducing a new architecture but

by improving the existing one. Table 1 shows a

summary of the new architectures I’ve just quoted,

related (in order): 1) to the existing three fundamental

characteristics, 2) to the new fourth one, 3) and to other

non-critical ones.

 CCN CONET

Decentralized Yes Maybe: it
depends on the
engine
implementation
(centralized in
each domain?)

Does not relay
on centralized
authority

Yes Maybe: it
depends on the
implementation
(NS, BGP, etc.)

General
purpose

No: 1) Not publishing nodes
aren’t contactable to start a data
streaming; 2) there aren’t other
service except the content
accessing one

Gradual
migration

No No

Secured Yes: using
security layer

Yes

Pro mobile Yes: using
strategy layer

Yes

Normal
amount of
resource
requested

No: router
caches must be
very large

Yes

Not mutable
address
semantic

No if it is
name based

No if it is name
based

Native crypto-
currencies
support

No No

Communication
between
network with
different
technologies

No No

Table 1: Comparison between some proposed architecture of the

first school of thought.

1.2 The second school of thought instead incorporates

architectures designed for general purpose without

privileging in any way their contents. To speak about it

I’ve chosed ROFL and Internames, two elements in the

collection that I think are the best. Internames [6] is the

architectural model that, as we’ll see, more approaches

FLIP: in that 1) each name is used to identify all

identities involved in a communication (e.g. content,

users, both physical and logical devices, etc.); 2) the

identities are separate from the location being so really
PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1749v1 | CC-BY 4.0 Open Access | rec: 16 Feb 2016, publ: 16 Feb 2016

mobile friendly; 3) there is a communication between

different network technologies; 4) it is provided for a

gradual migration from current IP-based technology. A

perhaps negative note, always according to my theory,

is to be reported for the necessity of a powerful name

service called NRS in Internames. The dependence on

the authority that manages that service, for some of the

reasons already expressed in the case of CONET with

its centralized engine, may assign this architecture a

potentially approval rating equal to zero for some

users. FLIP instead, whether layered on IP or on a flat

label based protocol (ROFL, VRR [14], Disco, etc.), is

only optionally supported by an ad hoc name service

(see next paragraph) and that support does not affect

packet routing or the full efficiency of one (i.e.: IPv4)

or another (i.e.: ROFL) underlying architecture: the

name service is only a second and faster choice in

solving answers already available in first but slower

choice using P2P network communication primitives

that FLIP could implement. In addition, unlike

Internames FLIP is not name based, but uses flat labels

with unchanging semantics acting as addresses for its

resources. ROFL and Disco do routing on flat labels

too: ROFL suffers of the relatively large cache problem

in routers, but the average size needed (host identity

cache) is not comparable, because asymptotically lower

(O (n) where n = "host" expected value), to the one

necessary to CCN (O (n * m) where m = "expected

value of content in a host"); Disco, instead, with its

compact routing has very smaller states (authors of

[13] analyze a state in terms of the number of entries in

the protocol’s routing tables [13]). FLIP may instead

suffer of excessive size of the cache for its routing

based on resources (flat labels as not only hosts

addresses like in ROFL) and its expected value would

be asymptotically greater than CCN: O (n * m * (R-

m)), where R is the expected value of resources that

include contents, published services, the amount of

available hardware, and everything else is definable as

resource for an user; this is why FLIP is optionally

supported by a name service that can attach to any flat

label any kind of metadata (including useful

information regarding routes). An alternative or

complemental solution to a name system is a smart

partitioning system to store R between FLIP nodes, like

Dynamo (see next) to provide an high availability of

such data. Returning to ROFL, the only negative note

is that it does not support a gradual migration from

the current Internet architecture, which, in this case,

might not provide any liking by some users. Table 2

summarizes how the just described architectures of the

second school of thought "approach" to the true soul of

the Internet; as you can see only FLIP layered over a

flat names based protocol like ROFL (or layered

over IP) possesses all the requirements to be

universally accepted among those cited, because 1)

decentralized, 2) independent from authority, 3)

designed for general purposes and 4) prepared for a

gradual migration (the latter is the only characteristic

that such flat label based protocols are missing and that

maybe makes them only a fantastic utopia).

 Internames ROFL,
Disco

FLIP
(in

GVN)
over
IPv4
using
Dyna
mo

FLIP
on

ROFL,
Disco

Decentraliz
ed

Yes Yes Yes Yes

Does not
relay on
centralized
authority

No: it
depends on
NRS
authority

Yes Yes Yes

General
purpose

Yes Yes Yes Yes

Gradual
migration

Yes No Yes Yes

Secured Yes Yes, using
asymmetric
cryptography (a flat
label is a public key
too)

Pro mobile Yes Yes No Yes

Normal
amount of
resource
requested

Yes Yes Yes No,
if not
suppo
rted
by a
name
servic
e

Not
mutable
address
semantic

No Yes Yes Yes

Native
crypto-
currencies
support

No No Yes Yes

Communica
tion
between
network
with

Yes No Yes Yes

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1749v1 | CC-BY 4.0 Open Access | rec: 16 Feb 2016, publ: 16 Feb 2016

 Internames ROFL,
Disco

FLIP
(in

GVN)
over
IPv4
using
Dyna
mo

FLIP
on

ROFL,
Disco

different
technologie
s
Table 2: Comparison between some proposed architectures of

the second school of thought.

2. OVERVIEW

As I said, I am convinced that a flat labels based

protocol is the right way in order to start and end a

complete redesign of the architecture of Internet

with the consensus and the interests of all its users,

without exclusions. The difference, however, between

a beautiful utopia and a new reality in this case is

binary and Internet could be moved from 0 to 1 by

implementing gradually the FLIP protocol before on

IPv4, IPv6, and then on flat labels architectures. Now

let’s see FLIP Protocol applied to two different

architectures using GVN before over IP (as a 3.5 layer

level) and then, only theoretically, over ROFL. In the

end, I’ll discuss about FLIP and GVN layered over

Disco, that is a very performant flat labels compact

routing and maybe the final target of a complete

migration from IPs addresses to flat labels ones.

