
FLIP: an Internet protocol for flat labels

In recent years the increasingly frequent use of the Web service, the advent of the cloud

computing, the exponential growing of mobile devices with the introduction of pervasive

and ubiquitous computing and the emergence of extreme distributed systems have

brought to light the problem of the no longer adequate distribution of data packets over

Internet and the related IP protocol issues. This paper promotes flat labels as a real

alternative to IP addresses for a future Internet architecture and proposes FLIP as first

network layer protocol for flat labels. Among several features absolutely not existing in IP

protocol, FLIP has a native support for crypto-currencies.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1749v2 | CC-BY 4.0 Open Access | rec: 23 May 2016, publ: 23 May 2016

FLIP: an Internet protocol for flat labels

Giovanni Bembo

Department of computer engineering, University of Rome "Tor Vergata", Rome, Italy.

ABSTRACT

In recent years the increasingly frequent use of the Web

service, the advent of the cloud computing, the exponential

growing of mobile devices with the introduction of

pervasive and ubiquitous computing and the emergence of

extreme distributed systems have brought to light the

problem of the no longer adequate distribution of data

packets over Internet and the related IP protocol issues. This

paper promotes flat labels as a real alternative to IP

addresses for a future Internet architecture and proposes

FLIP as first network layer protocol for flat labels. Among

several features absolutely not existing in IP protocol, FLIP

has a native support for crypto-currencies.

Keywords – GVN, Generalized Virtual Network, Flat

Labels, DHT, ROFL, Dynamo, VRR, Scalable compact

routing, Disco, Routing on identities, Name based, Internet

architectures, Network layer, Name system, Crypto-

currencies, Micropayments

1. INTRODUCTION

A full migration to a new architecture: why not? Of course,

IP has demonstrated its reliability during past decade and

it’s hard to think to a new architecture that can totally

substitute it. However, research and projects about that

eventuality have followed the idea of a general purpose

oriented architecture that can be mobile friendly and can

allow many other useful features. Flat labels seem to be

perfect candidates to gain the position of actual Internet

addresses because can achieve all positive features of IPv4

addresses like non mutable semantics or IPv6 addresses like

to be more than billion, moreover can allow a separation of

their identity from their location and address not only

hosts or devices (the latter depends on the architecture on

which they are utilized). A migration from IP to a flat label

based architecture is obviously not immediate; we think that

the only way to go to a complete migration is to allow a

long coexistence of IP and flat label addresses during which

the Internet community can use and evaluate the new

proposed architecture without losing anything: we call that

“the gradual migration”. This paper introduces FLIP, first

Internet protocol for flat labels, that allows a coexistence of

IP addresses and FLIP addresses (a.k.a. flat labels) for the

same host so adding the new powerful benefits of flat labels

to the usual Internet; as practical consequence the IP global

infrastructure has no changes while community can evaluate

new experiences with flat labels (and eventually think to a

migration). A prototype of FLIP has been implemented

using the GVN (Generalized Virtual Network) [2] API in

order to be easily layered on IP before, and on a flat label

based architecture after (if there will be a gradual global

migration).

Let’s take a look at some interesting features of flat labels

used in combination with FLIP: first of them is a possible

concrete realization of a vision of a global infrastructure,

as described in [17], where “Anyone will be able to plug in

from any location with any device at any time” [cit.]. FLIP

addresses are flat labels, and can map any entity (that we

call: resource) is thinkable to be able to own an address, so

not only hosts or devices, but also files, disk blocks,

memory areas, parts of code, virtual machines, users,

groups, and everything is identifiable by an ID. That’s

possible because flat labels are “virtually infinite” and

aren’t subjected to a specified physical location or to a

particular semantic.

This paper begins with an overview of related works and

some scenarios where FLIP could be useful; then in section

four it gives some basic concepts of various technologies

adopted. Section five talks about FLIP details and

specifications both when layered on IP as pre-migration /

integration / evaluation step and when adopted as possible

network protocol for flat names based architectures in an

hypothetical post migration final step. Sixth section regards

technical implementations of FLIP on IP while in section

seven there is a technical description of how resources and

groups of the latter are built. Finally, eighth one describes

the technical implementation of FLIP on a flat label based

architecture. Section nine is about a helpful evaluation of

FLIP over IP.

2. RELATED WORKS

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1749v2 | CC-BY 4.0 Open Access | rec: 23 May 2016, publ: 23 May 2016

IP or not IP? It seems a Shakespeare-like question but we

think it is not so far from where we are going: there are a lot

of projects trying to improve, bypass, extend or substitute

the actual distribution capabilities of the IP protocol.

Research and projects about that have led to the formation

of three main "schools of thought". First school based his

studies on high performance architectures for content

accessing while second focused on research of oriented or

entirely dedicated architectures to the general purpose

(that are, architectures not benefitting a feature in spite of

another one). First and second school have in common the

objective to adopt something that is not in the current

Internet, such as new protocols, ad-hoc routers, different

name system services or addressing semantics, and so on.

Third school is different: it includes all projects that use the

current IP-based hardware to exploit existing and discretely

programmable routing protocols in order to manage packet

forwarding and/or update the routes, independently or user-

driven. For what concerns FLIP protocol, it belongs to

second school and incentives using flat labels as solution of

many issues; let’s see some of its fairly and nearly related

projects and discover to what school they belong.

Content Centric Networks and CONET. CCN [3] and

CONET [4] belong to first school. They try to improve

aspects where IP data distribution has to be “enforced”: web

contents, shared files, mobile devices. Base of their work is

routing on content names, so extending standard IP data

distribution capabilities layering a CCN ad-hoc protocols

stack over IP.

SDN based projects and OFELIA. Software Defined

Networks belong to third school and use almost

programmable routing devices on IP based hardware to

forward packets and modify routing tables at software level.

OFELIA [8] is one of the most important projects in the

SDN paradigm; it is based on hardware that supports

Openflow protocol.

Internames. Internames [6] and MobilityFirst (see below)

are two projects almost near to FLIP. Internames is an

architectural framework in which names are used to identify

all entities involved in communication: content, users,

devices, logical points, and services.

MobilityFirst. The goal of MobilityFirst [19] is to better

accommodate mobile entities on the Internet in a scalable,

trustworthy, and useable manner. The related project takes a

radical approach to redesigning the Internet including

rethinking end-point naming, such as through IP, and

connection-oriented protocols, such as TCP. At a high level,

MobilityFirst allows applications to securely interact with

abstract, mobile entities in a connectionless fashion,

providing connectivity and minimal user-disruption in the

presence of mobility.

3. SOME SCENARIOS

According to [17], “A fundamental way in which nomadic

computing differs from conventional desktop operation is

the huge variability in connectivity to the rest of the user’s

computing environment. That level of connectivity often

includes extended periods of low bandwidth or no

communication capacity at all. Since many users and
programs alike make intermittent, but nevertheless

essential, use of “off-machine” information and services,

they are unable to operate effectively unless extraordinary

steps (like reconfiguring their IP address, changing their

netmask, removing their proxy, etc.) are taken by

sophisticated users or their network administrators. The

goal of nomadic computing is precisely to permit users and

programs to be as efficient as possible and as unaffected as

possible in this environment of uncertain connectivity and
unfamiliar locations. That is, nomadicity makes the

sometimes-connected computer operate in the same way

and as effectively in a foreign location as when it is

connected as a friendly to his organization’s information

network” [cit.]. With FLIP no one will need to reconfigure

his host address (thanks to a flat labels property: separation

of location and identity); there will be no more netmasks (if

the foreign environment has left IP for flat labels), and so

on. Moreover, with FLIP an user can create a group of flat

labels and identify it with a FLIP address so that moving

from a location to another one will be more simple: all

entities identified by flat labels in that group will migrate at

the same time, so transforming foreign environment in a

familiar one. FLIP groups eliminates the distinction

between networks and storing systems, threating the net as

a gigantic database. To gracefully understand FLIP’s, or in

general, flat labels’ potential, let’s see some scenarios.

Scenario 1: searching for moving code

As first scenario, this paper introduces a realization of a

rapid service discovery discussed in [18] using FLIP.

