
FLIP: an Internet protocol for flat labels

In recent years the increasingly frequent use of the Web service, the advent of the cloud

computing, the exponential growing of mobile devices with the introduction of pervasive

and ubiquitous computing and the emergence of extreme distributed systems have

brought to light the problem of the no longer adequate distribution of data packets over

Internet and the related IP protocol issues. This paper promotes flat labels as a real

alternative to IP addresses for a future Internet architecture and proposes FLIP as first

network layer protocol for flat labels. Among several features absolutely not existing in IP

protocol, FLIP has a native support for crypto-currencies.
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problem of the no longer adequate distribution of data 

packets over Internet and the related IP protocol issues. This 

paper promotes flat labels as a real alternative to IP 

addresses for a future Internet architecture and proposes 

FLIP as first network layer protocol for flat labels. Among 

several features absolutely not existing in IP protocol, FLIP 
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1. INTRODUCTION 

A full migration to a new architecture: why not? Of course, 

IP has demonstrated its reliability during past decade and 

it’s hard to think to a new architecture that can totally 

substitute it. However, research and projects about that 

eventuality have followed the idea of a general purpose 

oriented architecture that can be mobile friendly and can 

allow many other useful features. Flat labels seem to be 

perfect candidates to gain the position of actual Internet 

addresses because can achieve all positive features of IPv4 

addresses like non mutable semantics or IPv6 addresses like 

to be more than billion, moreover can allow a separation of 

their identity from their location and address not only 

hosts or devices (the latter depends on the architecture on 

which they are utilized). A migration from IP to a flat label 

based architecture is obviously not immediate; we think that 

the only way to go to a complete migration is to allow a 

long coexistence of IP and flat label addresses during which 

the Internet community can use and evaluate the new 

proposed architecture without losing anything: we call that 

“the gradual migration”. This paper introduces FLIP, first 

Internet protocol for flat labels, that allows a coexistence of 

IP addresses and FLIP addresses (a.k.a. flat labels) for the 

same host so adding the new powerful benefits of flat labels 

to the usual Internet; as practical consequence the IP global 

infrastructure has no changes while community can evaluate 

new experiences with flat labels (and eventually think to a 

migration). A prototype of FLIP has been implemented 

using the GVN (Generalized Virtual Network) [2] API in 

order to be easily layered on IP before, and on a flat label 

based architecture after (if there will be a gradual global 

migration). 

Let’s take a look at some interesting features of flat labels 

used in combination with FLIP: first of them is a possible 

concrete realization of a vision of a global infrastructure, 

as described in [17], where “Anyone will be able to plug in 

from any location with any device at any time” [cit.].  FLIP 

addresses are flat labels, and can map any entity (that we 

call: resource) is thinkable to be able to own an address, so 

not only hosts or devices, but also files, disk blocks, 

memory areas, parts of code, virtual machines, users, 

groups, and everything is identifiable by an ID. That’s 

possible because flat labels are “virtually infinite” and 

aren’t subjected to a specified physical location or to a 

particular semantic. 

 
This paper begins with an overview of related works and 

some scenarios where FLIP could be useful; then in section 

four it gives some basic concepts of various technologies 

adopted. Section five talks about FLIP details and 

specifications both when layered on IP  as pre-migration / 

integration / evaluation step and when adopted as possible 

network protocol for flat names based architectures in an 

hypothetical post migration final step. Sixth section regards 

technical implementations of FLIP on IP while in section 

seven there is a technical description of how resources and 

groups of the latter are built. Finally, eighth one describes 

the technical implementation of FLIP on a flat label based 

architecture. Section nine is about a helpful evaluation of 

FLIP over IP. 

 

2. RELATED WORKS 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1749v2 | CC-BY 4.0 Open Access | rec: 23 May 2016, publ: 23 May 2016



IP or not IP? It seems a Shakespeare-like question but we 

think it is not so far from where we are going: there are a lot 

of projects trying to improve, bypass, extend or substitute 

the actual distribution capabilities of the IP protocol. 

Research and projects about that have led to the formation 

of three main "schools of thought". First school based his 

studies on high performance architectures for content 

accessing  while second focused on research of oriented or 

entirely dedicated architectures to the general purpose 

(that are, architectures not benefitting a feature in spite of 

another one). First and second school have in common the 

objective to adopt something that is not in the current 

Internet, such as new protocols, ad-hoc routers, different 

name system services or addressing semantics, and so on. 

Third school is different: it includes all projects that use the 

current IP-based hardware to exploit existing and discretely 

programmable routing protocols in order to manage packet 

forwarding and/or update the routes, independently or user-

driven. For what concerns FLIP protocol, it belongs to 

second school and incentives using flat labels as solution of 

many issues; let’s see some of its fairly and nearly related 

projects and discover to what school they belong. 

Content Centric Networks and CONET. CCN [3] and 

CONET [4] belong to first school. They try to improve 

aspects where IP data distribution has to be “enforced”: web 

contents, shared files, mobile devices. Base of their work is 

routing on content names, so extending standard IP data 

distribution capabilities layering a CCN ad-hoc protocols 

stack over IP. 

SDN based projects and OFELIA. Software Defined 

Networks belong to third school and use almost 

programmable routing devices on IP based hardware to 

forward packets and modify routing tables at software level. 

OFELIA [8] is one of the most important projects in the 

SDN paradigm; it is based on hardware that supports 

Openflow protocol. 

Internames. Internames [6] and MobilityFirst (see below) 

are two projects almost near to FLIP. Internames is an 

architectural framework in which names are used to identify 

all entities involved in communication: content, users, 

devices, logical points, and services. 

MobilityFirst.  The goal of MobilityFirst [19] is to better 

accommodate mobile entities on the Internet in a scalable, 

trustworthy, and useable manner. The related project takes a 

radical approach to redesigning the Internet including 

rethinking end-point naming, such as through IP, and 

connection-oriented protocols, such as TCP. At a high level, 

MobilityFirst allows applications to securely interact with 

abstract, mobile entities in a connectionless fashion, 

providing connectivity and minimal user-disruption in the 

presence of mobility. 

 

3. SOME SCENARIOS 

According to [17], “A fundamental way in which nomadic 

computing differs from conventional desktop operation is 

the huge variability in connectivity to the rest of the user’s 

computing environment.  That level of connectivity often 

includes extended periods of low bandwidth or no 

communication capacity at all.  Since many users and 
programs alike make intermittent, but nevertheless 

essential, use of “off-machine” information and services, 

they are unable to operate effectively unless extraordinary 

steps (like reconfiguring their IP address, changing their 

netmask, removing their proxy, etc.) are taken by 

sophisticated users or their network administrators.  The 

goal of nomadic computing is precisely to permit users and 

programs to be as efficient as possible and as unaffected as 

possible in this environment of uncertain connectivity and 
unfamiliar locations.  That is, nomadicity makes the 

sometimes-connected computer operate in the same way 

and as effectively in a foreign location as when it is 

connected as a friendly to his organization’s information 

network” [cit.]. With FLIP no one will need to reconfigure 

his host address (thanks to a flat labels property: separation 

of location and identity); there will be no more netmasks (if 

the foreign environment has left IP for flat labels), and so 

on. Moreover, with FLIP an user can create a group of flat 

labels and identify it with a FLIP address so that moving 

from a location to another one will be more simple: all 

entities identified by flat labels in that group will migrate at 

the same time, so transforming foreign environment in a 

familiar one. FLIP groups eliminates the distinction 

between networks and storing systems, threating the net as 

a gigantic database. To gracefully understand FLIP’s, or in 

general, flat labels’ potential, let’s see some scenarios. 