2.1 A model of Generalized Virtual Network. The IP

protocol is not designed to allow the layering of the

protocols and services, so successful applications have

approached the overlaying to overcome this limitation

(e.g. Skype, CDNs, P2P file sharing system, etc.). The

GVN began as an institutionalization of cross layer

and overlay networking to facilitate a simple and

efficient way to find the necessary information in the

packet header, instead of conducting a thorough

inspection of the protocol; the interesting thing is that it

is completely independent from the under laying

protocol (i.e.: IP) and from all previous lower level

ones proving in the occasion a potential layer 2.5 level,

good for a transition from the old Internet architecture

to any new one. With these features, GVN allows the

coexistence of different architectures (or, more in

general, process logics) by assigning a process logic

number (p.l.n.) to each of them: a logic or logical

process, most suitably programmed as kernel modules

and present in each GVN capable node, assures the

node can handle the architecture (also experimental)

chosen by the user; each GVN node can upload logic

modules chosen by the owner of the node that manage

data flows of new protocols without having to

problems with the underlying architecture, such as

IPv4 and IPv6. The best feature according to my

opinion is that not GVN aware nodes simply manage

the packet with the GVN header like other packets of

its architectures (i.e.: IPv4 packets) making possible

that a GVN packet can pass through not GVN aware

nodes to reach a GVN aware one.

Process Logic number

PL specific header

Fragmentation (optional)

PL spec. pre-header (opt.)

Length Next header Flag

Figure 1: the header of Generalized Virtual Network

Besides the fact that all logics can be programmed

freely, GVN also provides a library of functions to

interact with GVN data streaming without having to

worry about place them in layer 3 or lower protocols;

FLIP uses this library that one of the keys of its gradual

migration: there will be no work to do to pass to a new

architecture (ROFL, Disco, etc.) that will provide the

same GVN library. About process logic, FLIP uses

p.l.n. 2006 with two specific process logic pre-headers

to divide its inter-architectural GVN incoming packets

(i.e.: from IPv4 to ROFL) from intra-architectural ones

(i.e.: from IPv4 to IPv4): the firsts will be moved to a

different network device of the receiving node (that in

this case act as a gateway between two different

architectures, see below) while the seconds will be

managed because arrived to the effective end-node.

Figure 1 shows a GVN header. The fragmentation

field has been a my co-working experience with GVN

team because while developing FLIP primitives I

noticed that a real FLIP packet was often greater than

common 1500 bytes MTU of Internet: needing

fragmentation, I helped the team to develop it on GVN

instead. The fragmentation field now let FLIP and

whatever other protocol to have packets length great

enough. Thanks to GVN each FLIP node won't have to

worry about the architecture on which "will travel" its
PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1749v1 | CC-BY 4.0 Open Access | rec: 16 Feb 2016, publ: 16 Feb 2016

protocol because it will be totally transparent.

2.2 FLIP over GVN routing on IP. Is it a gamble to

give the pillars of Internet, the IP addresses, some

features remotely attributable to elements that are part

of the peer-to-peer architecture? We note that each IP

address is "equal" to other addresses; no one exists,

either IPv4 or IPv6 address, which has an influence of

any kind on the other of the same version.

Unfortunately, IP addresses do not provide separation

between location and identity, so any device identified

with one of them is forced to change its ID every time

it travel between geographically distant areas (i.e.: the

smartphones). In a complete vision of pervasive

computing and ubiquitous computing not only each

device should be able to retain their own identity

regardless of its location, to communicate with any

other and wherever it is without any intervention, and

to provide every service that the rest of the devices

offer, but the concept of "reachable host" should

embrace more than a single category, the devices one,

and should expand itself to user contents or, more

generally, user resources. Thanks to the flat labels,

FLIP uses addresses suitable to peer-to-peer based

architectures, allows the separation of identity and

location, offers autonomy and dispenses the needed

primitives to allow each device to provide those

resources that the rest of the devices provide. Its three

main objectives are: 1) aiding the migration from IPs

to flat labels addresses 2) ensuring since fourth or

equivalent OSI level a transparent asymmetrical

encryption, always active and not constrained to a

single subset of algorithms; 3) providing an on-

demand payment system for data transfer with every

crypto-currency. The first goal is achieved thanks to

GVN that will easily support FLIP on IP and will

provide its libraries for the destination flat label

architecture. On IP, each FLIP node (peer) allows you

to associate a fixed-length numeric address (flat

label, that is also a public key) to each IP address in a

dynamic way (associated IP can be changed on

demand); different speech you will do for destination

flat label architecture where the dynamic association

“FLIP address” <-> “flat label destination address”

may be not necessary (that’s because both may be the

same). Inside and outside IP, each flat label is managed

by a peer-to-peer network implemented by FLIP

primitives. The primitives will then assign to each

entity an unique alphanumeric public address and a

secret (private) key. Device, users, files, other data

structures, etc. will possess a pair of public and private

keys and packets sent from a public address to another

will be always encrypted with the secret address

(private key) of the sender, ensuring that each packet

received should have been definitely sent (because

signed) from anything else apart from the sender and

thus satisfying the second target (there will be no more

need for SSL, HTTPS, SSH, etc.). As regards the third

goal, however, it is my opinion that the birth of crypto-

currencies was a real revolution for the Internet,

perhaps having greater importance than Web 2.0 and

social networks; the potentials hidden behind crypto-

currencies are not only of economic nature and FLIP

use one of these: a low (or network) level

manageability of transactions. With FLIP is possible to

send and receive packets after having sent or

received money; it is a payment that can be made at

protocol level and this is to say that: sent (or received)

packets carry money. FLIP primitives implement the

transfer of a string which is the result of a series of

hashes and digital signatures used in crypto-currency

technology; this string represents a payment transaction

and its destination will insert it in the last block of the

chain strings of the crypto-currency used and propagate

it to all the other clients who will in turn add it on top

of the last block of their copy of the chain (Figure 2),

thus providing a computationally difficult not

refutability of the payment sent by the sender.

In addition to these three main objectives, FLIP offers

other important features: as mentioned above each

entity (resource) has an alphanumeric address; even the

entity types are definable in an abstract manner by

the user and can be identified and published: the user is

not limited to a little group of entity-types such as

device, users, files or content, but can if necessary

create a resource type X with alphanumeric address K

and another one can find it on the network by

identifying it with K. An example among thousands

ones of the relevance of this potential (the only limit is

Figure 2: Chain template blocks of a crypto-coin. Every client of

crypto-coins has a copy. On FLIP viaggerebbe the last rectangle

"transaction" for each new payment.

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1749v1 | CC-BY 4.0 Open Access | rec: 16 Feb 2016, publ: 16 Feb 2016

the imagination) could be the resource type X:

”computing power hired for the program P” where P

is in turn identified as a resource; the user who will run

the program P can do a search through the P2P FLIP

network for resource type X, or between all nodes that

offer (paid or not) computing power for P and choose

between the found resources most advantageous ones.