Alice is running an app on her FLIP ready smartphone (that

is, her smartphone implements FLIP protocol other than the

IP one). The app allows her to watch online video streaming

from some free and FLIP ready storing servers. Videos on

servers are in different format because are loaded without

transcoding from other uploaders. Alice choose her video

from a list and tries to play it in streaming but the app

haven’t the appropriate codec to do that because the file has

a “.cod” extension; automatically and transparently, the

app begins a key/value search using the peer-to-peer FLIP PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1749v2 | CC-BY 4.0 Open Access | rec: 23 May 2016, publ: 23 May 2016

subsystem to find nearest FLIP hosts that have published

the app FLIP group address, then choosing between them

those that have published the “.cod” extension FLIP group

address. Finally, the app downloads the proper codec from

the latter and Alice can play her video. Let’s note that there

is no possibility for the codec to come from a fraudulent

server because codecs are encrypted symmetrically and the

symmetrical key is also randomly generated and

asymmetrically encrypted in the codecs with the private key

of that group (only the group owner holds it); on the other

hand, every FLIP address is a public key so that decrypting

is as easy as to know a FLIP group address. This scenario is

a classic example of code mobility where flat labels play an

important role giving an identity to every portion of code

(called the “know-how” as described in [16]) in Internet.

Scenario 2: the mobile file system

Bob has a FLIP based filesystem (that is, a filesystem able

to address and crypt its blocks with FLIP addresses). Bob’s

filesystem is distributed in three different Italian hosts and

Bob’s laptop knows only the three first blocks FLIP

addresses; such addresses are published by the three Italian

hosts. When Bob’s laptop tries an access to that filesystem,

it connects to the first blocks FLIP addresses and reads from

or writes to them. One day Bob has to go to the USA; in the

airport he turns off its laptop and embarks on the plane.

Once arrived at his apartment in New York, Bob turns on

his laptop that holds its FLIP address (identity/location

separation); trying to access to the FLIP filesystem, Bob’s

laptop suffers of slowness due the distance from Italian

hosts so that automatically searches for one or more

available American FLIP hosts and then orders a migration

to them (an host is available to receive migrated blocks if it

belongs to an ad-hoc created group for FLIP filesystem, as

in scenario 1 where a server is available to storing a codec if

it belongs to the FLIP group of that codec). During the

migration Bob can still transparently access not yet

migrated blocks from Italian hosts, “feeling a gradual

speedup” of read and write operations until the migration is

completed.

Scenario 3: security issues

A system administrator of a big USA company has traveled

to Europe for work. Having to access to the user interface of

one of the company’s servers in USA, he need to bypass the

company’s firewall. Fortunately, both firewall and server

are FLIP ready so that there is only a simple rule to add to

the firewall: let pass only FLIP packet signed with

sysadmin’s private key. There is no more port filtering

neither deep content inspections or DDos attack risks: only

sysadmin can generate traffic with his FLIP address that is

different from the FLIP address of the host with which is

connected to the Internet from Europe; indeed, the sysadmin

can decide to send FLIP packet from his own FLIP address

and not from FLIP address of his temporary host.

Scenario 4: a micropayment system

As last scenario this paper leave the yet unique feature of

FLIP that supports crypto-currencies natively. Packets in

FLIP can “carry” money so that a communication based

service (almost all in Internet) can be delivered if data it

receives contains a payment. That type of small, and

optionally continuous payments, is called micropayment

and can incentive the crowd sourcing as well explained in

[18]. A typical scenario of micropayment consists in the

pay-for-browse service of a site where every FLIP packet

that come from that site can request a payment within the

ack response packet; but a real form of crowd sourcing is

well explained in the following scenario 4. Bob is on the

train for Rome and needs to connect to Internet with his

smartphone that is only wi-fi capable and there isn’t

hotspots on the train. Fortunately the smartphone is FLIP

ready so he localizes Alice’s smartphone (FLIP ready too)

that is publicizing the FLIP group “crowd bitcoin

connections” (a group of mobile devices that can allow

connections to Internet for bitcoins). After a few

handshaking, Bob connects to Internet through Alice

smartphone (that is 4G and wi-fi capable), and pays her 1

Satoshi (=0.00000001 bitcoins) every received FLIP packet.

4. BASIC CONCEPTS

FLIP is a network communication protocol for flat labels. It

can be layered on IP and at the same time be applied to a

flat label architecture allowing coexistence of the latter and

the IP one. FLIP addresses are flat labels and layering on IP

is done using GVN, while the most reliable candidates as

new flat label architecture on which to layer FLIP, we

think, are ROFL [1] and Disco [13]. Before entering in

details, let’s briefly explain the concept of “flat label” and

speak about GVN and Disco.

4.1 Flat labels. Flat labels are bit strings of variable and

finite length. Unlike in IP addresses, their variable size

allows an additional flexibility that belongs to the use of

hash functions that "normalize" the size of the flat label to

one length while retaining its uniqueness. Every FLIP

packet has its payload encrypted asymmetrically and

symmetrically: first bytes (asymmetrically encrypted) of the

payload can contain a temporary symmetrical key to decrypt

the rest of the payload itself; that’s because it may be a bad

idea to encrypt it asymmetrically once you have seen its

length. With regard to safety and in order to maintain a level
PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1749v2 | CC-BY 4.0 Open Access | rec: 23 May 2016, publ: 23 May 2016

of the latter almost equal to that provided by the

symmetrical one, asymmetrical encryption requires much

longer keys sizes (that is, FLIP addresses are very long): in

2003 the RSA stated that a 1024-bit asymmetric key is

equivalent to an 80-bit symmetric key; a 2048-bit

asymmetric key is equivalent to a 112-bit symmetric key

and 3072-bit asymmetric key is equivalent to a 128-bit key.

RSA recommends using at least a 1024-bit asymmetric key

if you plan to keep your documents safe until 2010 and use

a 2048-bit asymmetric key if you want to secure documents

until 2030; the 3072-bit asymmetric key is suitable for

documents that should remain confident beyond 2030. A

NIST document defines an asymmetric key of 15360-bit

equivalent to a 256-bit symmetric key. As a result, each

FLIP packet could have larger IP packets sizes in order of

several kilobytes, since the protocol has three fields that

contain flat label: popular 1500-byte limit is exceeded only

by the overhead (so without payload) and this could be a

problem for networks with relatively low MTU (e.g.

Ethernet) to divide the IP packet containing FLIP in

multiple frames. The use of GVN solves the problem

highlighted thanks to its transparent fragmentation feature:

everyone can send and receive big FLIP packets without

warring about fragmentation. Using FLIP, the network

would manage variable sized addresses according to the size

of asymmetric key used: the safer must be the FLIP

payload, the longer will the address, the more computing

capacity and bandwidth will be needed for those who want

to take advantage of that. For simplicity in this paper I’ll

use, where not otherwise specified, to 1024-bit FLIP

addresses and the asymmetric encryption algorithm will be

RSA. The only limit of flat labels into the FLIP protocol

(that utilizes DHTs, Distributed Hashing Tables, see later) is

the choice of the length of the resulting hash string and the

type of DHT: once you have made these choices, they can

no longer be changed.

4.2 Why to layer over GVN instead directly over IP?

FLIP uses GVN for its smart fragmentation abilities. We

have directly worked in GVN team to implement fast and

reliable fragmentation functions in its API so that every

layered protocol can easily utilize it, as FLIP does.

4.3 Disco. Disco is a scalable routing protocol. Its authors

have achieved what until now was considered an opened

issue: a scalable, low-stretch, routing on flat names

protocol; they define “stretch” as the ratio of the protocol’s

route length to the shortest path length. Since shortest-path

routing is theoretically achievable but practically impossible

due to immense memory requirements and even more

communication and computation work, Disco limit itself to

guarantee a low stretch of 7 (according on its authors

evaluations) in worst case on flow’s first packet, and 3 on

subsequent packets. There are two “ways” of routing in

Disco: first is a name-dependent compact routing, second

instead is name-independent; that’s because Disco is

comprised of NDDisco, a name-dependent compact routing

protocol and it’s possible make an initial choice on what of

them to use. Even if using a consistent hashing distributed

name database that associate node names to flat labels

(addresses), name-dependent compact routing may be

dangerous for a security issue: a node can arbitrary change

data related to hashes of the portion of database that it

stores. Name-independent compact routing is what we

prefer: Disco can maintain state of routing tables of every

node with high probably without using name resolution;

obviously, there is a vanishingly small but nonzero

probability that destination’s route is not found, but in this

case authors advise to recur to name resolution as a

fallback.