Scenario 1: searching for moving code 

As first scenario, this paper introduces a realization of a 

rapid service discovery discussed in [18] using FLIP. 

Alice is running an app on her FLIP ready smartphone (that 

is, her smartphone implements FLIP protocol other than the 

IP one). The app allows her to watch online video streaming 

from some free and FLIP ready storing servers. Videos on 

servers are in different format because are loaded without 

transcoding from other uploaders. Alice choose her video 

from a list and tries to play it in streaming but the app 

haven’t the appropriate codec to do that because the file has 

a “.cod” extension; automatically and transparently, the 
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subsystem to find nearest FLIP hosts that have published 

the app FLIP group address, then choosing between them 

those that have published the “.cod” extension FLIP group 

address. Finally, the app downloads the proper codec from 

the latter and Alice can play her video. Let’s note that there 

is no possibility for the codec to come from a fraudulent 

server because codecs are encrypted symmetrically and the 

symmetrical key is also randomly generated and 

asymmetrically encrypted in the codecs with the private key 

of that group (only the group owner holds it); on the other 

hand, every FLIP address is a public key so that decrypting 

is as easy as to know a FLIP group address. This scenario is 

a classic example of code mobility where flat labels play an 

important role giving an identity to every portion of code 

(called the “know-how” as described in [16]) in Internet. 

Scenario 2: the mobile file system 

Bob has a FLIP based filesystem (that is, a filesystem able 

to address and crypt its blocks with FLIP addresses). Bob’s 

filesystem is distributed in three different Italian hosts and 

Bob’s laptop knows only the three first blocks FLIP 

addresses; such addresses are published by the three Italian 

hosts. When Bob’s laptop tries an access to that filesystem, 

it connects to the first blocks FLIP addresses and reads from 

or writes to them. One day Bob has to go to the USA; in the 

airport he turns off its laptop and embarks on the plane. 

Once arrived at his apartment in New York, Bob turns on 

his laptop that holds its FLIP address (identity/location 

separation); trying to access to the FLIP filesystem, Bob’s 

laptop suffers of slowness due the distance from Italian 

hosts so that automatically searches for one or more 

available American FLIP hosts and then orders a migration 

to them (an host is available to receive migrated blocks if it 

belongs to an ad-hoc created group for FLIP filesystem, as 

in scenario 1 where a server is available to storing a codec if 

it belongs to the FLIP group of that codec). During the 

migration Bob can still transparently access not yet 

migrated blocks from Italian hosts, “feeling a gradual 

speedup” of read and write operations until the migration is 

completed. 

Scenario 3: security issues 

A system administrator of a big USA company has traveled 

to Europe for work. Having to access to the user interface of 

one of the company’s servers in USA, he need to bypass the 

company’s firewall. Fortunately, both firewall and server 

are FLIP ready so that there is only a simple rule to add to 

the firewall: let pass only FLIP packet signed with 

sysadmin’s private key. There is no more port filtering 

neither deep content inspections or DDos attack risks: only 

sysadmin can generate traffic with his FLIP address that is 

different from the FLIP address of the host with which is 

connected to the Internet from Europe; indeed, the sysadmin 

can decide to send FLIP packet from his own FLIP address 

and not from FLIP address of his temporary host. 

Scenario 4: a micropayment system 

As last scenario this paper leave the yet unique feature of 

FLIP that supports crypto-currencies natively. Packets in 

FLIP can “carry” money so that a communication based 

service (almost all in Internet) can be delivered if data it 

receives contains a payment. That type of small, and 

optionally continuous payments, is called micropayment 

and can incentive the crowd sourcing as well explained in 

[18]. A typical scenario of micropayment consists in the 

pay-for-browse service of a site where every FLIP packet 

that come from that site can request a payment within the 

ack response packet; but a real form of crowd sourcing is 

well explained in the following scenario 4. Bob is on the 

train for Rome and needs to connect to Internet with his 

smartphone that is only wi-fi capable and there isn’t 

hotspots on the train. Fortunately the smartphone is FLIP 

ready so he localizes Alice’s smartphone (FLIP ready too) 

that is publicizing the FLIP group “crowd bitcoin 

connections” (a group of mobile devices that can allow 

connections to Internet for bitcoins). After a few 

handshaking, Bob connects to Internet through Alice 

smartphone (that is 4G and wi-fi capable), and pays her 1 

Satoshi (=0.00000001 bitcoins) every received FLIP packet. 

 

4. BASIC CONCEPTS 

FLIP is a network communication protocol for flat labels. It 

can be layered on IP and at the same time be applied to a 

flat label architecture allowing coexistence of the latter and 

the IP one. FLIP addresses are flat labels and layering on IP 

is done using GVN, while the most reliable candidates as 

new flat label architecture  on which to layer FLIP, we 

think, are ROFL [1] and Disco [13]. Before entering in 

details, let’s briefly explain the concept of “flat label” and 

speak about GVN and Disco. 

4.1 Flat labels. Flat labels are bit strings of variable and 

finite length. Unlike in IP addresses, their variable size 

allows an additional flexibility that belongs to the use of 

hash functions that "normalize" the size of the flat label to 

one length while retaining its uniqueness. Every FLIP 

packet has its payload encrypted asymmetrically and 

symmetrically: first bytes (asymmetrically encrypted) of the 

payload can contain a temporary symmetrical key to decrypt 

the rest of the payload itself; that’s because it may be a bad 

idea to encrypt it asymmetrically once you have seen its 

length. With regard to safety and in order to maintain a level 
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of the latter almost equal to that provided by the 

symmetrical one, asymmetrical encryption requires much 

longer keys sizes (that is, FLIP addresses are very long): in 

2003 the RSA stated that a 1024-bit asymmetric key is 

equivalent to an 80-bit symmetric key; a 2048-bit 

asymmetric key is equivalent to a 112-bit symmetric key 

and 3072-bit asymmetric key is equivalent to a 128-bit key. 

RSA recommends using at least a 1024-bit asymmetric key 

if you plan to keep your documents safe until 2010 and use 

a 2048-bit asymmetric key if you want to secure documents 

until 2030; the 3072-bit asymmetric key is suitable for 

documents that should remain confident beyond 2030. A 

NIST document defines an asymmetric key of 15360-bit 

equivalent to a 256-bit symmetric key. As a result, each 

FLIP packet could have larger IP packets sizes in order of 

several kilobytes, since the protocol has three fields that 

contain flat label: popular 1500-byte limit is exceeded only 

by the overhead (so without payload) and this could be a 

problem for networks with relatively low MTU (e.g. 

Ethernet) to divide the IP packet containing FLIP in 

multiple frames. The use of GVN solves the problem 

highlighted thanks to its transparent fragmentation feature: 

everyone can send and receive big FLIP packets without 

warring about fragmentation. Using FLIP, the network 

would manage variable sized addresses according to the size 

of asymmetric key used: the safer must be the FLIP 

payload, the longer will the address, the more computing 

capacity and bandwidth will be needed for those who want 

to take advantage of that. For simplicity in this paper I’ll 

use, where not otherwise specified, to 1024-bit FLIP 

addresses and the asymmetric encryption algorithm will be 

RSA. The only limit of flat labels into the FLIP protocol 

(that utilizes DHTs, Distributed Hashing Tables, see later) is 

the choice of the length of the resulting hash string and the 

type of DHT: once you have made these choices, they can 

no longer be changed. 

4.2 Why to layer over GVN instead directly over IP? 

FLIP uses GVN for its smart fragmentation abilities. We 

have directly worked in GVN team to implement fast and 

reliable fragmentation functions in its API so that every 

layered protocol can easily utilize it, as FLIP does.  