For each type of resource created the primitives will

create a new P2P DHT (in case of DHT based

primitives). FLIP also offers the chance to "bypass" the

firewalls (at network level, not at HTTP protocol level

as [5] does) because active encryption makes the

sender always identifiable: a user can send packets

signed with his private key instead signing them with

the private key of the device that he uses (ubiquitous

computing), making his data flow recognizable by

firewalls that will enforce or not appropriate policies.

S Q L

D T R

DM

Fragmentation (optional)

FLIP pre-header

G

V

N

Length Next header Flag

Process Logic number

F

L

I

P

o

p

t

i

o

n

s

Proof phrase (algorithm length bytes)

Transaction ID

Payment units

Payment cent.

F

L

I

P

Source address (algorithm length bytes)

Gateway address (algorithm length bytes)

Destination address (algorithm length bytes)

Ver Header lengthFlag
RQ PST AJ

I

P

v

4

o

p

t

i

o

n

Option type Option length Option data

I

P

v

4

VersionHeader lengthService type Packet length
Prec

Destination address

Identification Flag Fragment offset

Time to live Transport Header checksum
GVN

Sending address

Proof length

Total length

Crypto-currency code Header checksum

Alg. code and conf.

Payment address (Wallet address length)

Figure 3: FLIP over GVN (over IP).

Figure 3 shows FLIP protocol over GVN layered on

the version 4 IP protocol. For a correct usage of the

protocol following is needed: 1) a set of clients (peers),

each of which can act as a source, destination,

publisher of resources and gateway; 2) a set of

gateways that are responsible to communicate between

two different network technologies; 3) finally, although

optional, the set of name servers: suitably programmed

(one among many: FNS [9]), they maintain “FLIP

address” <--> “domain name” matches and “FLIP

address” <-> “network address” matches and accelerate
PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1749v1 | CC-BY 4.0 Open Access | rec: 16 Feb 2016, publ: 16 Feb 2016

operations of FLIP gateways. Closing the IP address

speech, it is important to note that existing routing

functions are not affected in any way prior to migrating

to destination flat label architecture. Now I’ll show the

description of the most important fields that make up

the protocol of course independent from the different

packet based communication technologies:

 Header length: FLIP header length (in

words)
 Algorithm length: length of the input string

of the chosen asymmetric encryption

algorithm (in bytes).
 Join (J) Flag: if set to 1 it asks the target node

to join the network.
 Proof Request (Q): if set to 1 then a proof is

required from the destination. For example,

such proof can be requested as identity

evidence of a node that attempts a Join, or to

authenticate a query that will update a record

in a name server, or an user to bypass a

firewall, etc.
 Proof Flags Response (S): if set to 1 it

declares that the FLIP packet contains the

proof requested.
 Leave (L) Flag: if set to1 then the source tells

a client or a server name that is going to leave

the network.
 Flag Resource Request (RQ): this can be set

to 4 values:

o 00: no request

o 01: a response is required from nodes

that are more close and from which

you can take advantage for the

resource that follows the FLIP header

(in DATA section)

o 10: the node is responding as a

possible beneficiary of the requested

resource in the DATA section

o 11: reserved for future purposes

 Payment Session Flag Type (PST): this can

be set to 4 values too:

o 00: no payment request.
o 01: time based. Payment will be

required at equal time intervals.
o 10: now. Payment is required now.
o 11: on demand. Payment will be

required several not specified times

(by setting this flag to 10 every time

it is needed).
 Algorithm Type Flag (A) : kind of

asymmetric cryptographic algorithm used.
 Crypto-currency code: crypto-currency code

used for transactions (e.g.: 01: Bitcoin, 02:

Litecoin, etc.)
 Gateway address: 1) the gateway to reach the

next gateway to the destination, 2) or the

destination itself if no gateway is required.
 Proof. Phrase: a random string that is

encrypted with the private key of the source

and that will be signed by the destination with

its private key and then returned to the source

in the same field.
 Payment. Address: the address of the e-

wallet to which send the payment.
 The payload (DATA Section): all data in this

area are encrypted with the private key of the

sender (whether it is a device, a user or

otherwise).

2.3 FLIP over GVN routing on flat labels. FLIP

would be the first communication protocol to use flat

labels based routing; migration from IP routing to

Disco for example would simply carry a next

generation Internet in our everyday life: before

reaching this final step, let’s consider a not efficient but

interesting predecessor of VRR and Disco in order to

have an exact idea of what is really meaning routing on

flat labels: ROFL. Although not being a high-

performance architecture according to some studies

[10], ROFL (as Disco does too) preserves all three

fundamental characteristics described in the previous

paragraph and with FLIP is able to guarantee fourth

(slow migration) still required; however, there are

some aspects in ROFL and Disco that should be

modified to solve redundancy problems or to improve

performance. Access control, for instance, can be

managed both by ROFL or Disco routers or at network

level by FLIP; a risk/benefit ratio to delete the access

control from the architecture (that could not be

removed from the protocol because it is needed by the

migration from IP) could be therefore evaluated. In

terms of performance it is also important to modify

ROFL or Disco so that routing can be done on all

resource IDs and not only on the IDs of the various

devices; to do this, each router should have as many

DHT as the types of existing resources in FLIP giving

so rise to what I'd call multi-dimensional routing

where for each resource type (dimension) there are

some defined routes. A practical example is feasible

thanks to the difference between user resources and

device resources: as already mentioned device IDs are

not related to the IDs of the users, and a user can

geographically move himself and be accessible via the

address of another device (in this paper ID, public

address and flat label are synonyms). In the scenario

only routes of user resources change because one of the

lasts has moved; routes of device resources and their

DHTs remain unchanged. Finally, in the context of the

problems to be solved about FLIP over both ROFL or

Disco, a key issue could be the temporary mismatch of

elements of a given DHT in FLIP with the

corresponding element in ROFL or Disco; in fact,

applying the multi-dimensional routing both to FLIP
PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1749v1 | CC-BY 4.0 Open Access | rec: 16 Feb 2016, publ: 16 Feb 2016

and to the flat label based architecture in case of failure

of a device, an element may be temporarily present in

one and absent in the other until both will report the

failure.

3. FLAT LABELS

Flat labels are bit strings of variable and finite length.