5. DETAILS AND

SPECIFICATIONS

To introduce FLIP’s details and its specifications, now let’s

see FLIP protocol applied to two different architectures by

using GVN before over IP and then, only theoretically, over

ROFL that maybe is the simplest flat label routing

architecture on which implement our protocol; using this

approach we will explain FLIP step by step and easily. In

the end, I’ll discuss about FLIP layered over Disco that is a

very performant flat labels compact routing and maybe is

also the final target of a complete migration from the IP

addresses to the flat labels ones, however not excluding a

indefinitely coexistence of both.

5.1 FLIP over IP: details. Is it a gamble to give the pillars

of Internet, the IP addresses, some features remotely

attributable to elements that are part of the peer-to-peer

architecture? We note that each IP address is "equal" to

Figure 2: Chain template blocks of a crypto-coin. Every client of

crypto-coins has a copy of the latter. A new rectangle is added

from every FLIP packet that contains a transaction.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1749v2 | CC-BY 4.0 Open Access | rec: 23 May 2016, publ: 23 May 2016

other addresses; no one exists, either IPv4 or IPv6 address,

which has an influence of any kind on the other of the same

version. Unfortunately, IP addresses do not provide

separation between location and identity, so any device

identified with one of them is forced to change its ID every

time it travel between geographically distant areas (i.e.: the

smartphones). In a complete vision of pervasive computing

and ubiquitous computing not only each device should be

able to retain their own identity regardless of its location, to

communicate with any other and wherever it is without any

intervention, and to provide every service that the rest of the

devices offer, but the concept of "reachable host" should

embrace more than a single category, the devices one, and

should expand itself to user contents or, more generally,

user resources. Thanks to flat labels, FLIP uses addresses

suitable to peer-to-peer based architectures, allows

separation of identity and location, offers autonomy and

dispenses the needed primitives to allow each device to

provide those resources that the rest of the devices provide.

Its three main objectives are: 1) aiding the migration from

IPs to flat labels addresses 2) ensuring a transparent

asymmetrical encryption, always active and not

constrained to a single subset of algorithms; 3) providing

an on-demand payment system for data transfer with every

crypto-currency. The first goal is achieved thanks to GVN

that will easily support FLIP on IP and will provide its

libraries for the destination flat label architecture. On IP,

each FLIP node (peer) allows you to associate a fixed-

length alphanumeric address (flat label, that is also a

public key) to each IP address in a dynamic way (associated

IP can be changed on demand); different speech you will do

for the destination flat label architecture where the dynamic

association “FLIP address” <-> “flat label destination

address” may be not necessary, that’s because both may be

the same. Inside and outside IP, each flat label is managed

by a peer-to-peer network implemented by FLIP primitives;

the primitives will then assign to each entity an unique

alphanumeric public address and a secret (private) key.

Device, users, files, other data structures, etc. will possess a

pair of public and private keys and packets sent from a

public address to another will be always encrypted (in first

bytes of their payloads) with the secret address (private key)

of the sender, ensuring that each packet received should

have been definitely sent (because signed) from anything

else apart from the sender and thus satisfying the second

target (there will be no more need for SSL, HTTPS, SSH,

etc.). As regards the third goal, however, our opinion is that

the birth of crypto-currencies was a real revolution for the

Internet, perhaps having greater importance than Web 2.0

and social networks; potentials hidden behind crypto-

currencies are not only of economic nature and FLIP use

one of these: a low (or network) level manageability of

transactions. With FLIP is possible to send and receive

packets with money; it is a payment that can be made at

protocol so sent (or received) packets carry money. FLIP

primitives implement the transfer of a string which is the

result of a series of hashes and digital signatures used in

crypto-currency technology; this string represents a

payment transaction and its destination will insert it in the

last block of the chain strings of the crypto-currency used

and propagate it to all the other clients who will in turn add

it on top of the last block of their copy of the chain (Figure

2), thus providing a computationally difficult not

refutability of the payment sent by the sender. In addition to

these three main objectives, FLIP offers other important

features: as mentioned above each entity (resource) has an

alphanumeric address; even the entity types are definable

in an abstract manner by the user and can be identified

and published: the user is not limited to a little group of

entity-types such as device, users, files or content, but can if

necessary create a resource type X with alphanumeric

address K and another one can find it on the network by

identifying it with K. An example among thousands ones of

the relevance of this potential (the only limit is the

imagination) could be the resource type X: ”computing

power hired for the program P” where P is in turn

identified as a resource; the user who will run the program P

can do a search through the P2P FLIP network for resource

type X (as done in scenarios 1,2 and 4) finding all nodes that

offer (paid or not) computing power for P and choose

between the found resources most advantageous ones. For

each type of resource created the primitives will create a

new P2P DHT (see “Implementation” chapters). FLIP also

offers the chance to "bypass" the firewalls (at network level,

not at HTTP protocol level as [5] does) because active

encryption makes the sender always identifiable: a user can

send packets signed with his private key instead signing

them with the private key of the device that he uses

(ubiquitous computing), making his data flow recognizable

by firewalls that will enforce or not appropriate policies.

Figure 3 shows FLIP protocol over GVN layered on the

version 4 IP protocol. For a correct usage of the protocol

what follows is needed: 1) a set of clients (peers), each of

which can act as a source, destination, publisher of

resources and gateway; 2) a set of gateways that are

responsible to communicate between two different network

technologies; 3) finally, although optional, the set of name

servers: suitably programmed (one among many: FNS [9]),

they maintain “FLIP address” <--> “domain name” matches

and “FLIP address” <-> “network address” matches and

accelerate operations of FLIP gateways. Closing the IP

address speech, it is important to note that implementing

FLIP does not affects existing routing capabilities.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1749v2 | CC-BY 4.0 Open Access | rec: 23 May 2016, publ: 23 May 2016

S Q L

D T R

DM

Fragmentation (optional)

FLIP pre-header

G

V

N

Length Next header Flag

Process Logic number

F

L

I

P

o

p

t

i

o

n

s

Proof phrase (algorithm length bytes)

Transaction ID

Payment units

Payment cent.

F

L

I

P

Source address (algorithm length bytes)

Gateway address (algorithm length bytes)

Destination address (algorithm length bytes)

Ver Header lengthFlag
RQ PST AJ

I

P

v

4

o

p

t

i

o

n

Option type Option length Option data

I

P

v

4

VersionHeader lengthService type Packet length
Prec

Destination address

Identification Flag Fragment offset

Time to live Transport Header checksum
GVN

Sending address

Proof length

Total length

Crypto-currency code Header checksum

Alg. code and conf.

Payment address (Wallet address length)

Figure 3: FLIP over GVN (over IP).

5.2 FLIP: some protocol specifications. Now I’ll show the

description of the most important fields that make up the

protocol of course independent from the different packet

based communication technologies:

 Header length: FLIP header length (in words)
 Algorithm length: length of the input string of the

chosen asymmetric encryption algorithm (in

bytes).
 Join (J) Flag: if set to 1 it asks the target node to

join the network.

 Proof Request (Q): if set to 1 then a proof is

required from the destination. For example, such

proof can be requested as identity evidence of a

node that attempts a Join, or to authenticate a query

that will update a record in a name server, or an

user to bypass a firewall, etc.
 Proof Flags Response (S): if set to 1 it declares

that the FLIP packet contains the proof requested.
 Leave (L) Flag: if set to1 then the source tells a

client or a server name that is going to leave the

network.
 Flag Resource Request (RQ): this can be set to 4

values:

o 00: no request

o 01: a response is required from nodes that

are more close and from which you can

take advantage for the resource that

follows the FLIP header (in DATA

section)

o 10: the node is responding as a possible

beneficiary of the requested resource in

the DATA section

o 11: reserved for future purposes

 Payment Session Flag Type (PST): this can be

set to 4 values too:

o 00: no payment request.
o 01: time based. Payment will be required

at equal time intervals.
o 10: now. Payment is required now.
o 11: on demand. Payment will be required

several not specified times (by setting this

flag to 10 every time it is needed).
 Algorithm Type Flag (A) : kind of

asymmetric/symmetric cryptographic algorithms

used.
 Crypto-currency code: crypto-currency code used

for transactions (e.g.: 01: Bitcoin, 02: Litecoin,

etc.)
 Gateway address: 1) the gateway to reach the

next gateway to the destination, 2) or the

destination itself if no gateway is required.
 Proof. Phrase: a random string that is encrypted

with the private key of the source and that will be

signed by the destination with its private key and

then returned to the source in the same field.
 Payment. Address: the address of the e-wallet to

which send the payment.
 The payload (DATA Section): first bytes in this

area are encrypted with the private key of the

sender (whether it is a device, a user or otherwise).