4.3 Disco. Disco is a scalable routing protocol. Its authors 

have achieved what until now was considered an opened 

issue: a scalable, low-stretch, routing on flat names 

protocol; they define “stretch” as the ratio of the protocol’s 

route length to the shortest path length. Since shortest-path 

routing is theoretically achievable but practically impossible 

due to immense memory requirements and even more 

communication and computation work, Disco limit itself to 

guarantee a low stretch of 7 (according on its authors 

evaluations) in worst case on flow’s first packet, and 3 on 

subsequent packets. There are two “ways” of routing in 

Disco: first is a name-dependent compact routing, second 

instead is name-independent; that’s because Disco is 

comprised of NDDisco, a name-dependent compact routing 

protocol and it’s possible make an initial choice on what of 

them to use. Even if using a consistent hashing distributed 

name database that associate node names to flat labels 

(addresses), name-dependent compact routing may be 

dangerous for a security issue: a node can arbitrary change 

data related to hashes of the portion of database that it 

stores. Name-independent compact routing is what we 

prefer: Disco can maintain state of routing tables of every 

node with high probably without using name resolution; 

obviously, there is a vanishingly small but nonzero 

probability that destination’s route is not found, but in this 

case authors advise to recur to name resolution as a 

fallback. 

 

5. DETAILS AND 

SPECIFICATIONS 

To introduce FLIP’s details and its specifications, now let’s 

see FLIP protocol applied to two different architectures by 

using GVN before over IP and then, only theoretically, over 

ROFL that maybe is the simplest flat label routing 

architecture on which implement our protocol; using this 

approach we will explain FLIP step by step and easily. In 

the end, I’ll discuss about FLIP layered over Disco that is a 

very performant flat labels compact routing and maybe is 

also the final target of a complete migration from the IP 

addresses to the flat labels ones, however not excluding a 

indefinitely coexistence of both. 

5.1 FLIP over IP: details. Is it a gamble to give the pillars 

of Internet, the IP addresses, some features remotely 

attributable to elements that are part of the peer-to-peer 

architecture? We note that each IP address is "equal" to 

Figure 2: Chain template blocks of a crypto-coin. Every client of 

crypto-coins has a copy of the latter. A new rectangle  is added 

from every FLIP packet that contains a transaction.  
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other addresses; no one exists, either IPv4 or IPv6 address, 

which has an influence of any kind on the other of the same 

version. Unfortunately, IP addresses do not provide 

separation between location and identity, so any device 

identified with one of them is forced to change its ID every 

time it travel between geographically distant areas (i.e.: the 

smartphones). In a complete vision of pervasive computing 

and ubiquitous computing not only each device should be 

able to retain their own identity regardless of its location, to 

communicate with any other and wherever it is without any 

intervention, and to provide every service that the rest of the 

devices offer, but the concept of "reachable host" should 

embrace more than a single category, the devices one, and 

should expand itself to user contents or, more generally, 

user resources. Thanks to flat labels, FLIP uses addresses 

suitable to peer-to-peer based architectures, allows 

separation of identity and location, offers autonomy and 

dispenses the needed primitives to allow each device to 

provide those resources that the rest of the devices provide. 

Its three main objectives are: 1) aiding the migration from 

IPs to flat labels addresses 2) ensuring a transparent 

asymmetrical encryption, always active and not 

constrained to a single subset of algorithms; 3) providing 

an on-demand payment system for data transfer with every 

crypto-currency. The first goal is achieved thanks to GVN 

that will easily support FLIP on IP and will provide its 

libraries for the destination flat label architecture. On IP, 

each FLIP node (peer) allows you to  associate a fixed-

length alphanumeric address (flat label, that is also a 

public key) to each IP address in a dynamic way (associated 

IP can be changed on demand); different speech you will do 

for the destination flat label architecture where the dynamic 

association “FLIP address” <-> “flat label destination 

address” may be not necessary, that’s because both may be 

the same. Inside and outside IP, each flat label is managed 

by a peer-to-peer network implemented by FLIP primitives; 

the primitives will then assign to each entity an unique 

alphanumeric public address and a secret (private) key. 

Device, users, files, other data structures, etc. will possess a 

pair of public and private keys and packets sent from a 

public address to another will be always encrypted (in first 

bytes of their payloads) with the secret address (private key) 

of the sender, ensuring that each packet received should 

have been definitely sent (because signed) from anything 

else apart from the sender and thus satisfying the second 

target (there will be no more need for SSL, HTTPS, SSH, 

etc.). As regards the third goal, however, our opinion is that 

the birth of crypto-currencies was a real revolution for the 

Internet, perhaps having greater importance than Web 2.0 

and social networks; potentials hidden behind crypto-

currencies are not only of economic nature and FLIP use 

one of these: a low (or network) level manageability of 

transactions. With FLIP is possible to send and receive 

packets with money; it is a payment that can be made at 

protocol so sent (or received) packets carry money. FLIP 

primitives implement the transfer of a string which is the 

result of a series of hashes and digital signatures used in 

crypto-currency technology; this string represents a 

payment transaction and its destination will insert it in the 

last block of the chain strings of the crypto-currency used 

and propagate it to all the other clients who will in turn add 

it on top of the last block of their copy of the chain (Figure 

2), thus providing a computationally difficult not 

refutability of the payment sent by the sender. In addition to 

these three main objectives, FLIP offers other important 

features: as mentioned above each entity (resource) has an 

alphanumeric address; even the entity types are definable 

in an abstract manner by the user and can be identified 

and published: the user is not limited to a little group of 

entity-types such as device, users, files or content, but can if 

necessary create a resource type X with alphanumeric 

address K and another one can find it on the network by 

identifying it with K. An example among thousands ones of 

the relevance of this potential (the only limit is the 

imagination) could be the resource type X: ”computing 

power hired for the program P” where P is in turn 

identified as a resource; the user who will run the program P 

can do a search through the P2P FLIP network for resource 

type X (as done in scenarios 1,2 and 4) finding all nodes that 

offer (paid or not) computing power for P and choose 

between the found resources most advantageous ones. For 

each type of resource created the primitives will create a 

new P2P DHT (see “Implementation” chapters). FLIP also 

offers the chance to "bypass" the firewalls (at network level, 

not at HTTP protocol level as [5] does) because active 

encryption makes the sender always identifiable: a user can 

send packets signed with his private key instead signing 

them with the private key of the device that he uses 

(ubiquitous computing), making his data flow recognizable 

by firewalls that will enforce or not appropriate policies. 

Figure 3 shows FLIP protocol over GVN layered on the 

version 4 IP protocol. For a correct usage of the protocol 

what follows is needed: 1) a set of clients (peers), each of 

which can act as a source, destination, publisher of 

resources and gateway; 2) a set of gateways that are 

responsible to communicate between two different network 

technologies; 3) finally, although optional, the set of name 

servers: suitably programmed (one among many: FNS [9]), 

they maintain “FLIP address” <--> “domain name” matches 

and “FLIP address” <-> “network address” matches and 

accelerate operations of FLIP gateways. Closing the IP 

address speech, it is important to note that implementing 

FLIP does not affects existing routing capabilities. 
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Figure 3: FLIP over GVN (over  IP). 

 

5.2 FLIP: some protocol specifications. Now I’ll show the 

description of the most important fields that make up the 

protocol of course independent from the different packet 

based communication technologies: 

 Header length: FLIP header length (in words) 
 Algorithm length: length of the input string of the 

chosen asymmetric encryption algorithm (in 

bytes). 
 Join (J) Flag: if set to 1 it asks the target node to 

join the network. 