Unlike in IP addresses, their variable size allows an

additional flexibility for DHT-based architecture or

protocol that uses them (e.g.: ROFL, VRR); this

flexibility belongs to the use of hash functions that

"normalize" the size of the flat label to one length

while retaining the uniqueness, thus making them

usable in DHTs. With regard to safety and in order to

maintain a level of the latter almost equal to that

provided by the symmetrical one, asymmetrical

encryption requires much longer keys sizes: in 2003

the RSA stated that a 1024-bit asymmetric key is

equivalent to an 80-bit symmetric key; a 2048-bit

asymmetric key is equivalent to a 112-bit symmetric

key and 3072-bit asymmetric key is equivalent to a

128-bit key. RSA recommends using at least a 1024-bit

asymmetric key if you plan to keep your documents

safe until 2010 and use a 2048-bit asymmetric key if

you want to secure documents until 2030; the 3072-bit

asymmetric key is suitable for documents that should

remain confident beyond 2030. A NIST document

defines an asymmetric key of 15360-bit equivalent to a

256-bit symmetric key. As a result, each FLIP packet

could have larger IP packets sizes in order of several

kilobytes, since the protocol has three fields that

contain flat label: popular 1500-byte limit is exceeded

only by the overhead (so without payload) and this

could be a problem for networks with relatively low

MTU (e.g. Ethernet) to divide the IP packet containing

FLIP in multiple frames. The use of GVN solves the

problem highlighted thanks to its transparent

fragmentation feature: everyone can send and receive

big FLIP packets without warring about fragmentation.

Using FLIP, the network would manage variable sized

addresses according to the size of asymmetric key

used: the safer must be the FLIP payload, the longer

will the address, the more computing capacity and

bandwidth will be needed for those who want to take

advantage of that. From the perspective of a complete

migration to Disco anyway, the size of a new version

of the protocol should be reduced because it will no

longer require the next gateway field. For simplicity in

this paper I will use, where not otherwise specified, to

1024-bit FLIP addresses and the asymmetric

encryption algorithm will be RSA. The only limit to

the FLIP protocol based on DHTs with asymmetric

cryptography is the choice of the length of the resulting

string of the hash function and the type of DHT to be

used for the main DHT: once you have made these

choices, they can no longer be changed.

4. ROUTING ON IP

The heart of the flat label system that uses current

routing Internet architecture is the DHT of standard

labels which includes the addresses of hosts and users,

named main DHT; algorithms for handling it are those

of Chord [11] with some editing. The choice fells on

Chord because it is the most commonly used and its

maximum number of hops, although not optimal, is

O(log N), where N is the total number of flat labels:

however, it is not difficult to use other topologies of

DHT. This chapter will explain through intuitive codes

written in pseudo-c++ the various ways to take

advantage of the potential of FLIP; the first

demonstrations that follow relate to the management of

the main DHT.

Algorithm 1. Aggregation of a node n connected to the

Internet with FLIP address fl_addr and IP address

ip_addr having an already known node n1. (Pseudo-

code)

 n = new Node(hash(fl_addr));

 n.ipaddr = ip_addr;

 n.flipaddr = fl_addr;

 n.join(n1);

 updateNS(); //optional

The first algorithm shows the connection of a FLIP

entity (a host, an user, etc.) to Chord ring: to be an

element of the ring the node must have a key that is the

result of a hash function, which in this case is applied

at the FLIP node itself. The join, stabilize, notify and

fix_fingers functions belong to the upgraded version of

Chord for the managing of concurrent operations and

network errors [11]. The function updateNS() updates

the records in the name system by connecting to a

name server with an already known FLIP address;

updating records can publish both only the aggregation

of the node, or even the election of it as gateway (see

below): all these operations are carried out using

asymmetric encryption that guarantees the identity of

involved nodes.

Algorithm 2. Pseudo-code of the changes in stabilize()

function of Chord.

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1749v1 | CC-BY 4.0 Open Access | rec: 16 Feb 2016, publ: 16 Feb 2016

 x = successor.predecessor;

 if (x  (n, successor))

o rndstr=n.crypt(random-string,

n.PRIVATE_KEY)

o proof = x.crypt(x.decrypt(rndstr,

n.fl_addr), x.PRIVATE_KEY);

o if (random_string is equal to

n.decrypt(proof, x.fl_addr))

 successor = x;

 successor.notify(n);

 notifyNS(); //optional

The main DHT is the first element of FLIP to use

asymmetric encryption: algorithm 2 is a modification

of the stabilize() function of Chord where a node n

authenticates another node x before setting it as his

successor. Authentication is performed with the classic

style of asymmetric cryptography i.e. requiring the

signature (proof) of a string, that is randomly generated

(random_string) and then encrypted by the

authenticating node n, from the authenticated node x

that uses its private key (x.PRIVATE_KEY) to sign it.

In this example the two generic functions: crypt() and

decrypt() represent the ideal mechanism for signing

and signature verification in asymmetric cryptography.

If the signature decrypted with public key (i.e. with the

FLIP address) of the node to be authenticated will

correspond to the randomly generated string then

authentication will success. The last function,

notifyNS(), asks to a server name with already known

FLIP address to authenticate the node x and possibly

update the record (a failure may be noticed); this single

function delegated to the server name the responsibility

to verifying the existence and authenticity of node x,

and optionally to change or to add the record; on

multiple requests in a short period, the name server

may decide, for example, whether to run all these tests

or just the first one, or discard each of them.

Algorithm 3. Pseudo-code of the changes to notify()

function.

 if (predecessor is nil or n1  (predecessor, n))

o proof = n1.crypt(random-string,

n1.PRIVATE_KEY),

o if (random_string is equal to

n.decrypt(proof, n1.fl_addr))

 predecessor = n1;

Algorithm 3 implements the same modification used

for the authentication of a node but in this case it is

applied to the notify() function of Chord. This modify

is expensive in terms of bandwidth overhead and of

computing capacity but necessary and sufficient to

certify the identity of the main entities of the ring; for

greater security, however, you might consider the

possibility to apply it also to the fix_fingers() function

of Chord with the cost of a further reduction of the

above resources. Now, returning to main DHT protocol

usage I will do an example written in a pseudo-C++

style code that relates to the authentication request that

a node sends to another one; please considered it purely

indicative because programming style is personal and

combinations of the instructions necessary for the

implementation of a function may be manifold.