The rest is encrypted symmetrically with the

temporary key encrypted in first bytes.

5.3 FLIP over a flat label architecture. FLIP would be the

first communication protocol to use flat labels based

routing; migration from IP routing to Disco for example

would simply carry a next generation Internet in our

everyday life: before reaching this final step, let’s consider a

not efficient but interesting predecessor of Disco in order to PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1749v2 | CC-BY 4.0 Open Access | rec: 23 May 2016, publ: 23 May 2016

have an exact idea of what is really meaning routing on flat

labels: ROFL. Although not being a high-performance

architecture according to some studies [10], ROFL is (as

Disco is too) able to guarantee a slow migration; however,

there are some aspects in ROFL and Disco that should be

modified to solve redundancy problems or to improve

performance. Access control, for instance, can be managed

both by ROFL or Disco routers or at network level by FLIP;

a risk/benefit ratio to delete the access control from the

architecture (that could not be removed from the protocol

because it is needed by the migration from IP) could be

therefore evaluated. In terms of performance it is also

important to modify ROFL or Disco so that routing can be

done on all resource IDs and not only on the IDs of the

various devices; to do this, each router should have as many

DHTs (or equivalent address management logic items) as

the types of existing resources in FLIP giving so rise to

what I'd call multi-dimensional routing where for each

resource type (dimension) there are some defined routes. A

practical example is feasible thanks to the difference

between user resources and device resources: as already

mentioned device IDs are not related to the IDs of the users,

and a user can geographically move himself and be

accessible via the address of another device (in this paper

ID, public address and flat label are synonyms). In the

scenario only routes of user resources change because one

of the lasts has moved; routes of device resources and their

DHTs remain unchanged. Finally, in the context of the

problems to be solved about FLIP over both ROFL or

Disco, a key issue could be the temporary mismatch of

elements of a given DHT in FLIP with the corresponding

element in ROFL or Disco; in fact, applying the multi-

dimensional routing both to FLIP and to the flat label based

architecture in case of failure of a device, an element may

be temporarily present in one and absent in the other until

both will report the failure.

6. IMPLEMENTATION: FLIP ON

IP

The heart of the FLIP protocol is a DHT of standard flat

labels which includes hosts and users addresses, named

main DHT; algorithms for handling it are those of Chord

[11] with some editing. The choice fells on Chord because it

is the most commonly used and its maximum number of

hops, although not optimal, is O(log N), where N is the total

number of flat labels; however, it is not difficult to use other

topologies of DHT. This chapter will explain through

intuitive codes written in pseudo-c++ the various ways to

take advantage of the potential of FLIP; following five

algorithms relate to the management of the main DHT on

IP.

Algorithm 1. Aggregation of a node n connected to the

Internet with FLIP address fl_addr and IP address ip_addr

having an already known node n1. (Pseudo-code)

 n = new Node(hash(fl_addr));

 n.ipaddr = ip_addr;

 n.flipaddr = fl_addr;

 n.join(n1);

 updateNS(); //optional

The first algorithm shows the connection of a FLIP entity

(a host, an user, etc.) to Chord ring: to be an element of the

ring the node must have a key that is the result of a hash

function, which in this case is applied at the FLIP node

itself. The join, stabilize, notify and fix_fingers functions

belong to the upgraded version of Chord for the managing

of concurrent operations and network errors [11]. The

function updateNS() updates the records in the name system

by connecting to a name server with an already known FLIP

address; updating records can publish both only the

aggregation of the node, or even the election of it as

gateway (see below): all these operations are carried out

using asymmetric encryption that guarantees the identity of

involved nodes.

Algorithm 2. Pseudo-code of the changes in stabilize()

function of Chord.

 x = successor.predecessor;

 if (x  (n, successor))

o rndstr=n.crypt(random-string,

n.PRIVATE_KEY)

o proof = x.crypt(x.decrypt(rndstr,

n.fl_addr), x.PRIVATE_KEY);

o if (random_string is equal to

n.decrypt(proof, x.fl_addr))

 successor = x;

 successor.notify(n);

 notifyNS(); //optional

The main DHT is the first element of FLIP to use

asymmetric encryption: algorithm 2 is a modification of

the stabilize() function of Chord where a node n

authenticates another node x before setting it as his

successor. Authentication is performed with the classic style

of asymmetric cryptography i.e. requiring the signature

(proof) of a string, that is randomly generated

(random_string) and then encrypted by the authenticating

node n, from the authenticated node x that uses its private

key (x.PRIVATE_KEY) to sign it. In this example the two

generic functions: crypt() and decrypt() represent the ideal PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1749v2 | CC-BY 4.0 Open Access | rec: 23 May 2016, publ: 23 May 2016

mechanism for signing and signature verification in

asymmetric cryptography. If the signature decrypted with

public key (i.e. with the FLIP address) of the node to be

authenticated will correspond to the randomly generated

string then authentication will success. The last function,

notifyNS(), asks to a server name with already known FLIP

address to authenticate the node x and possibly update the

record (a failure may be noticed); this single function

delegated to the server name the responsibility to verifying

the existence and authenticity of node x, and optionally to

change or to add the record; on multiple requests in a short

period, the name server may decide, for example, whether

to run all these tests or just the first one, or discard each of

them.

Algorithm 3. Pseudo-code of the changes to notify()

function.

 if (predecessor is nil or n1  (predecessor, n))

o proof = n1.crypt(random-string,

n1.PRIVATE_KEY),

o if (random_string is equal to

n.decrypt(proof, n1.fl_addr))

 predecessor = n1;

Algorithm 3 implements the same modification used for the

authentication of a node but in this case it is applied to the

notify() function of Chord. This modify is expensive in

terms of bandwidth overhead and of computing capacity but

necessary and sufficient to certify the identity of the main

entities of the ring; for greater security, however, you might

consider the possibility to apply it also to the fix_fingers()

function of Chord with the cost of a further reduction of the

above resources. Now, returning to main DHT protocol

usage I’ll do an example written in a pseudo-C++ style code

that relates to the authentication request that a node sends to

another one; please considered it purely indicative because

programming style is personal and combinations of the

instructions necessary for the implementation of a function

may be manifold.

Pseudo-code 1. Code written in pseudo-c++ of a function

that uses the FLIP. This example function shows a node n

while creates and sends a FLIP packet to authenticate

another but already known node n1, and then awaiting for

reply. The node n has only an IPv4 address (in addition to

FLIP address) as well as the node n1.

 pkt = new FlipPacket();

 pkt.setProofReq(1);

 pkt.alg_length = lalg1 ;

 pkt.alg_type = alg1;

 pkt.source = n.flipaddr;

 pkt.dest = n1.flipaddr;

 pkt.proof = crypt(random_string,

n.PRIVATE_KEY, k1, x1);

 if (n1.ipaddr != NULL)

o n.send(pkt, n1. flipaddr);

 else

o gw = n.select_next_gateway(n1);

o if (gw == NULL)

 if (gateway != NULL)

 gw = gateway;

 else

 return FALSE;

o n.send(pkt, gw);

 rcvpkt = n.wait_for_proof_res();

 if ((rcvpkt != NULL) AND (rcvpkt.getProofRes()

== 1))

o str = decrypt(rcvpkt.proof, n1.flipaddr, k1,

x1);

o if (str == random_string)

 return TRUE;

o return FALSE;

Building the packet the bit for the authentication request is

set to 1 and the various fields are filled, in particular those

describing the chosen algorithm for encryption are filled

with the well known code number alg1 (e.g.: 1 = RSA, etc.)

and with its length (e.g. 1024 bit) lalg1. If the chosen

algorithm for the main DHT is different from that presented

in this paper and the authentication request was made in

order to aggregate a node, then you may need to set the Join

bits to 1 too. In this function the condition of existence of an

IP address always bypasses the call of the function

select_next_gateway() (described later) simply sending the

packet through the send() function; since in this example the

target node has certainly an IP address, that condition is

unhelpful and here is implemented only to introduce the

next paragraph about the send() and its use of the name

system. Then if the rcvpkt object contains the response

packet (for completeness you might also verify the

correspondence between the source and the node n1) and the

response bit for authentication is set to 1 then you can

proceed with verification: the string in the proof field is

properly decoded by the instructions within the ad hoc

function decrypt() that you can implement as needed. The

return value will be TRUE if the node n1 will be

authenticated, FALSE otherwise.