 Proof Request (Q): if set to 1 then a proof is 

required from the destination. For example, such 

proof can be requested as identity evidence of a 

node that attempts a Join, or to authenticate a query 

that will update a record in a name server, or an 

user to bypass a firewall, etc. 
 Proof Flags Response (S): if set to 1 it declares 

that the FLIP packet contains the proof requested. 
 Leave (L) Flag: if set to1 then the source tells a 

client or a server name that is going to leave the 

network. 
 Flag Resource Request (RQ): this can be set to 4 

values: 

o 00: no request 

o 01: a response is required from nodes that 

are more close and from which you can 

take advantage for the resource that 

follows the FLIP header (in DATA 

section) 

o 10: the node is responding as a possible 

beneficiary of the requested resource in 

the DATA section 

o 11: reserved for future purposes 

 Payment Session Flag Type (PST): this can be 

set to 4 values too: 

o 00: no payment request. 
o 01: time based. Payment will be required 

at equal time intervals. 
o 10: now. Payment is required now. 
o 11: on demand. Payment will be required 

several not specified times (by setting this 

flag to 10 every time it is needed). 
 Algorithm Type Flag (A) : kind of 

asymmetric/symmetric cryptographic algorithms 

used. 
 Crypto-currency code: crypto-currency code used 

for transactions (e.g.: 01: Bitcoin, 02: Litecoin, 

etc.) 
 Gateway address: 1) the gateway to reach the 

next gateway to the destination, 2) or the 

destination itself if no gateway is required. 
 Proof. Phrase: a random string that is encrypted 

with the private key of the source and that will be 

signed by the destination with its private key and 

then returned to the source in the same field. 
 Payment. Address: the address of the e-wallet to 

which send the payment. 
 The payload (DATA Section): first bytes in this 

area are encrypted with the private key of the 

sender (whether it is a device, a user or otherwise). 

The rest is encrypted symmetrically with the 

temporary key encrypted in first bytes. 
 
 
5.3 FLIP over a flat label architecture. FLIP would be the 

first communication protocol to use flat labels based 

routing; migration from IP routing to Disco for example 

would simply carry a next generation Internet in our 

everyday life: before reaching this final step, let’s consider a 

not efficient but interesting predecessor of Disco in order to PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1749v2 | CC-BY 4.0 Open Access | rec: 23 May 2016, publ: 23 May 2016



have an exact idea of what is really meaning routing on flat 

labels: ROFL. Although not being a high-performance 

architecture according to some studies [10], ROFL is (as 

Disco is too) able to guarantee a slow migration; however, 

there are some aspects in ROFL and Disco that should be 

modified to solve redundancy problems or to improve 

performance. Access control, for instance, can be managed 

both by ROFL or Disco routers or at network level by FLIP; 

a risk/benefit ratio to delete the access control from the 

architecture (that could not be removed from the protocol 

because it is needed by the migration from IP) could be 

therefore evaluated. In terms of performance it is also 

important to modify ROFL or Disco so that routing can be 

done on all resource IDs and not only on the IDs of the 

various devices; to do this, each router should have as many 

DHTs (or equivalent address management logic items) as 

the types of existing resources in FLIP giving so rise to 

what I'd call multi-dimensional routing where for each 

resource type (dimension) there are some defined routes. A 

practical example is feasible thanks to the difference 

between user resources and device resources: as already 

mentioned device IDs are not related to the IDs of the users, 

and a user can geographically move himself and be 

accessible via the address of another device (in this paper 

ID, public address and flat label are synonyms). In the 

scenario only routes of user resources change because one 

of the lasts has moved; routes of device resources and their 

DHTs remain unchanged. Finally, in the context of the 

problems to be solved about FLIP over both ROFL or 

Disco, a key issue could be the temporary mismatch of 

elements of a given DHT in FLIP with the corresponding 

element in ROFL or Disco; in fact, applying the multi-

dimensional routing both to FLIP and to the flat label based 

architecture in case of failure of a device, an element may 

be temporarily present in one and absent in the other until 

both will report the failure. 

 

6. IMPLEMENTATION:  FLIP ON 

IP 

The heart of the FLIP protocol is a DHT of standard flat 

labels which includes hosts and users addresses, named 

main DHT; algorithms for handling it are those of Chord 

[11] with some editing. The choice fells on Chord because it 

is the most commonly used and its maximum number of 

hops, although not optimal, is O(log N), where N is the total 

number of flat labels; however, it is not difficult to use other 

topologies of DHT. This chapter will explain through 

intuitive codes written in pseudo-c++ the various ways to 

take advantage of the potential of FLIP; following five 

algorithms relate to the management of the main DHT on 

IP. 

Algorithm 1. Aggregation of a node n connected to the 

Internet with FLIP address fl_addr and IP address ip_addr 

having an already known node n1. (Pseudo-code) 

 n = new Node(hash(fl_addr)); 

 n.ipaddr = ip_addr; 

 n.flipaddr = fl_addr; 

 n.join(n1); 

 updateNS(); //optional 

The first algorithm shows the connection of a FLIP entity 

(a host, an user, etc.) to Chord ring: to be an element of the 

ring the node must have a key that is the result of a hash 

function, which in this case is applied at the FLIP node 

itself. The join, stabilize, notify and fix_fingers functions 

belong to the upgraded version of Chord for the managing 

of concurrent operations and network errors [11]. The 

function updateNS() updates the records in the name system 

by connecting to a name server with an already known FLIP 

address; updating records can publish both only the 

aggregation of the node, or even the election of it as 

gateway (see below): all these operations are carried out 

using asymmetric encryption that guarantees the identity of 

involved nodes. 

Algorithm 2. Pseudo-code of the changes in stabilize() 

function of Chord. 

 x = successor.predecessor; 

 if (x  (n, successor)) 

o rndstr=n.crypt(random-string, 

n.PRIVATE_KEY) 

o proof = x.crypt(x.decrypt(rndstr, 

n.fl_addr), x.PRIVATE_KEY); 

o if (random_string is equal to 

n.decrypt(proof, x.fl_addr)) 

 successor = x; 

 successor.notify(n); 

 notifyNS(); //optional 

The main DHT is the first element of FLIP to use 

asymmetric encryption: algorithm 2 is a modification of 

the stabilize() function of Chord where a node n 

authenticates another node x before setting it as his 

successor. Authentication is performed with the classic style 

of asymmetric cryptography i.e. requiring the signature 

(proof) of a string, that is randomly generated 

(random_string) and then encrypted by the authenticating 

node n, from the authenticated node x that uses its private 

key (x.PRIVATE_KEY) to sign it. In this example the two 

generic functions: crypt() and decrypt() represent the ideal PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1749v2 | CC-BY 4.0 Open Access | rec: 23 May 2016, publ: 23 May 2016



mechanism for signing and signature verification in 

asymmetric cryptography. If the signature decrypted with 

public key (i.e. with the FLIP address) of the node to be 

authenticated will correspond to the randomly generated 

string then authentication will success. The last function, 

notifyNS(), asks to a server name with already known FLIP 

address to authenticate the node x and possibly update the 

record (a failure may be noticed); this single function 

delegated to the server name the responsibility to verifying 

the existence and authenticity of node x, and optionally to 

change or to add the record; on multiple requests in a short 

period, the name server may decide, for example, whether 

to run all these tests or just the first one, or discard each of 

them. 