Pseudo-code 1. Code written in pseudo-c++ of a

function that uses the FLIP. This example function

shows a node n while creates and sends a FLIP packet

to authenticate another but already known node n1, and

then awaiting for reply. The node n has only an IPv4

address (in addition to FLIP address) as well as the

node n1.

 pkt = new FlipPacket();

 pkt.setProofReq(1);

 pkt.alg_length = lalg1 ;

 pkt.alg_type = alg1;

 pkt.source = n.flipaddr;

 pkt.dest = n1.flipaddr;

 pkt.proof = crypt(random_string,

n.PRIVATE_KEY, k1, x1);

 if (n1.ipaddr != NULL)

o n.send(pkt, n1. flipaddr);

 else

o gw = n.select_next_gateway(n1);

o if (gw == NULL)

 if (gateway != NULL)

 gw = gateway;

 else

 return FALSE;

o n.send(pkt, gw);

 rcvpkt = n.wait_for_proof_res();

 if ((rcvpkt != NULL) AND

(rcvpkt.getProofRes() == 1))

o str = decrypt(rcvpkt.proof,

n1.flipaddr, k1, x1);

o if (str == random_string)

 return TRUE;

o return FALSE;

Building the packet the bit for the authentication

request is set to 1 and the various fields are filled, in

particular those describing the chosen algorithm for

encryption are filled with the well known code number

alg1 (e.g.: 1 = RSA, etc.) and with its length (e.g. 1024

bit) lalg1. If the chosen algorithm for the main DHT is

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1749v1 | CC-BY 4.0 Open Access | rec: 16 Feb 2016, publ: 16 Feb 2016

different from that presented in this paper and the

authentication request was made in order to aggregate a

node, then you may need to set the Join bits to 1 too. In

this function the condition of existence of an IP address

always bypasses the call of the function

select_next_gateway() (described later) simply sending

the packet through the send() function; since in this

example the target node has certainly an IP address,

that condition is unhelpful and here is implemented

only to introduce the next paragraph about the send()

and its use of the name system. Then if the rcvpkt

object contains the response packet (for completeness

you might also verify the correspondence between the

source and the node n1) and the response bit for

authentication is set to 1 then you can proceed with

verification: the string in the proof field is properly

decoded by the instructions within the ad hoc function

decrypt() that you can implement as needed. The return

value will be TRUE if the node n1 will be

authenticated, FALSE otherwise.

4.1 Dynamo. This is the Amazon’s high availability

key-value store with incremental scalability, symmetry,

decentralization and heterogeneity. Actually, it is used

only by the Amazon’s internal services, but for my

goal in this paper I need two assumption: first is that it

is available worldwide. Data is partitioned and

replicated using consistent hashing and consistency is

facilitated by object versioning and among replicas is

maintained by a quorum-like technique and a

decentralized replica synchronization protocol. Second

assumption that I need is that Dynamo can be built for

the destination flat labels based routing architecture (if

it is so functionally over IP, why not over Disco too?).

4.2 Name System. Conceptually the name system that

should help the main DHT to improve FLIP

performance is not different from the actual DNS; I

might talk about it as a DNS extension because what

should be in the new system would not change

anything in the present one, while adding more

potential features. To simplify the explanation you

might reduce the concept of Internet DNS to the

management of the following match: domain name <->

IPv4 address, as shown in table 1.

Domain name IPv4 address

www.uniroma2.eu 160.80.1.246
Table 1. A simple domain name <-> IPv4 address match in

actual DNS.

The matches needed to an NS redesigned for FLIP

would instead be five, as shown in the example table 2

where you maintain other domain features for each NS

record. Of course, new name system may have

different semantics.

NS name FLIP
add
ress

Archite
cture
type

Address Resource
or

gateway
type

Next
gate
way

www.uni
roma2.e

u

FL1 IPv4 160.80.1.246

gw1.ipv4
v6.net

FL2 IPv4 123.123.123.
123

IPv4v6

gw2.ipv4
v6.net

FL3 2001:0DB8:0
000:0000:000
0:0000:0000:

0001

IPv6v4

www.ipv
6.com

FL4 4002:1EF8:00
00:0000:0000
:0000:0000:0

002

IPv6v4 FL3

www.flip
.net

FL5 Disco DiscoIPv4 FL7

gw3.ipv4
flip.net

FL6 124.124.124.
124

IPv4Disco

gw4.ipv4
flip.net

FL7 DiscoIPv4

Table 2. Examples of the new NS record to FLIP; being very

long, FLIP addresses are here represented by tags that begin to

FL.

Coexistence of different network architectures is made

possible by gateways; each peer can begin a gateway if

has at least two concurrent connections to different

architectures and has updated its status in the name

system. In this regard, I would like to notice that the

need of a gateway exists only in condition of having

different architectures using FLIP: in the perspective of

a complete migration to a flat label based routing

architecture the name system (if used) would only act

as an helper to improve performance since, at the

migration end, its records will not contain more data

about gateways, the only ones whose specifications

aren’t recoverable from the peer-to-peer FLIP network

but from NS before or while migrating. In table 2 it is

possible to understand the design of the architecture of

a new Internet with only (but not necessarily) three

architectures that could be similar to that shown in the

following figure 4 . It’s considerable the fact that in

table 2 there is a simple key-value storing scheme and

that’s the only thing FLIP need to work: there is no

complex query management to achieve and so it’s

possible to think to the DNS extension not as a

hierarchical system built on centralized servers in

which unique key is a NS name, but as a scalable peer-

to-peer key value store like Dynamo where the unique

key is a FLIP address. According to that, using

Dynamo instead of FNS or similar for example will

guarantee that FLIP will not relay on a centralized

authority.

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1749v1 | CC-BY 4.0 Open Access | rec: 16 Feb 2016, publ: 16 Feb 2016

http://www.uniroma2.eu/
http://www.uniroma2.eu/
http://www.uniroma2.eu/
http://www.uniroma2.eu/
http://www.ipv6.com/
http://www.ipv6.com/
http://www.flip.net/
http://www.flip.net/

Figure 4. State of migration from IP to Disco for coexisting

architectures using FLIP.

Intersections of clouds are hosts connected to multiple

architectures; in that example central intersection

shows hosts that can be elected as gateway for all

architectures.

Algorithm 4. select_next_gateway() function.