6.1 Dynamo. This is the Amazon’s high availability key-

value store with incremental scalability, symmetry,

decentralization and heterogeneity. Actually, it is used only

by the Amazon’s internal services, but for my goal in this

paper we need two assumption: first is that it is available

worldwide. Data is partitioned and replicated using

consistent hashing and consistency is facilitated by object

versioning and among replicas is maintained by a quorum-PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1749v2 | CC-BY 4.0 Open Access | rec: 23 May 2016, publ: 23 May 2016

like technique and a decentralized replica synchronization

protocol. Second assumption that we need is that Dynamo

can be built for the destination flat labels based routing

architecture (if it is so functionally over IP, why not over

Disco too?).

6.2 Name System. Conceptually the name system that

should help the main DHT to improve FLIP performance is

not different from the actual DNS; we might talk about it as

a DNS extension because what should be in the new system

would not change anything in the present one, while adding

more potential features. To simplify the explanation you

might reduce the concept of Internet DNS to the

management of the following match: domain name <->

IPv4 address, as shown in table 1.

Domain name IPv4 address

www.uniroma2.eu 160.80.1.246

Table 1. A simple domain name <-> IPv4 address match in actual

DNS.

The matches needed to an NS redesigned for FLIP would

instead be five, as shown in the example table 2 where you

maintain other domain features for each NS record. Of

course, new name system may have different semantics.

NS name FLIP
add
ress

Archite
cture
type

Address Resource
or

gateway
type

Next
gate
way

www.uni
roma2.e

u

FL1 IPv4 160.80.1.246

gw1.ipv4
v6.net

FL2 IPv4 123.123.123.
123

IPv4v6

gw2.ipv4
v6.net

FL3 2001:0DB8:0
000:0000:000
0:0000:0000:

0001

IPv6v4

www.ipv
6.com

FL4 4002:1EF8:00
00:0000:0000
:0000:0000:0

002

IPv6v4 FL3

www.flip
.net

FL5 Disco DiscoIPv4 FL7

gw3.ipv4
flip.net

FL6 124.124.124.
124

IPv4Disco

gw4.ipv4
flip.net

FL7 DiscoIPv4

Table 2. Examples of the new NS record to FLIP; being very long,

FLIP addresses are here represented by tags that begin to FL.

Coexistence of different network architectures is made

possible by gateways; each peer can begin a gateway if has

at least two concurrent connections to different architectures

and has updated its status in the name system. In this regard,

we would like to notice that the need of a gateway exists

only in condition of having different architectures using

FLIP: in the perspective of a complete migration to a flat

label based routing architecture the name system (if used)

would only act as an helper to improve performance since,

at the migration end, its records will not contain more data

about gateways, the only ones whose specifications aren’t

recoverable from the peer-to-peer FLIP network but from

NS before or while migrating. In table 2 it is possible to

understand the design of the architecture of a new Internet

with only (but not necessarily) three architectures that could

be similar to that shown in the following figure 4 . It’s

considerable the fact that in table 2 there is a simple key-

value storing scheme and that’s the only thing FLIP need to

work: there is no complex query management to achieve

and so it’s possible to think to the DNS extension not as a

hierarchical system built on centralized servers in which

unique key is a NS name, but as a scalable peer-to-peer key

value store like Dynamo where the unique key is a FLIP

address. According to that, using Dynamo instead of FNS or

similar for example will guarantee that FLIP will not relay

on a centralized authority.

Figure 4. State of migration from IP to Disco for coexisting

architectures using FLIP.

Intersections of clouds contain hosts connected to multiple

architectures; in that example central intersection shows

hosts that can be elected as gateway for all architectures.

Algorithm 4. select_next_gateway() function.

 If (n.ARCH is not qual to n1.ARCH)

o For A in (n, ARCH)

 if A is equal to n1.ARCH

 return n;

o For A in (n, ARCH)

 gw = nsget_next_gateway(n1,

A);

 if (gw is not nil)

 return gw;

o return nil;

 return n;

If in pseudo-code 1 node address no1 had not belonged to

the IPv4 class then it would be necessary to select an

intermediate node denominated: “gateway” with ability to

communicate with both IPv4 and the architecture of the

target node. Each node can be elected as gateway or give up

this function, and can publish or delete his election in name

IPv4 Disco

IPv6

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1749v2 | CC-BY 4.0 Open Access | rec: 23 May 2016, publ: 23 May 2016

http://www.uniroma2.eu/
http://www.uniroma2.eu/
http://www.uniroma2.eu/
http://www.uniroma2.eu/
http://www.ipv6.com/
http://www.ipv6.com/
http://www.flip.net/
http://www.flip.net/

system; therefore nodes can exist with gateway function that

are not published. The publication and the election are

borne by the node itself which can also ask for money to

carry out this service for other nodes (see below). In the

pseudo-code 1 example a particular case is shown too, i.e.

one in which the source node architecture finds no gateway

to reach the destination node architecture: this occurs when

both architectures have no common gateway and must

resort to nodes in intermediate architectures. The need for

intermediate architectures is rare and usually occurs when

one of the two architectures is not widespread or is in a

small "neighboring" network, as in a scheme similar to that

in Figure 5 only where a small LAN with IPv6 addresses

and an IPv4v6 gateway tries to reach a node with an IPv6

Internet address. To handle situations of intermediate

architectures there are two possible solutions: first, that we

suggest, is to manually set the best gateways path so that

every node in the LAN can reach the destination without

travelling through too many intermediate nodes; second

would be to make the name system processing a shortest

path through various gateways, dramatically increasing the

workload of servers. Since these situations as mentioned

above may be rare, evaluating the manual selection of the

gateways path would be a better choice. On success

algorithm 4 returns the FLIP address of the gateway to

insert in the gateway address field of the protocol. You can

immediately deduce that often, when the packet is

distributed among the hosts on a single architecture, the

value of the gateway address is the same as that of the

destination address; this redundancy may be deleted with an

improvement of the protocol, for example adding a control

bit. As first step, select_next_gateway() function checks the

existence of the latter case before starting a first control

cycle between the architectures that are actually connected

to n and so returning still n; the next step involves the

execution of a last cycle during which for each architecture

to which n is linked, a name server will be queried about

destination node architectures (here calling a custom

function nsget_next_gateway() whose implementation is

easy and so not described) in order to find a match and get

the gateway which will then be returned to the calling

function. The worst case is, therefore, when the second

cycle fails finding an intermediate host which can act as a

gateway: this case is rare and as mentioned above occurs

more in configurations like that illustrated in Figure 5 .

Figure 5. Example of a LAN with IPv6 addresses that tries to contact

an IPv6 Internet node but that is only connected to an IPv4 Internet

host. In this case, you must manually set the FLIP gateway for the

LAN which then will call nsselect_next_gateway() function.

6.3 Crypto-coins and cash flows. Acting as a gateway is a

service that could be sold: the money used to purchase it are

the ones provided by peer to peer systems of crypto-

currencies, first among them Bitcoin [12] created from

a.k.a. Satoshi Nakamoto in 2009 and become popular

worldwide. Base of this system is also asymmetric

encryption and its peers make wide use of it to support a

mathematically hard to break and authority independent

monetary system. Implementing this system to be used on

FLIP is relatively simple: every time you want a payment,

for example to allow the continuation of a gateway service

or to sell resources (see below), the requesting host adds the

necessary data in first ready to be sent packet 1) setting

payment session type field to a value that depends on the

type of required payment, 2) indicating the code of the

crypto-currency needed in crypto-currency code, 3) setting

the amount of money in units and cents in their respective

fields payment units and payment cents, 4) filling the fields

Payment address with the address of own electronic wallet

and Payment ID with a value other than zero, then 5)

awaiting for the packet carrying money from the host that

will (or will not) send them. The latter will in turn decide

whether or not to pay and to risk an interruption of the data

flow of data or less; in the latter case, the host must make a

regular payment and somehow recover the transaction string

shown in Figure 2 (that is not difficult: crypto-currencies

software is open source). The retrieved string will be part of

the next FLIP packet that is sent to the requesting host using

payment address field as proof of payment; in addition,

Payment ID field must contain the same value as that in the

packet containing the request citing a reference for the

transaction. In the case of fixed-term payments (payment

session = 10), the same value of payment ID filed will be

sent through multiple packets at regular intervals along with

always different transaction strings without need of further

requests by the receiver. Check of the transaction strings is

borne by the receiver; at present, in various crypto-coins

IPv4 Disco

IPv6 LAN

IPv6

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1749v2 | CC-BY 4.0 Open Access | rec: 23 May 2016, publ: 23 May 2016

systems a transaction takes from a few seconds to several

minutes to be confirmed: it follows that the recipient will

have to wait a certain amount of time before you receive the

money, so the transaction string is more useful as a payment

notification rather than as an immediate proof of the same.