Algorithm 3. Pseudo-code of the changes to notify() 

function. 

 if (predecessor is nil or n1  (predecessor, n)) 

o proof = n1.crypt(random-string, 

n1.PRIVATE_KEY), 

o if (random_string is equal to 

n.decrypt(proof, n1.fl_addr)) 

 predecessor = n1; 

Algorithm 3 implements the same modification used for the 

authentication of a node but in this case it is applied to the 

notify() function of Chord. This modify is expensive in 

terms of bandwidth overhead and of computing capacity but 

necessary and sufficient to certify the identity of the main 

entities of the ring; for greater security, however, you might 

consider the possibility to apply it also to the fix_fingers() 

function of Chord with the cost of a further reduction of the 

above resources. Now, returning to main DHT protocol 

usage I’ll do an example written in a pseudo-C++ style code 

that relates to the authentication request that a node sends to 

another one; please considered it purely indicative because 

programming style is personal and combinations of the 

instructions necessary for the implementation of a function 

may be manifold. 

Pseudo-code 1. Code written in pseudo-c++ of a function 

that uses the FLIP. This example function shows a node n 

while creates and sends a FLIP packet to authenticate 

another but already known node n1, and then awaiting for 

reply. The node n has only an IPv4 address (in addition to 

FLIP address) as well as the node n1. 

 pkt = new FlipPacket(); 

 pkt.setProofReq(1); 

 pkt.alg_length = lalg1 ; 

 pkt.alg_type = alg1; 

 pkt.source = n.flipaddr; 

 pkt.dest = n1.flipaddr; 

 pkt.proof = crypt(random_string, 

n.PRIVATE_KEY, k1, x1); 

 if (n1.ipaddr != NULL) 

o n.send(pkt, n1. flipaddr); 

 else 

o gw = n.select_next_gateway(n1); 

o if (gw == NULL) 

 if (gateway != NULL) 

 gw = gateway; 

 else 

 return FALSE; 

o n.send(pkt, gw); 

 rcvpkt = n.wait_for_proof_res(); 

 if ( (rcvpkt != NULL) AND (rcvpkt.getProofRes() 

== 1) ) 

o str = decrypt(rcvpkt.proof, n1.flipaddr, k1, 

x1); 

o if (str == random_string) 

 return TRUE; 

o return FALSE; 

Building the packet the bit for the authentication request is 

set to 1 and the various fields are filled, in particular those 

describing the chosen algorithm for encryption are filled 

with the well known code number alg1 (e.g.: 1 = RSA, etc.) 

and with its length (e.g. 1024 bit) lalg1. If the chosen 

algorithm for the main DHT is different from that presented 

in this paper and the authentication request was made in 

order to aggregate a node, then you may need to set the Join 

bits to 1 too. In this function the condition of existence of an 

IP address always bypasses the call of the function 

select_next_gateway() (described later) simply sending the 

packet through the send() function; since in this example the 

target node has certainly an IP address, that condition is 

unhelpful and here is implemented only to introduce the 

next paragraph about the send() and its use of the name 

system. Then if the rcvpkt object contains the response 

packet (for completeness you might also verify the 

correspondence between the source and the node n1) and the 

response bit for authentication is set to 1 then you can 

proceed with verification: the string in the proof field is 

properly decoded by the instructions within the ad hoc 

function decrypt() that you can implement as needed. The 

return value will be TRUE if the node n1 will be 

authenticated, FALSE otherwise. 

6.1 Dynamo. This is the Amazon’s high availability key-

value store with incremental scalability, symmetry, 

decentralization and heterogeneity. Actually, it is used only 

by the Amazon’s internal services, but for my goal in this 

paper we need two assumption: first is that it is available 

worldwide. Data is partitioned and replicated using 

consistent hashing and consistency is facilitated by object 

versioning and among replicas is maintained by a quorum-PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1749v2 | CC-BY 4.0 Open Access | rec: 23 May 2016, publ: 23 May 2016



like technique and a decentralized replica synchronization 

protocol. Second assumption that we need is that Dynamo 

can be built for the destination flat labels based routing 

architecture (if it is so functionally over IP, why not over 

Disco too?). 

6.2 Name System. Conceptually the name system that 

should help the main DHT to improve FLIP performance is 

not different from the actual DNS; we might talk about it as 

a DNS extension because what should be in the new system 

would not change anything in the present one, while adding 

more potential features. To simplify the explanation you 

might reduce the concept of Internet DNS to the 

management of the following match: domain name <-> 

IPv4 address, as shown in table 1. 

Domain name IPv4 address 

www.uniroma2.eu 160.80.1.246 

Table 1. A simple domain name  <-> IPv4 address match in actual 

DNS. 

The matches needed to an NS redesigned for FLIP would 

instead be five, as shown in the example table 2 where you 

maintain other domain features for each NS record. Of 

course, new name system  may have different semantics. 

NS name FLIP 
add
ress 

Archite
cture 
type 

Address Resource 
or 

gateway 
type 

Next  
gate
way 

www.uni
roma2.e

u 

FL1 IPv4 160.80.1.246   

gw1.ipv4
v6.net 

FL2 IPv4 123.123.123.
123 

IPv4v6  

gw2.ipv4
v6.net 

FL3  2001:0DB8:0
000:0000:000
0:0000:0000:

0001 

IPv6v4  

www.ipv
6.com 

FL4  4002:1EF8:00
00:0000:0000
:0000:0000:0

002 

IPv6v4 FL3 

www.flip
.net 

FL5 Disco  DiscoIPv4 FL7 

gw3.ipv4
flip.net 

FL6  124.124.124.
124 

IPv4Disco  

gw4.ipv4
flip.net 

FL7   DiscoIPv4  

Table 2. Examples of the new NS record to FLIP; being very long, 

FLIP addresses are here represented by tags that begin to FL. 

Coexistence of different network architectures is made 

possible by gateways; each peer can begin a gateway if has 

at least two concurrent connections to different architectures 

and has updated its status in the name system. In this regard, 

we would like to notice that the need of a gateway exists 

only in condition of having different architectures using 

FLIP: in the perspective of a complete migration to a flat 

label based routing architecture the name system (if used) 

would only act as an helper to improve performance since, 

at the migration end, its records will not contain more data 

about gateways, the only ones whose specifications aren’t 

recoverable  from the peer-to-peer FLIP network but from 

NS before or while migrating. In table 2 it is possible to 

understand the design of the architecture of a new Internet 

with only (but not necessarily) three architectures that could 

be similar to that shown in the following figure 4 . It’s 

considerable the fact that in table 2 there is a simple key-

value storing scheme and that’s the only thing FLIP need to 

work: there is no complex query management to achieve 

and so it’s possible to think to the DNS extension not as a 

hierarchical system built on centralized servers in which 

unique key is a NS name, but as a scalable peer-to-peer key 

value store like Dynamo where the unique key is a FLIP 

address. According to that, using Dynamo instead of FNS or 

similar for example will guarantee that FLIP will not relay 

on a centralized authority. 

 

Figure 4. State of migration from IP to Disco for coexisting 

architectures using FLIP. 

Intersections of clouds contain hosts connected to multiple 

architectures; in that example central intersection shows 

hosts that can be elected as gateway for all architectures. 

Algorithm 4. select_next_gateway() function. 