 If (n.ARCH is not qual to n1.ARCH)

o For A in (n, ARCH)

 if A is equal to n1.ARCH

 return n;

o For A in (n, ARCH)

 gw =

nsget_next_gateway(n1, A);

 if (gw is not nil)

 return gw;

o return nil;

 return n;

If in pseudo-code 1 node address no1 had not belonged

to the IPv4 class then it would be necessary to select an

intermediate node denominated: “gateway” with ability

to communicate with both IPv4 and the architecture of

the target node. Each node can be elected as gateway or

give up this function, and can publish or delete his

election in name system; therefore nodes can exist with

gateway function that are not published. The

publication and the election are borne by the node itself

which can also ask for money to carry out this service

for other nodes (see below). In the pseudo-code 1

example a particular case is shown too, i.e. one in

which the source node architecture finds no gateway to

reach the destination node architecture: this occurs

when both architectures have no common gateway and

must resort to nodes in intermediate architectures. The

need for intermediate architectures is rare and usually

occurs when one of the two architectures is not

widespread or is in a small "neighboring" network, as

in a scheme similar to that in Figure 5 only where a

small LAN with IPv6 addresses and an IPv4v6

gateway tries to reach a node with an IPv6 Internet

address. To handle situations of intermediate

architectures there are two possible solutions: first, that

I suggest, is to manually set the best gateways path so

that every node in the LAN can reach the destination

without travelling through too many intermediate

nodes; second would be to make the name system

processing a shortest path through various gateways,

dramatically increasing the workload of servers. Since

these situations as mentioned above may be rare,

evaluating the manual selection of the gateways path

would be a better choice.

Figure 5. Example of a LAN with IPv6 addresses that tries to

contact an IPv6 Internet node but that is only connected to an

IPv4 Internet host. In this case, you must manually set the FLIP

gateway for the LAN which then will call

nsselect_next_gateway() function.

On success algorithm 4 returns the FLIP address of the

gateway to insert in the gateway address field of the

protocol. You can immediately deduce that often,

when the packet is distributed among the hosts on a

single architecture, the value of the gateway address is

the same as that of the destination address; this

redundancy may be deleted with an improvement of

the protocol, for example adding a control bit. As first

step, select_next_gateway() function checks the

existence of the latter case before starting a first control

cycle between the architectures that are actually

connected to n and so returning still n; the next step

involves the execution of a last cycle during which for

each architecture to which n is linked, a name server

will be queried about destination node architectures

(here calling a custom function nsget_next_gateway()

whose implementation is easy and so not described) in

order to find a match and get the gateway which will

then be returned to the calling function. The worst case

is, therefore, when the second cycle fails finding an

intermediate host which can act as a gateway: this case

is rare and as mentioned above occurs more in

configurations like that illustrated in Figure 5 .

IPv4 Disco

IPv6

IPv4 Disco

IPv6 LAN

IPv6

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1749v1 | CC-BY 4.0 Open Access | rec: 16 Feb 2016, publ: 16 Feb 2016

4.3 Crypto-coins and cash flows. Acting as a gateway

is a service that could be sold: the money used to

purchase it are the ones provided by peer to peer

systems of crypto-currencies, first among them Bitcoin

[12] created from a.k.a. Satoshi Nakamoto in 2009 and

become popular worldwide. Base of this system is also

asymmetric encryption and its peers make wide use of

it to support a mathematically hard to break and

authority independent monetary system. Implementing

this system to be used on FLIP is relatively simple:

every time you want a payment, for example to allow

the continuation of a gateway service or to sell

resources (see below), the requesting host adds the

necessary data in first ready to be sent packet 1) setting

payment session type field to a value that depends on

the type of required payment, 2) indicating the code of

the crypto-currency needed in crypto-currency code, 3)

setting the amount of money in units and cents in their

respective fields payment units and payment cents, 4)

filling the fields Payment address with the address of

own electronic wallet and Payment ID with a value

other than zero, then 5) awaiting for the packet

carrying money from the host that will (or will not)

send them. The latter will in turn decide whether or not

to pay and to risk an interruption of the data flow of

data or less; in the latter case, the host must make a

regular payment and somehow recover the transaction

string shown in Figure 2 (that is not difficult: crypto-

currencies software is open source). The retrieved

string will be part of the next FLIP packet that is sent

to the requesting host using payment address field as

proof of payment; in addition, Payment ID field must

contain the same value as that in the packet containing

the request citing a reference for the transaction. In the

case of fixed-term payments (payment session = 10),

the same value of payment ID filed will be sent through

multiple packets at regular intervals along with always

different transaction strings without need of further

requests by the receiver. Check of the transaction

strings is borne by the receiver; at present, in various

crypto-coins systems a transaction takes from a few

seconds to several minutes to be confirmed: it follows

that the recipient will have to wait a certain amount of

time before you receive the money, so the transaction

string is more useful as a payment notification rather

than as an immediate proof of the same.

5. THE RESOURCES

Except for the gateway which as mentioned can be

published in name servers, all FLIP resources are first

published in peer-to-peer network using DHT and later

in the name system in order to improve the

performance of the protocol and therefore of the

architecture that the latter uses.

5.1 User resources. The most important resource is

undoubtedly the user: it owns a FLIP address (and

therefore the user owns a private key) and its

publication occurs before in peer to peer, and then in

name system by the call to a joining function like that

in algorithm 1. The fact that a user and a host have

two FLIP addresses but the same host as destination

modifies the search time of Chord algorithm used in

this paper: if u is the number of users and h is the

number of hosts in the main DHT then finding one of

these two resources takes O (log (h)) hop (where each

hop is a FLIP packet that starting from source arrives

to destination) because the hop from a host to the user

published by the latter actually does not exist. Until

migration to Disco will not be complete, however, in

the previous calculation you have to add the number of

eventually traversed gateways while searching: in a

drastic hypothesis where the maximum number of

publishable and intermediate gateways between source

and destination is 1 and where all the h nodes have

another default gateway (for example, because each of

them is in a LAN with different architecture

connections as in Figure 5) needed time is O (2 (log

(h) -1) + log (h)) hop where for each hop you must

travel through 2 gateways. Implementing a system of

calculation of shortest paths in a name system to

manage more than one FLIP gateway between source

and target is therefore not recommended also to avoid a

considerable decline in the FLIP packets distribution

performances when looking for a resource that is in a

drastic hypothesis already assuming the existence of a

single gateway: (2 (log (h) -1) + log (h)), without

considering the packets distribution of the underlying

architectures, because the latter still hardly could

improve the result. Of course, using the name system

instead of using Chord for the search with the

maximum number of intermediate and publishable

gateways set to 1 and according to the LAN example in

Figure 5, then the number of nodes used to reach the

name server is Θ (2). In case of temporary

inconsistency between peer to peer query results and

name system ones, firsts are to be considered reliable

and that explains how FLIP has the feature to be before

partially, and in the migration end totally, independent

from central authorities.

5.2 Other resources. The main DHT is composed of

three types of resources: the first two, those of the hosts

and users, have already been discussed. The third type

is actually a meta-resource: its function is to identify

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1749v1 | CC-BY 4.0 Open Access | rec: 16 Feb 2016, publ: 16 Feb 2016

another DHT and the host that publics it is its first node

and must remain on the net as much as possible, like a

beacon for anyone who wanted to use it but don't know

where to join. Let p be the node that wants to publish a

resource: first of all p creates the resource using the

DHT algorithm 5, a version that takes cue from the

Chord join algorithm [11].