7. IMPLEMENTATION: THE

RESOURCES

Except for the gateway which as mentioned can be

published in name servers, all FLIP resources are first

published in peer-to-peer network using DHT and later in

the name system in order to improve the performance of the

protocol and therefore of the architecture that the latter uses.

7.1 User resources. The most important resource is

undoubtedly the user: it owns a FLIP address (and therefore

the user owns a private key) and its publication occurs

before in peer to peer, and then in name system by the call

to a joining function like that in algorithm 1. The fact that a

user and a host have two FLIP addresses but the same host

as destination modifies the search time of Chord algorithm

used in this paper: if u is the number of users and h is the

number of hosts in the main DHT then finding one of these

two resources takes O (log (h)) hop (where each hop is a

FLIP packet that starting from source arrives to destination)

because the hop from a host to the user published by the

latter actually does not exist. Until migration to Disco will

not be complete, however, in the previous calculation you

have to add the number of eventually traversed gateways

while searching: in a drastic hypothesis where the maximum

number of publishable and intermediate gateways between

source and destination is 1 and where all the h nodes have

another default gateway (for example, because each of them

is in a LAN with different architecture connections as in

Figure 5) needed time is O (2 (log (h) -1) + log (h)) hop

where for each hop you must travel through 2 gateways.

Implementing a system of calculation of shortest paths in a

name system to manage more than one FLIP gateway

between source and target is therefore not recommended

also to avoid a considerable decline in the FLIP packets

distribution performances when looking for a resource that

is in a drastic hypothesis already assuming the existence of

a single gateway: (2 (log (h) -1) + log (h)), without

considering the packets distribution of the underlying

architectures, because the latter still hardly could improve

the result. Of course, using the name system instead of

using Chord for the search with the maximum number of

intermediate and publishable gateways set to 1 and

according to the LAN example in Figure 5, then the

number of nodes used to reach the name server is Θ (2). In

case of temporary inconsistency between peer to peer query

results and name system ones, firsts are to be considered

reliable and that explains how FLIP has the feature to be

before partially, and in the migration end totally,

independent from central authorities.

7.2 Other resources. The main DHT is composed of three

types of resources: the first two, those of the hosts and

users, have already been discussed. The third type is

actually a meta-resource: its function is to identify another

DHT and the host that publics it is its first node and must

remain on the net as much as possible, like a beacon for

anyone who wanted to use it but don't know where to join.

Let p be the node that wants to publish a resource: first of

all p creates the resource using the DHT algorithm 5, a

version that takes cue from the Chord join algorithm [11].

Algorithm 5. newDHT function algorithm that instantiates

a DHT for a resource. Node n1 belongs to main DHT as well

as node n that creates a new DHT and joins to it, owning the

same resource_flip_addr addres in both DHTs.

 n = new Node(hash(resource_flip_addr));

 n.n = newNode(hash(resource_flip_addr));

 n.flipaddr = resource_flip_addr;

 n.n.flipaddr = n.flipaddr;

 for i = 1 to n.n.m

o n.n.finger[i].node = n;

 n.n.predecessor = n;

 n.join(n1);

 updateNS();

The new resource becomes a node of the main DHT and the

host that joins it become a reference node for accessing or

searching on the new DHT; the type of the new resource is

also identifiable through its FLIP address (in algorithms 5 a

resource of type resource_flip_addr). All nodes belonging

to the new DHT will have their FLIP addresses to be

identified: therefore it is impossible for a node in a resource

DHT not to belong to the main DHT, as you can see in

algorithm 6 in which a FLIP node joins a resource DHT.

After setting various finger of the new DHT, the n node

joins the main DHT and updates a name server to improve

the search performance of the resource type giving to the

latter a name associated to its FLIP address in the name

system.

Algorithm 6. FLIP node n joins a resource DHT of type

resource_flip_addr.

 n.n = newNode(hash(n.flipaddr));

 n.n.flipaddr = n.flipaddr;

 n1 = rsqueryNS(resource_flip_addr);

 n.n.join(n1);

 rsupdateNS(n.flipaddr, resource_flip_addr); PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1749v2 | CC-BY 4.0 Open Access | rec: 23 May 2016, publ: 23 May 2016

In the previous algorithm n node is a “container” of another

node that will be created and attached to resource_flip_addr

resource DHT. To join, the node queries a name server to

locate a FLIP node that already joined the DHT of

resource_flip_addr type which will allow joining through a

normal call to join Chord algorithm. Finally, n updates the

name system via an ad hoc function: rsupdateNS adding a

resource record that indicates its promotion as node that has

joined the resource_flip_addr resource type; now it is

possible to take advantage from that resource type from the

last joined node too. NS records will be stored as well as in

the example in table 3 that completes the table 2 used for

the examples with gateways.

NS name FLIP
add
ress

Archite
cture
type

Address Resource
or

gateway
type

Next
gate
way

www.uni
roma2.e

u

FL1 IPv4 160.80.1.246

gw1.ipv4
v6.net

FL2 IPv4 123.123.123.
12

IPv4v6

gw2.ipv4
v6.net

FL3 2001:0DB8:0
000:0000:000
0:0000:0000:

0001

IPv6v4

www.ipv
6.com

FL4 4002:1EF8:00
00:0000:0000
:0000:0000:0

002

IPv6v4 FL3

www.flip
.net

FL5 Disco DiscoIPv4 FL7

gw3.ipv4
flip.net

FL6 124.124.124.
12

IPv4Disco

gw4.ipv4
flip.net

FL7 DiscoIPv4

www.file
share.net

FL8 IPv4 125.125.125.
12

FL8

 FL9 IPv4 126.126.126.
12

FL8

Table 3. A node with FL9 address joins a FL8 type DHT and is added

to the example in the previous table.

The new name system thus becomes a resource system for

FLIP too; in Figure 6 you can see a model that describes

how the new resource DHTs are distributed within the main

DHT. The name system offers strong performance increase

but the system that uses the FLIP protocol is autonomous

and allows searching for a resource type node knowing the

FLIP address of the latter, which is actually the address of

the publishing node; if there wasn't the name system, that

node would be borne by all search requests. By examining

in detail the search time without the support of a name

system you note a duplication of hops: let m be the number

of nodes that have the resource; the publishing node will be

first contacted as explained in the previous case drastic

during (2 (log (h) -1) + log (h)) hop, where h is the number

of hosts on the main DHT. Next, the publishing node will

search for a node (besides itself) that offers the type of the

published resource in O (2 (log (m) -1) + log (m)) hops

because the fingers of the various nodes in the DHT will not

refer to nodes in the main DHT not providing that resource,

and the whole operation will be so ended in (2 (log (h) -1) +

log (h) +2 (log (m) -1) + log (m))) hops. Even for not

standard type resources (not users, neither hosts type

resources), in case of inconsistency between the various

DHTs nodes and the name system records, only data in the

DHT nodes are reliable. We conclude this chapter finally

reporting that each resource is accessible only via FLIP

protocol and then each data stream that takes advantage of

such resource may be subject to payment using crypto-

currencies as described above for gateway services;

requiring or not requiring a payment is a choice of the node

that offers that resource.

Figure 6. Main DHT nodes joined to other FL9, FL10 and FL11 type

DHTs.

8. IMPLEMENTAION: FLIP ON

DISCO

Now that I’ve discussed about FLIP giving an idea of how

generally layering it over IP, let’s see what we think should

be the real destination of IP to flat labels migration: Disco.