 If (n.ARCH is not qual to n1.ARCH) 

o For A in (n, ARCH) 

 if A is equal to n1.ARCH  

 return n; 

o For A in (n, ARCH) 

 gw = nsget_next_gateway(n1, 

A); 

 if (gw is not nil) 

 return gw; 

o return nil; 

 return n; 

If in pseudo-code 1 node address no1 had not belonged to 

the IPv4 class then it would be necessary to select an 

intermediate node denominated: “gateway” with ability to 

communicate with both IPv4 and the architecture of the 

target node. Each node can be elected as gateway or give up 

this function, and can publish or delete his election in name 

IPv4 Disco 

IPv6 
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system; therefore nodes can exist with gateway function that 

are not published. The publication and the election are 

borne by the node itself which can also ask for money to 

carry out this service for other nodes (see below). In the 

pseudo-code 1 example a particular case is shown too, i.e. 

one in which the source node architecture finds no gateway 

to reach the destination node architecture: this occurs when 

both architectures have no common gateway and must 

resort to nodes in intermediate architectures. The need for 

intermediate architectures is rare and usually occurs when 

one of the two architectures is not widespread or is in a 

small "neighboring" network, as in a scheme similar to that 

in Figure 5 only where a small LAN with IPv6 addresses 

and an IPv4v6 gateway tries  to reach a node with an IPv6 

Internet address. To handle situations of intermediate 

architectures there are two possible solutions: first, that we 

suggest, is to manually set the best gateways path so that 

every node in the LAN can reach the destination without 

travelling through too many intermediate nodes; second 

would be to make the name system processing a shortest 

path through various gateways, dramatically increasing the 

workload of servers. Since these situations as mentioned 

above may be rare, evaluating the manual selection of the 

gateways path would be a better choice. On success 

algorithm 4 returns the FLIP address of the gateway to 

insert in the gateway address field of the protocol. You can 

immediately deduce that often,  when the packet is 

distributed among the hosts on a single architecture, the 

value of the gateway address is the same as that of the 

destination address; this redundancy may be deleted with an 

improvement of the protocol, for example adding a control 

bit. As first step, select_next_gateway() function checks the 

existence of the latter case before starting a first control 

cycle between the architectures that are actually connected 

to n and so returning still n; the next step involves the 

execution of a last cycle during which for each architecture 

to which n is linked, a name server will be queried about 

destination node architectures (here calling a custom 

function nsget_next_gateway() whose implementation is 

easy and so not described) in order to find a match and get 

the gateway which will then be returned to the calling 

function. The worst case is, therefore, when the second 

cycle fails finding an intermediate host which can act as a 

gateway: this case is rare and as mentioned above occurs 

more in configurations like that illustrated in Figure 5 .  

 

 
Figure 5. Example of a LAN with IPv6 addresses that tries to contact 

an IPv6 Internet node but that is only connected to an IPv4 Internet 

host. In this case, you must manually set the FLIP gateway for the 

LAN which then will call nsselect_next_gateway() function. 

 

6.3 Crypto-coins and cash flows. Acting as a gateway is a 

service that could be sold: the money used to purchase it are 

the ones provided by peer to peer systems of crypto-

currencies, first among them Bitcoin [12] created from 

a.k.a. Satoshi Nakamoto in 2009 and become popular 

worldwide. Base of this system is also asymmetric 

encryption and its peers make wide use of it to support a 

mathematically hard to break and authority independent 

monetary system. Implementing this system to be used on 

FLIP is relatively simple: every time you want a payment, 

for example to allow the continuation of a gateway service 

or to sell resources (see below), the requesting host adds the 

necessary data in first ready to be sent packet 1) setting 

payment session type field to a value that depends on the 

type of required payment, 2) indicating the code of the 

crypto-currency needed in crypto-currency code, 3) setting 

the amount of money in units and cents in their respective 

fields payment units and payment cents, 4) filling the fields 

Payment address with the address of own electronic wallet 

and Payment ID with a value other than zero, then 5) 

awaiting for the packet carrying money from the host that 

will (or will not) send them. The latter will in turn decide 

whether or not to pay and to risk an interruption of the data 

flow of data or less; in the latter case, the host must make a 

regular payment and somehow recover the transaction string 

shown in Figure 2 (that is not difficult: crypto-currencies 

software is open source). The retrieved string will be part of 

the next FLIP packet that is sent to the requesting host using 

payment address field as proof of payment; in addition, 

Payment ID field must contain the same value as that in the 

packet containing the request citing a reference for the 

transaction. In the case of fixed-term payments (payment 

session = 10), the same value of payment ID filed will be 

sent through multiple packets at regular intervals along with 

always different transaction strings without need of further 

requests by the receiver. Check of the transaction strings is 

borne by the receiver; at present, in various crypto-coins 

IPv4 Disco 

IPv6 LAN

IPv6 
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systems a transaction takes from a few seconds to several 

minutes to be confirmed: it follows that the recipient will 

have to wait a certain amount of time before you receive the 

money, so the transaction string is more useful as a payment 

notification rather than as an immediate proof of the same. 

 

7. IMPLEMENTATION: THE 

RESOURCES 

Except for the gateway which as mentioned can be 

published in name servers, all FLIP resources are first 

published in peer-to-peer network using DHT and later in 

the name system in order to improve the performance of the 

protocol and therefore of the architecture that the latter uses. 

7.1 User resources. The most important resource is 

undoubtedly the user: it owns a FLIP address (and therefore 

the user owns a private key) and its publication occurs 

before in peer to peer, and then in name system by the call 

to a joining function like that in algorithm 1. The fact that a 

user and a host have two FLIP addresses but the same host 

as destination modifies the search time of  Chord algorithm 

used in this paper: if u is the number of users and h is the 

number of hosts in the main DHT then finding one of these 

two resources takes O (log (h)) hop (where each hop is a 

FLIP packet that starting from source arrives to destination) 

because the hop from a host to the user published by the 

latter actually does not exist. Until migration to Disco will 

not be complete, however, in the previous calculation you 

have to add the number of eventually traversed gateways 

while searching: in a drastic hypothesis where the maximum 

number of publishable and intermediate gateways between 

source and destination is 1 and where all the h nodes have 

another default gateway (for example, because each of them 

is in a LAN with different architecture connections as in 

Figure 5) needed time is O (2 (log (h) -1) + log (h)) hop 

where for each hop you must travel through 2 gateways. 

Implementing a system of calculation of shortest paths in a 

name system to manage more than one FLIP gateway 

between source and target is therefore not recommended 

also to avoid a considerable decline in the FLIP packets 

distribution performances when looking for a resource that 

is in a drastic hypothesis already assuming the existence of 

a single gateway: (2 (log (h) -1) + log (h)), without 

considering the packets distribution of the underlying 

architectures, because the latter still hardly could improve 

the result. Of course, using the name system instead of 

using Chord for the search with the maximum number of 

intermediate and publishable gateways set to 1 and 

according to the LAN example in Figure 5, then the 

number of nodes used to reach the name server is Θ (2). In 

case of temporary inconsistency between peer to peer query 

results and name system ones, firsts are to be considered 

reliable and that explains how FLIP has the feature to be 

before partially, and in the migration end totally, 

independent from central authorities. 

7.2 Other resources. The main DHT is composed of three 

types of resources: the first two, those of the hosts and 

users, have already been discussed. The third type is 

actually a meta-resource: its function is to identify another 

DHT and the host that publics it is its first node and must 

remain on the net as much as possible, like a beacon for 

anyone who wanted to use it but don't know where to join. 

Let p be the node that wants to publish a resource: first of 

all p creates the resource using the DHT algorithm 5, a 

version that takes cue from the Chord join algorithm [11]. 