Algorithm 5. newDHT function algorithm that

instantiates a DHT for a resource. Node n1 belongs to

main DHT as well as node n that creates a new DHT

and joins to it, owning the same resource_flip_addr

addres in both DHTs.

 n = new Node(hash(resource_flip_addr));

 n.n = newNode(hash(resource_flip_addr));

 n.flipaddr = resource_flip_addr;

 n.n.flipaddr = n.flipaddr;

 for i = 1 to n.n.m

o n.n.finger[i].node = n;

 n.n.predecessor = n;

 n.join(n1);

 updateNS();

The new resource becomes a node of the main DHT

and the host that joins it become a reference node for

accessing or searching on the new DHT; the type of the

new resource is also identifiable through its FLIP

address (in algorithms 5 a resource of type

resource_flip_addr). All nodes belonging to the new

DHT will have their FLIP addresses to be identified:

therefore it is impossible for a node in a resource DHT

not to belong to the main DHT, as you can see in

algorithm 6 in which a FLIP node joins a resource

DHT. After setting various finger of the new DHT, the

n node joins the main DHT and updates a name server

to improve the search performance of the resource type

giving to the latter a name associated to its FLIP

address in the name system.

Algorithm 6. FLIP node n joins a resource DHT of

type resource_flip_addr.

 n.n = newNode(hash(n.flipaddr));

 n.n.flipaddr = n.flipaddr;

 n1 = rsqueryNS(resource_flip_addr);

 n.n.join(n1);

 rsupdateNS(n.flipaddr, resource_flip_addr);

In the previous algorithm n node is a “container” of

another node that will be created and attached to

resource_flip_addr resource DHT. To join, the node

queries a name server to locate a FLIP node that

already joined the DHT of resource_flip_addr type

which will allow joining through a normal call to join

Chord algorithm. Finally, n updates the name system

via an ad hoc function: rsupdateNS adding a resource

record that indicates its promotion as node that has

joined the resource_flip_addr resource type; now it is

possible to take advantage from that resource type from

the last joined node too. NS records will be stored as

well as in the example in table 3 that completes the

table 2 used for the examples with gateways.

NS name FLIP
add
ress

Archite
cture
type

Address Resource
or

gateway
type

Next
gate
way

www.uni
roma2.e

u

FL1 IPv4 160.80.1.246

gw1.ipv4
v6.net

FL2 IPv4 123.123.123.
12

IPv4v6

gw2.ipv4
v6.net

FL3 2001:0DB8:0
000:0000:000
0:0000:0000:

0001

IPv6v4

www.ipv
6.com

FL4 4002:1EF8:00
00:0000:0000
:0000:0000:0

002

IPv6v4 FL3

www.flip
.net

FL5 Disco DiscoIPv4 FL7

gw3.ipv4
flip.net

FL6 124.124.124.
12

IPv4Disco

gw4.ipv4
flip.net

FL7 DiscoIPv4

www.file
share.net

FL8 IPv4 125.125.125.
12

FL8

 FL9 IPv4 126.126.126.
12

FL8

Table 3. A node with FL9 address joins a FL8 type DHT and is

added to the example in the previous table.

The new name system thus becomes a resource system

for FLIP too; in Figure 6 you can see a model that

describes how the new resource DHTs are distributed

within the main DHT .

Figure 6. Main DHT nodes joined to other FL9, FL10 and FL11

type DHTs.

The name system offers strong performance increase

but the system that uses the FLIP protocol is

autonomous and allows searching for a resource type

Main DHT

DHT FL9

DHT FL10

DHT FL11

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1749v1 | CC-BY 4.0 Open Access | rec: 16 Feb 2016, publ: 16 Feb 2016

http://www.uniroma2.eu/
http://www.uniroma2.eu/
http://www.uniroma2.eu/
http://www.ipv6.com/
http://www.ipv6.com/
http://www.flip.net/
http://www.flip.net/

node knowing the FLIP address of the latter, which is

actually the address of the publishing node; if there

wasn't the name system, that node would be borne by

all search requests. By examining in detail the search

time without the support of a name system you note a

duplication of hops: let m be the number of nodes that

have the resource; the publishing node will be first

contacted as explained in the previous case drastic

during (2 (log (h) -1) + log (h)) hop, where h is the

number of hosts on the main DHT. Next, the publishing

node will search for a node (besides itself) that offers

the type of the published resource in O (2 (log (m) -1)

+ log (m)) hops because the fingers of the various

nodes in the DHT will not refer to nodes in the main

DHT not providing that resource, and the whole

operation will be so ended in (2 (log (h) -1) + log (h)

+2 (log (m) -1) + log (m))) hops. Even for not standard

type resources (not users, neither hosts type resources),

in case of inconsistency between the various DHTs

nodes and the name system records, only data in the

DHT nodes are reliable. I conclude this chapter finally

reporting that each resource is accessible only via FLIP

protocol and then each data stream that takes advantage

of such resource may be subject to payment using

crypto-currencies as described above for gateway

services; requiring or not requiring a payment is a

choice of the node that offers that resource.

6. ROUTING ON FLAT

LABELS

Now that I’ve discussed about FLIP giving an idea of

how generally layering it over IP, let’s see what I think

should be the real destination of IP to flat labels

migration: Disco. After that, I’ll talk about how

layering FLIP on it.

6.1 Disco. Disco is a scalable routing protocol. Its

authors have achieved what until now was considered

an opened issue: a scalable, low-stretch, routing on flat

names protocol; they define “stretch” as the ratio of the

protocol’s route length to the shortest path length.

Since shortest-path routing is theoretically achievable

but practically impossible due to immense memory

requirements and even more communication and

computation work, Disco limit itself to guarantee a low

stretch of 7 (according on its authors evaluations) in

worst case on flow’s first packet, and 3 on subsequent

packets. There are two “ways” of routing in Disco: first

is a name-dependent compact routing, second instead is

name-independent; that’s because Disco is comprised

of NDDisco, a name-dependent compact routing

protocol and it’s possible make an initial choice on

what of them to use. Even if using a consistent hashing

distributed name database that associate node names to

flat labels (addresses), name-dependent compact

routing may be dangerous for a security issue: a node

can arbitrary change data related to hashes of the

portion of database that it stores. Name-independent

compact routing is what I prefer: Disco can maintain

state of routing tables of every node with high probably

without using name resolution; obviously, there is a

vanishingly small but nonzero probability that

destination’s route is not found, but in this case authors

advise to recur to name resolution as a fallback. Now I

think: will be possible to change consistent hashing

distributed database used in NDDisco with a flat label

version of Dynamo? This will solve previous security

issue because: 1) NDDisco utilizes simple key-value

queries and 2) Dynamo has gossip-based membership

protocol that avoids having centralized registry for

storing membership and node liveness information

(that’s what NDDisco needs in this case).