As about ROFL, we don’t know what can be Disco network

level protocol, but we don’t care about that: maybe it will be

FLIP, in the other case we would wait for GVN’s authors to

use libraries built for it, if tomorrow Disco were a reality. In

both cases, important things are two: 1) how to match FLIP

host addresses with Disco host addresses? obviously, an

easy way is that both addresses of a node are the same and

I’ll take that as an assumption because both are flat names

and Disco does not set limits their length or semantic. 2)

How to add what we defined “multi-dimensional routing” in

Disco? Since Disco has addresses for internal use only

because such addresses are flat labels containing portions of

paths and are updated dynamically, we can think to them as

IP addresses: the idea is to associate FLIP addresses to

Disco internal addresses, not to its real addresses (we may

Main DHT

DHT FL9

DHT FL10

DHT FL11

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1749v2 | CC-BY 4.0 Open Access | rec: 23 May 2016, publ: 23 May 2016

http://www.uniroma2.eu/
http://www.uniroma2.eu/
http://www.uniroma2.eu/
http://www.ipv6.com/
http://www.ipv6.com/
http://www.flip.net/
http://www.flip.net/

presume that such real addresses could be FLIP addresses

and in table 3, for example, a Disco real address and a FLIP

address are the same), so we can build FLIP’s main DHT.

Algorithm 7 is a Disco version of Algorithm 1.

Algorithm 7. Aggregation of a node n connected to the

Internet with FLIP address fl_addr and Disco internal

address di_addr having an already known node n1. (Pseudo-

code)

 n = new Node(hash(fl_addr));

 n.diaddr = di_addr;

 n.flipaddr = fl_addr;

 n.join(n1);

 updateNS(); //optional

A difference from IP is that Disco internal addresses have

dynamic labels, so one of them can change its label when

already a FLIP node has joined the main DHT; this is not a

problem because the primary key of the main DHT is a

FLIP address, not a Disco internal address, so the change

can be propagated through the peer-to-peer FLIP network as

a normal attribute associated with the primary key (that, if

using a Disco version of Dynamo, will be very fast). On this

way Disco name resolution needed by Disco is done at

“FLIP level” instead of at “Disco level”, aided by the faster

Dynamo. Of course, another choice is to leave to NDDisco

this work removing second line from Algorithm 7 so that

NDDisco can update its consistent hashing database, but

that maybe will be slower. In both cases however, all other

algorithms shown for IP are the same for Disco, maybe with

little and easy to discover differences. That’s all.

9. EVALUATION OVER IP

We implemented our FLIP by using the OMNET++

[20]: it is a general-purpose modeling framework that is

currently heavily used in the simulation of networked

systems and distributed algorithms by the academic

research. It is characterized by a modular and extensible

architecture of C++ modules, with a Tcl graphical

interface, recently ex- tended by providing an Eclipse-

enhanced IDE. The simulator comes with several analysis

tools that allows the user to study the statistical features of

the performed experiments. Due to its success, there are

several third-party models that featured academic projects

made available through the web page of the simulator and

users can import in their models. Specifically, in this work

we have used the following libraries for OMNET++:

1. INET framework has provided the means to model

the networking devices as routers and switches,

however, we decided to do not specify the networking

failures as parameters of such models. The issue is that

the path-by-path characterization is not possible since

the on-field measurements of loss patterns are only

possible on end-to-end basis (we can detect that a given

subscriber lost a message, but not along which path

such loss happened). Therefore we have simplified the

topology by having all the underlying routing

architecture abstracted by few routing devices.

Application FLIP Chord

Figure 7. FLIP implementation on top of the Chord module

provided by OverSim within the OMNET++ simulator.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1749v2 | CC-BY 4.0 Open Access | rec: 23 May 2016, publ: 23 May 2016

A
ve

ra
ge

 H
o

p
s

to

D
e

s.
n

a.
o

n
s

2. These has been used to generate the

interconnection topology among our abstract

routing devices and the end hosts. The correct

model of the Internet topology, i.e., the

connectivity graph among its nodes [21], is one

of the key aspect to address when aiming at

making realistic simulations of systems that use

Internet to convey information. Internet is

structures as an inter- connection of distinct

routing domains, also known in literature as

Autonomous Systems (AS), which adopts an

interior gateway protocol to internally route

packets while uses an exterior gateway protocol

to forward packets towards others ASes [22].

Therefore, the topology of Internet can be

characterized using two distinct abstraction

levels: Inter-AS topology, also called AS-level

topology, having nodes representing a single AS

and edges being the BGP peering, and Intra- AS

topology, also called Router-level topology,

having nodes representing end-hosts or

hardware devices, while edges being physical

connections among them. In this work we have

limited to model Intra-AS topology, as shown in

Figure 7, leaving for future work more complex

two-level topologies. The network behavior has

50ms as link delay, and the network

encompasses 500 hosts.

Figure 8. Comparison of Latencies on a LAN and on

Planetlab, taken from [23]

3. Oversim [24] has been used to incorporate Chord

simulation modules within our simulations and to

build FLIP on top of it. Oversim adopts a modular

design and that use of the Common API to facilitate

the ex- tension with new features or protocols.

Specifically, the library provide a skeleton simulation

organized in tiers: tier 0 is made of the routing

architecture, taken from the INET framework; tier 1

can host any possible overlay, and we have selected

Chord, while the other tiers are applications and

protocols built on top of the lower tier, in particular

we have implemented FLIP on tier 2 and an

application on tier 3. This is illustrated in the

magnification of a node in Figure 7.

12

10

8

6

4

2

0
25 50 100 200 300 400 500

Number of hosts

Users and Hosts Resources

Figure 8. Number of hops

We decided to not use any real wide-area networks, such as

PlanetLab[25], due to the uncontrollable loss patterns that

make the obtained results non reproducible. For a concrete

example, let us consider the study in [23], where some

comparisons between a cluster of computers interconnected

by a dedicated LAN, and some nodes in Planetlab. On the

nodes an exchange of ping pong messages is made through

a communication protocol, and the latency needed by a

message to go to the destination and backward was

measured, and Figure 8 shows the registered latencies:

measures on LAN exhibit lower variability (as

demonstrated by an Interquartile Distance of 20), while on

Planetlab we have higher fluctuations (as demonstrated by

an Interquartile Distance of 37672.5). This allows us to say

that Planet- lab is not a controllable testbed, so that it is

tough to understand if a variation within the obtained

measures is due to some unexpected behavior of the

protocol or to uncontrollable phenomena within the testbed.

Our simulations has been run ten times, and the average

over these runs has been considered in the following

discussion (we did not observe standard deviation above 5%

of reported values having most of our measures of merit

within the 95% confidence interval, thus they are not plot-

ted on the curves). The payload of the packets is as

specified in FLIP specification [2], by encrypting the

messages as above described. In order to quantify the costs

of encryption we have measured the overhead to encrypt the

FLIP packets by using the Java open source library of the

Legion of the Bouncy Castle1 . Specifically, we used the

symmetric AES and asymmetric RSA cryptography

schemes. We obtained that the mean overhead is 268.96ms,

while the standard deviation is 183.39ms.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1749v2 | CC-BY 4.0 Open Access | rec: 23 May 2016, publ: 23 May 2016

A
ve

ra
ge

Ti
m

e
 (

m
s)

A
ve

ra
ge

Ti
m

e
 (

m
s)

St
an

d
ar

d

D
e
v

ia
,o

n
 o

f
Ti

m
e

(m
s)

A
ve

ra
ge

 N
u

m
b

er

o
f

P
ac

ke
ts

A

ve
ra

ge
 N

u
m

b
er

o
f

P
ac

ke
ts

St
an

d
ar

d

D
e
v

ia
ti

o
n

 o
f

Ti
m

e

(m
s)

The workload of our experiments consists of joining and

then leaving the overlay built by the FLIP protocol, and

registering and unregistering a number of resources

during the joining period. More complex application

scenarios have been determined, but we leave their

assessment as future work. The measure of merit that we

have considered in our experiments are the following

ones:

1. Needed time and number of packets to join and leave

the FLIP overlay;

2. Mean number of hops to reach a destination;

3. Needed time and number of needed packets to find a

resource;

4. Needed time and number of needed packets to

publish a resource and a type of resource.

Charts from Figure 9(a) to 9(c) illustrate the

performance of FLIP to add and remove a node within

the main DHT. Such value are higher than the traditional

Chord overlay due to the authentication needed when the

node state has to be varied. We can notice that the

joining operation is more expensive of the leave one with

respect of all the measures of merit, and all the trends

increases as the number of hosts augments. Publishing a

resource has a needed time that is lower than joining the

main DHT, but higher than leaving it, as depicted in

Figure 10(a). This is due to the fact that the required

authentication steps are slightly lower, despite the cost to

pay for establishing the resource DHT. In fact, the number

of needed packets is closer to the ones for joining rather

than leaving, while the average time has an opposite trend,

as shown in Figure 10(b). Also, the standard deviation

reflects such a consideration, as evident in Figure 10(c),

since is quite small, meaning that very few verifications,

and for close nodes, have been done.