Algorithm 5. newDHT function algorithm that instantiates 

a DHT for a resource. Node n1 belongs to main DHT as well 

as node n that creates a new DHT and joins to it, owning the 

same resource_flip_addr addres in both DHTs. 

 n = new Node(hash(resource_flip_addr)); 

 n.n = newNode(hash(resource_flip_addr)); 

 n.flipaddr = resource_flip_addr; 

 n.n.flipaddr = n.flipaddr; 

 for i = 1 to n.n.m 

o n.n.finger[i].node = n; 

 n.n.predecessor = n; 

 n.join(n1); 

 updateNS(); 

The new resource becomes a node of the main DHT and the 

host that joins it become a reference node for accessing or 

searching on the new DHT; the type of the new resource is 

also identifiable through its FLIP address (in algorithms 5 a 

resource of type resource_flip_addr). All nodes belonging 

to the new DHT will have their FLIP addresses to be 

identified: therefore it is impossible for a node in a resource 

DHT not to belong to the main DHT, as you can see in 

algorithm 6 in which a FLIP node joins a resource DHT. 

After setting various finger of the new DHT, the n node 

joins the main DHT and updates a name server to improve 

the search performance of the resource type giving to the 

latter a name associated to its FLIP address in the name 

system. 

Algorithm 6. FLIP node n joins a resource DHT of type 

resource_flip_addr. 

 n.n = newNode(hash(n.flipaddr)); 

 n.n.flipaddr = n.flipaddr; 

 n1 = rsqueryNS(resource_flip_addr); 

 n.n.join(n1); 

 rsupdateNS(n.flipaddr, resource_flip_addr); PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1749v2 | CC-BY 4.0 Open Access | rec: 23 May 2016, publ: 23 May 2016



In the previous algorithm n node is a “container” of another 

node that will be created and attached to resource_flip_addr 

resource DHT. To join, the node queries a name server to 

locate a FLIP node that already joined the DHT of 

resource_flip_addr type which will allow joining through a 

normal call to join Chord algorithm. Finally, n updates the 

name system via an ad hoc function: rsupdateNS adding a 

resource record that indicates its promotion as node that has 

joined the resource_flip_addr resource type; now it is 

possible to take advantage from that resource type from the 

last joined node too. NS records will be stored as well as in 

the example in table 3 that completes the table 2 used for 

the examples with gateways. 

NS name FLIP 
add
ress 

Archite
cture 
type 

Address Resource 
or 

gateway 
type 

Next 
gate
way 

www.uni
roma2.e

u 

FL1 IPv4 160.80.1.246   

gw1.ipv4
v6.net 

FL2 IPv4 123.123.123.
12 

IPv4v6  

gw2.ipv4
v6.net 

FL3  2001:0DB8:0
000:0000:000
0:0000:0000:

0001 

IPv6v4  

www.ipv
6.com 

FL4  4002:1EF8:00
00:0000:0000
:0000:0000:0

002 

IPv6v4 FL3 

www.flip
.net 

FL5 Disco  DiscoIPv4 FL7 

gw3.ipv4
flip.net 

FL6  124.124.124.
12 

IPv4Disco  

gw4.ipv4
flip.net 

FL7   DiscoIPv4  

www.file
share.net 

FL8 IPv4 125.125.125.
12 

FL8  

 FL9 IPv4 126.126.126.
12 

FL8  

Table 3. A node with FL9 address joins a FL8 type DHT and is added 

to the example in the previous table. 

The new name system thus becomes a resource system for 

FLIP too; in Figure 6 you can see a model that describes 

how the new resource DHTs are distributed within the main 

DHT. The name system offers strong performance increase 

but the system that uses the FLIP protocol is autonomous 

and allows searching for a resource type node knowing the 

FLIP address of the latter, which is actually the address of 

the publishing node; if there wasn't the name system, that 

node would be borne by all search requests. By examining 

in detail the search time without the support of a name 

system you note a duplication of hops: let m be the number 

of nodes that have the resource; the publishing node will be 

first contacted as explained in the previous case drastic 

during (2 (log (h) -1) + log (h)) hop, where h is the number 

of hosts on the main DHT. Next, the publishing node will 

search for a node (besides itself) that offers the type of the 

published resource in O (2 (log (m) -1) + log (m)) hops 

because the fingers of the various nodes in the DHT will not 

refer to nodes in the main DHT not providing that resource, 

and the whole operation will be so ended in (2 (log (h) -1) + 

log (h) +2 (log (m) -1) + log (m))) hops. Even for not 

standard type resources (not users, neither hosts type 

resources), in case of inconsistency between the various 

DHTs nodes and the name system records, only data in the 

DHT nodes are reliable. We conclude this chapter finally 

reporting that each resource is accessible only via FLIP 

protocol and then each data stream that takes advantage of 

such resource may be subject to payment using crypto-

currencies as described above for gateway services; 

requiring or not requiring a payment is a choice of the node 

that offers that resource.  

 

 

Figure 6. Main DHT nodes joined to other FL9, FL10 and FL11 type 

DHTs. 

 

8. IMPLEMENTAION: FLIP ON 

DISCO 

Now that I’ve discussed about FLIP giving an idea of how 

generally layering it over IP, let’s see what we think should 

be the real destination of IP to flat labels migration: Disco. 

As about ROFL, we don’t know what can be Disco network 

level protocol, but we don’t care about that: maybe it will be 

FLIP, in the other case we would wait for GVN’s authors to 

use libraries built for it, if tomorrow Disco were a reality. In 

both cases, important things are two: 1) how to match FLIP 

host addresses with Disco host addresses? obviously, an 

easy way is that both addresses of a node are the same and 

I’ll take that as an assumption because both are flat names 

and Disco does not set limits their length or semantic. 2) 

How to add what we defined “multi-dimensional routing” in 

Disco? Since Disco has addresses for internal use only 

because such addresses are flat labels containing portions of 

paths and are updated dynamically, we can think to them as 

IP addresses: the idea is to associate FLIP addresses to 

Disco internal addresses, not to its real addresses (we may 

Main DHT 

DHT FL9 

DHT FL10 

DHT FL11 
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presume that such real addresses could be FLIP addresses 

and in table 3, for example, a Disco real address and a FLIP 

address are the same), so we can build FLIP’s main DHT. 

Algorithm 7 is a Disco version of Algorithm 1. 

Algorithm 7. Aggregation of a node n connected to the 

Internet with FLIP address fl_addr and Disco internal 

address di_addr having an already known node n1. (Pseudo-

code) 

 n = new Node(hash(fl_addr)); 

 n.diaddr = di_addr; 

 n.flipaddr = fl_addr; 

 n.join(n1); 

 updateNS(); //optional 

A difference from IP is that Disco internal addresses  have 

dynamic labels, so one of them can change its label when 

already a FLIP node has joined the main DHT; this is not a 

problem because the primary key of the main DHT is a 

FLIP address, not a Disco internal address, so the change 

can be propagated through the peer-to-peer FLIP network as 

a normal attribute associated with the primary key (that, if 

using a Disco version of Dynamo, will be very fast). On this 

way Disco name resolution needed by Disco is done at 

“FLIP level” instead of at “Disco level”, aided by the faster 

Dynamo. Of course, another choice is to leave to NDDisco 

this work removing second line from Algorithm 7 so that 

NDDisco can update its consistent hashing database, but 

that maybe will be slower. In both cases however, all other 

algorithms shown for IP are the same for Disco, maybe with 

little and easy to discover differences. That’s all.  

 

9. EVALUATION OVER IP 

We implemented our FLIP by using the OMNET++ 

[20]: it is a general-purpose modeling framework that is 

currently heavily used in the simulation of networked 

systems and distributed algorithms by the academic 

research.  It is characterized by a modular and extensible 

architecture of C++ modules, with a Tcl graphical 

interface, recently ex- tended by providing an Eclipse-

enhanced IDE. The simulator comes with several analysis 

tools that allows the user to study the statistical features of 

the performed experiments. Due to its success, there are 

several third-party models that featured academic projects 

made available through the web page of the simulator and 

users can import in their models.  Specifically, in this work 

we have used the following libraries for OMNET++: 

 

1. INET framework has provided the means to model 

the networking devices as routers and switches, 

however, we decided to do not specify the networking 

failures as parameters of such models.  The issue is that 

the path-by-path characterization is not possible since 

the on-field measurements of loss patterns are only 

possible on end-to-end basis (we can detect that a given 

subscriber lost a message, but not along which path 

such loss happened). Therefore we have simplified the 

topology by having all the underlying routing 

architecture abstracted by few routing devices. 