6.2 FLIP over GVN routing on Disco. As about

ROFL, I don’t know what can be Disco network level

protocol, but I don’t care about that: maybe it will be

FLIP, in the other case I would wait for GVN’s authors

to use libraries built for it, if tomorrow Disco were a

reality. In both cases, important things are two: 1) how

to match FLIP host addresses with Disco host

addresses? obviously, an easy way is that both

addresses of a node are the same and I will take that as

an assumption because both are flat names and Disco

does not set limits their length or semantic. 2) How to

add what I defined “multi-dimensional routing” in

Disco? Since Disco has addresses for internal use only

because such addresses are flat labels containing

portions of paths and are updated dynamically, we can

think to them as IP addresses: the idea is to associate

FLIP addresses to Disco internal addresses, not to its

real addresses (we may presume that such real

addresses could be FLIP addresses and in table 3, for

example, a Disco real address and a FLIP address are

the same), so we can build FLIP’s main DHT.

Algorithm 7 is a Disco version of Algorithm 1.

Algorithm 7. Aggregation of a node n connected to the

Internet with FLIP address fl_addr and Disco internal

address di_addr having an already known node n1.

(Pseudo-code)

 n = new Node(hash(fl_addr));

 n.diaddr = di_addr;

 n.flipaddr = fl_addr;

 n.join(n1);
PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1749v1 | CC-BY 4.0 Open Access | rec: 16 Feb 2016, publ: 16 Feb 2016

 updateNS(); //optional

A difference from IP is that Disco internal addresses

have dynamic labels, so one of them can change its

label when already a FLIP node has joined the main

DHT; this is not a problem because the primary key of

the main DHT is a FLIP address, not a Disco internal

address, so the change can be propagated through the

peer-to-peer FLIP network as a normal attribute

associated with the primary key (that, if using a Disco

version of Dynamo, will be very fast). On this way

Disco name resolution needed by Disco is done at

“FLIP level” instead of at “Disco level”, aided by the

faster Dynamo. Of course, another choice is to leave to

NDDisco this work removing second line from

Algorithm 7 so that NDDisco can update its consistent

hashing database, but that maybe will be slower. In

both cases however, all other algorithms shown for IP

are the same for Disco, maybe with little and easy to

discover differences. That’s all.

7. CONCLUSIONS

The purpose of this paper is not to criticize harshly the

various architectures to highlight the qualities of FLIP

protocol. I wrote this document to raise the problem of

the various aspects to consider while designing a new

architecture for the Internet, which should not be

limited to the performances of most used services or to

innovations. Only after that, I propose a solution that

could, if not take place between the various proposals,

at least give an input to design a policy that considers

also and above all the Internet community approval.

Having said that I conclude with the hope that my idea

of FLIP will not be a flop (computer humor).

BIBLIOGRAPHY

[1] K. Lakshminarayanan, I. Stoica, S. Shenker,

“ROFL: Routing on Flat Labels”. In

SIGCOMM, 2006.

[2] S. Salsano, “Generalized Virtual

Networking”. In Networking Group,

department of electronic engineering,

University of Rome “Tor Vergata”, 2014.

[3] V. Jacobson, D. Smetters, J. Thornton, M.

Plass, N. Briggs, R. Braynard, “Networking

Named Content”. In Proc. of ACM CoNEXT,

2009.

[4] A. Detti, N. Blefari-Melazzi, S. Salsano, M.

Pomposini, “CONET: A Content Centric

Inter-Networking Architecture”. Departement

of Electronic Engineering, University of

Rome “Tor Vergata”. In Proc. of ACM

SIGCOMM, 2011.

[5] L. Popa, A.Ghodsi, I. Stoica, “HTTP as the

Narrow Waist of the Future Internet”. U.C.

Berkeley. SIGCOMM, 2010.

[6] N. Blefari-Melazzi, A. Detti, M.

Arumaithurai, K. Ramakrishnan, “Internames:

a name-to-name principle for the future

Internet”. University of Rome “Tor Vergata”,

2013.

[7] A. Montresor, “Designing extreme distributed

systems: challenges and opportunities”. In

CompArch, 2012.

[8] OFELIA: http://www.fp7-ofelia.eu/

[9] G. Bembo, “Free Name System” – Tesi di

laurea. Università degli studi di Salerno, 2009.

http://www.freenamesystem.it/

[10] B. Chun, S. Ratnasamy, E. Kohler,

“NetComplex: A Complexity Metric for

Networked System Designs”. In Proceedings

of USENIX Networked Systems Design and

Implementation (NSDI), 2008.

[11] I. Stoica, R. Morris, D. Karger, M. Frans

Kaashoek, H. Balakrishnan, “Chord: A

Scalable Peer-to-peer Lookup Service for

Internet Applications”. In ACM SIGCOMM

Computer Communication Review 31 (4):

149.

[12] Bitcoin: https://bitcoin.org, Satoshi Nakamoto

(pseudonimo), 2009.

[13] A. Singla, P. B. Godfrey, K. Fall, G.

Iannaccone, and S. Ratnasamy, "Scalable

routing on flat names," in Proceedings of the

6th International Conference, ser. Co-NEXT

'10. New York, NY, USA: ACM, 2010.

[14] M. Thorup, U. Zwick, “Compact routing

schemes”. In proc. SPAA, 2001.

[15] Giuseppe DeCandia , Deniz Hastorun , Madan

Jampani , Gunavardhan Kakulapati , Avinash

Lakshman , Alex Pilchin , Swaminathan

Sivasubramanian , Peter Vosshall , Werner

Vogels, “Dynamo: amazon's highly available

key-value store”. Proceedings of twenty-first

ACM SIGOPS symposium on Operating

systems principles, October 14-17, 2007,

Stevenson, Washington, USA.

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1749v1 | CC-BY 4.0 Open Access | rec: 16 Feb 2016, publ: 16 Feb 2016

http://www.fp7-ofelia.eu/
http://www.freenamesystem.it/
https://bitcoin.org/