The time for finding a resource is very small compared

to the other operations, and also in this case the reason is

the absence of any verification means, and the latency,

both in the average shown in Figure 11(a) and the standard

deviation in Figure 11(b), only depends on the

performances of the Chord DHT and our approach of the

multiple DHT hosts the resources of interest. Enlarging the

horizontal scale of the system, i.e., the number of hosts,

increases all the measures of merit, but the incremental

factor is smaller than in the other cases, thanks to the

partitioning of the lookup exploited by our multiple DHTs.

The benefit effect of the multiple DHT can be noticed also

by observing the number of hops needed to find a given

entity, which is lower for resources, thanks to the fact that

multiple DHTs have been established for improving such a

search.

800

700

600

500

400

300

200

100

0

25 50 100 200 300 400 500

Number
of hosts

250

240

230

220

210

200

25 50 100 200 300 400 500

Number
of hosts

35

30

25

20

15

10

5

0

25 50 100 200 300 400 500

Number
of hosts

Join Leave

(a)

Join

Leave

(b)

Join Leave

(c)

Figure 9. Experiments Results to study the time and overhead of the join and leave operations.

520

500

480

460

440

420

400

25 50 100 200 300 400 500

Number
of hosts

(a)

70

60

50

40

30

20

10

0

25 50 100 200 300 400 500

Number
of hosts

(b)

25

20

15

10

5

0

25 50 100 200 300 400 500

Number of hosts

(c)

Figure 10. Experiments Results to study the time and overhead of publishing a resource.

 PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1749v2 | CC-BY 4.0 Open Access | rec: 23 May 2016, publ: 23 May 2016

30 540 80

A

ve
ra

ge

Ti
m

e
 (

m
s)

St
an

d
ar

d

D
e
v

ia
,o

n
 o

f
Ti

m
e

(m
s)

A
ve

ra
ge

 N
u

m
b

er

o
f

P
ac

ke
ts

320

300

280

260

240

220

35

30

25

20

15

10

5

25

20

15

10

5

200
25 50 100 200 300 400 500

Number
of hosts

(a)

0
25 50 100 200 300 400 500

Number
of hosts

(b)

0
25 50 100 200 300 400 500

Number
of hosts

(c)

Figure 11. Experiments Results to study the time and finding overhead of a resource.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1749v2 | CC-BY 4.0 Open Access | rec: 23 May 2016, publ: 23 May 2016

30 540 80

10. CONCLUSIONS

The purpose of this paper is to point to a reflection on the

questions: “is there a way other than the IP one?” and “can

flat labels be a simple answer to cloud computing, code

mobility, crowd sourcing and ubiquitous or pervasive

computing?”. Protocol here described is intended as a first

point from where to start a big and concrete work on flat

labels architectures, and not as a promotion of a standard for

an improbable new architecture. Having said that we

conclude with the hope that the idea of FLIP will not be a

flop (computer humor).

BIBLIOGRAPHY

[1] K. Lakshminarayanan, I. Stoica, S. Shenker,

“ROFL: Routing on Flat Labels”. In SIGCOMM,

2006.

[2] S. Salsano, “Generalized Virtual Networking”. In

Networking Group, department of electronic

engineering, University of Rome “Tor Vergata”,

2014.

[3] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N.

Briggs, R. Braynard, “Networking Named Content”.

In Proc. of ACM CoNEXT, 2009.

[4] A. Detti, N. Blefari-Melazzi, S. Salsano, M.

Pomposini, “CONET: A Content Centric Inter-

Networking Architecture”. Departement of

Electronic Engineering, University of Rome “Tor

Vergata”. In Proc. of ACM SIGCOMM, 2011.

[5] L. Popa, A.Ghodsi, I. Stoica, “HTTP as the Narrow

Waist of the Future Internet”. U.C. Berkeley.

SIGCOMM, 2010.

[6] N. Blefari-Melazzi, A. Detti, M. Arumaithurai, K.

Ramakrishnan, “Internames: a name-to-name

principle for the future Internet”. University of

Rome “Tor Vergata”, 2013.

[7] A. Montresor, “Designing extreme distributed

systems: challenges and opportunities”. In

CompArch, 2012.

[8] OFELIA: http://www.fp7-ofelia.eu/

[9] G. Bembo, “Free Name System” – Tesi di laurea.

Università degli studi di Salerno, 2009.

http://www.freenamesystem.it/

[10] B. Chun, S. Ratnasamy, E. Kohler, “NetComplex: A

Complexity Metric for Networked System Designs”.

In Proceedings of USENIX Networked Systems

Design and Implementation (NSDI), 2008.

[11] I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek,

H. Balakrishnan, “Chord: A Scalable Peer-to-peer

Lookup Service for Internet Applications”. In ACM

SIGCOMM Computer Communication Review 31

(4): 149.

[12] Bitcoin: https://bitcoin.org, Satoshi Nakamoto

(pseudonimo), 2009.

[13] A. Singla, P. B. Godfrey, K. Fall, G. Iannaccone,

and S. Ratnasamy, "Scalable routing on flat names,"

in Proceedings of the 6th International Conference,

ser. Co-NEXT '10. New York, NY, USA: ACM,

2010.

[14] M. Thorup, U. Zwick, “Compact routing schemes”.

In proc. SPAA, 2001.

[15] Giuseppe DeCandia , Deniz Hastorun , Madan

Jampani , Gunavardhan Kakulapati , Avinash

Lakshman , Alex Pilchin , Swaminathan

Sivasubramanian , Peter Vosshall , Werner Vogels,

“Dynamo: amazon's highly available key-value

store”. Proceedings of twenty-first ACM SIGOPS

symposium on Operating systems principles,

October 14-17, 2007, Stevenson, Washington, USA.

[16] Antonio Carzaniga, Gian Pietro Picco, Giovanni

Vigna, "Is Code Still Moving Around? Looking

Back at a Decade of Code Mobility",

ICSECOMPANION, 2007, International

Conference on Software Engineering Companion,

International Conference on Software Engineering

Companion 2007, pp. 9-20,

doi:10.1109/ICSECOMPANION.2007.44

[17] Leonard Kleinrock, “An Internet vision: the

invisible global infrastructure”, Computer Science

Department, UCLA, Los Angeles, CA 90024, USA.

[18] Satyanarayanan Mahadev, “Mobile computing: the

next decade”. SIGMOBILE Mob Comput Commun

Rev 15:2–10 (2011).

[19] Dipankar Raychaudhuri, Kiran Nagaraja, Arun

Venkataramani MobilityFirst: a robust and

trustworthy mobility-centric architecture for the

future Internet ACM Mobile Comput. Commun.

Rev., 16 (3) (2012).

[20] A. Varga and R. Hornig. An Overview of the

OMNeT++ Simulation Environment. Proceedings

of the 1st Inter- national Conference on Simulation

Tools and Techniques for Communications,

Networks and Systems & Workshops, March 2008.

[21] S. Zhou. Characterizing and Modeling the Internet

Topology: the Rich-club Phenomenon and the PFP

Model. BT Technology Journal, 24(8):108–115,

July 2006.

[22] J. Hawkinson and T. Bates. Guidelines for Creation,

Selection, and Registration of an Autonomous

System (AS). RFC 1930 (Best Current Practice),

March 1996.

[23] C. Esposito. Data Distribution Service (DDS)

Limitations for Data Dissemination w.r.t. Large-

scale Complex Critical Infrastructures (LCCI).

Mobilab Technical Report (www.mobilab.unina.it),

March 2011.

[24] I. Baumgart, B. Heep, and S. Krause. OverSim: A

Scal- able and Flexible Overlay Framework for PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1749v2 | CC-BY 4.0 Open Access | rec: 23 May 2016, publ: 23 May 2016

http://www.fp7-ofelia.eu/
http://www.freenamesystem.it/
https://bitcoin.org/

30 540 80

Simulation and Real Network Applications.

Proceedings of the 9th Inter- national Conference on

Peer-to-Peer Computing (IEEE P2P 09), pages 87–

88, September 2009

[25] L. Peterson, T. Anderson, D. Culler, and T. Roscoe.

A Blueprint for Introducing Disruptive Technology

into the In- ternet. ACM SIGCOMM Computer

Communication Review, 33(1):59–64, January

2003.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1749v2 | CC-BY 4.0 Open Access | rec: 23 May 2016, publ: 23 May 2016