 

 

 

Application                  FLIP             Chord 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. FLIP implementation on top of the Chord module 

provided by OverSim within the OMNET++ simulator. 
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2. These has been used to generate the 

interconnection topology among our abstract 

routing devices and the end hosts. The correct 

model of the Internet topology, i.e., the 

connectivity graph among its nodes [21], is one 

of the key aspect to address when aiming at 

making realistic simulations of systems that use 

Internet to convey information. Internet is 

structures as an inter- connection of distinct 

routing domains, also known in literature as 

Autonomous Systems (AS), which adopts an 

interior gateway protocol to internally route 

packets while uses an exterior gateway protocol 

to forward packets towards others ASes [22]. 

Therefore, the topology of Internet can be 

characterized using two distinct abstraction 

levels: Inter-AS topology, also called AS-level 

topology, having nodes representing a single AS 

and edges being the BGP peering, and Intra- AS 

topology, also called Router-level topology, 

having nodes representing end-hosts or 

hardware devices, while edges being physical 

connections among them. In this work we have 

limited to model Intra-AS topology, as shown in 

Figure 7, leaving for future work more complex 

two-level topologies. The network behavior has 

50ms as link delay, and the network 

encompasses 500 hosts. 

 

 

Figure  8. Comparison of Latencies on a LAN and on 

Planetlab, taken from [23] 

 

3. Oversim [24] has been used to incorporate Chord 

simulation modules within our simulations and to 

build FLIP on top of it.  Oversim adopts a modular 

design and that use of the Common API to facilitate 

the ex- tension with new features or protocols.  

Specifically, the library provide a skeleton simulation 

organized in tiers: tier 0 is made of the routing 

architecture, taken from the INET framework; tier 1 

can host any possible overlay, and we have selected 

Chord, while the other tiers are applications and 

protocols built on top of the lower tier, in particular 

we have implemented FLIP on tier 2 and an 

application on tier 3. This is illustrated in the 

magnification of a node in Figure 7. 
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Figure 8. Number of hops 

 

 

We decided to not use any real wide-area networks, such as 

PlanetLab[25], due to the uncontrollable loss patterns that 

make the obtained results non reproducible. For a concrete 

example, let us consider the study in [23], where some 

comparisons between a cluster of computers interconnected 

by a dedicated LAN, and some nodes in Planetlab. On the 

nodes an exchange of ping pong messages is made through 

a communication protocol, and the latency needed by a 

message to go to the destination and backward was 

measured, and Figure 8 shows the registered latencies:  

measures on LAN exhibit lower variability (as 

demonstrated by an Interquartile Distance of 20), while on 

Planetlab we have higher fluctuations (as demonstrated by 

an Interquartile Distance of 37672.5). This allows us to say 

that Planet- lab is not a controllable testbed, so that it is 

tough to understand if a variation within the obtained 

measures is due to some unexpected behavior of the 

protocol or to uncontrollable phenomena within the testbed. 

Our simulations has been run ten times, and the average 

over these runs has been considered in the following 

discussion (we did not observe standard deviation above 5% 

of reported values having most of our measures of merit 

within the 95% confidence interval, thus they are not plot- 

ted on the curves). The payload of the packets is as 

specified in FLIP specification [2], by encrypting the 

messages as above described. In order to quantify the costs 

of encryption we have measured the overhead to encrypt the 

FLIP packets by using the Java open source library of the 

Legion of the Bouncy Castle1 .  Specifically, we used the 

symmetric AES and asymmetric RSA cryptography 

schemes. We obtained that the mean overhead is 268.96ms, 

while the standard deviation is 183.39ms. 
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The workload of our experiments consists of joining and 

then leaving the overlay built by the FLIP protocol, and 

registering and unregistering a number of resources 

during the joining period. More complex application 

scenarios have been determined, but we leave their 

assessment as future work. The measure of merit that we 

have considered in our experiments are the following 

ones: 

1. Needed time and number of packets to join and leave 

the FLIP overlay; 

2. Mean number of hops to reach a destination; 

3. Needed time and number of needed packets to find a 

resource; 

4. Needed time and number of needed packets to 

publish a resource and a type of resource. 

Charts from Figure 9(a) to 9(c) illustrate the 

performance of FLIP to add and remove a node within 

the main DHT. Such value are higher than the traditional 

Chord overlay due to the authentication needed when the 

node state has to be varied.  We can notice that the 

joining operation is more expensive of the leave one with 

respect of all the measures of merit, and all the trends 

increases as the number of hosts augments. Publishing a 

resource has a needed time that is lower than joining the 

main DHT, but higher than leaving it, as depicted in 

Figure 10(a). This is due to the fact that the required 

authentication steps are slightly lower, despite the cost to 

pay for establishing the resource DHT. In fact, the number 

of needed packets is closer to the ones for joining rather 

than leaving, while the average time has an opposite trend, 

as shown in Figure 10(b). Also, the standard deviation 

reflects such a consideration, as evident in Figure 10(c), 

since is quite small, meaning that very few verifications, 

and for close nodes, have been done. 

 

The time for finding a resource is very small compared 

to the other operations, and also in this case the reason is 

the absence of any verification means, and the latency, 

both in the average shown in Figure 11(a) and the standard 

deviation in Figure 11(b), only depends on the 

performances of the Chord DHT and our approach of the 

multiple DHT hosts the resources of interest. Enlarging the 

horizontal scale of the system, i.e., the number of hosts, 

increases all the measures of merit, but the incremental 

factor is smaller than in the other cases, thanks to the 

partitioning of the lookup exploited by our multiple DHTs. 

The benefit effect of the multiple DHT can be noticed also 

by observing the number of hops needed to find a given 

entity, which is lower for resources, thanks to the fact that 

multiple DHTs have been established for improving such a 

search.

 
800  

700  

600  

500  

400  

300  

200  

100  

0  

 

 
 
 
 
 
 
25              50             100            200            300            400            500  

Number 
of hosts  

 
250  

240  

230  

220  

210  

200  

 

 
 
 
 
 
 
25              50             100            200            300            400            500  

Number 
of hosts  

 
35  

30  

25  

20  

15  

10  

5  

0  

 
 
 
 
 

 
25              50             100            200            300            400            500  

Number 
of hosts 

 

Join             Leave 

 
(a) 

 

Join             

Leave  

 
(b) 

 

Join             Leave  

 
(c)

Figure 9. Experiments Results to study the time and overhead of the join and leave operations. 
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Figure 10. Experiments Results to study the time and overhead of publishing a resource. 
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Figure 11. Experiments Results to study the time and finding overhead of a resource. 
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10. CONCLUSIONS 

The purpose of this paper is to point to a reflection on the 

questions: “is there a way other than the IP one?” and “can 

flat labels be a simple answer to cloud computing, code 

mobility, crowd sourcing and ubiquitous or pervasive 

computing?”. Protocol here described is intended as a first 

point from where to start a big and concrete work on flat 

labels architectures, and not as a promotion of a standard for 

an improbable new architecture. Having said that we 

conclude with the hope that the idea of FLIP will not be a 

flop (computer humor). 
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