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Connecting laboratory behavior to field function through
stable isotope analysis

Mael G Glon, Eric R Larson, Kevin L Pangle

Inherent difficulties of tracking and observing organisms in the field often leave
researchers with no choice but to conduct behavioral experiments under laboratory
settings. However, results of laboratory experiments do not always translate accurately to
natural conditions. A fundamental challenge in ecology is therefore to scale up from small
area and short-duration laboratory experiments to large areas and long-durations over
which ecological processes generally operate. In this study, we propose that stable isotope
analysis may be a tool that can link laboratory behavioral observations to past field
interactions or function of individual organisms. We conducted laboratory behavioral
assays to measure dominance of invasive rusty crayfish, Orconectes rusticus, and used
stable isotope analysis to hindcast trophic positions of these crayfish under preceding
natural conditions. We hypothesized that more dominant crayfish in our assays would have
higher trophic positions if dominance were related to competitive ability or willingness to
pursue high-risk, high-reward prey. We did not find a relationship between crayfish
dominance and trophic position, and therefore infer that laboratory dominance of crayfish
may not necessarily relate to their ecology in the field. However, this is to our knowledge
the first attempt to directly relate laboratory behavior to field performance via stable
isotope analysis. We encourage future studies to continue to explore a possible link
between laboratory and field behavior via stable isotope analysis, and propose several
avenues to do so.
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Abstract

Inherent difficulties of tracking and observing organisms in the field often leave
researchers with no choice but to conduct behavioral experiments under laboratory settings.
However, results of laboratory experiments do not always translate accurately to natural
conditions. A fundamental challenge in ecology is therefore to scale up from small area and
short-duration laboratory experiments to large areas and long-durations over which ecological
processes generally operate. In this study, we propose that stable isotope analysis may be a tool
that can link laboratory behavioral observations to past field interactions or function of
individual organisms. We conducted laboratory behavioral assays to measure dominance of
invasive rusty crayfish, Orconectes rusticus, and used stable isotope analysis to hindcast trophic
positions of these crayfish under preceding natural conditions. We hypothesized that more
dominant crayfish in our assays would have higher trophic positions if dominance were related to
competitive ability or willingness to pursue high-risk, high-reward prey. We did not find a
relationship between crayfish dominance and trophic position, and therefore infer that laboratory
dominance of crayfish may not necessarily relate to their ecology in the field. However, this is to
our knowledge the first attempt to directly relate laboratory behavior to field performance via
stable isotope analysis. We encourage future studies to continue to explore a possible link
between laboratory and field behavior via stable isotope analysis, and propose several avenues to

do so.

Keywords: mixing model; dominance; agonistic assays; Orconectes rusticus; individual

variation; invasive species
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Introduction

Animal behavior is inherently linked with the fields of ecology and evolution (Sih, Bell
& Johnson, 2004; Réale, Reader & Sol, 2007), and informs applications such as management of
biological invasions (Sih et al., 2010). Owing to logistical difficulties inherent to tracking and
observing organisms without interference in the field, however, many behavioral studies are
conducted ex sifu in a laboratory setting, where it may be difficult to extrapolate findings to
natural conditions (Niemeld & Dingemanse, 2014; Zavorka et al., 2015). For example, a suite of
often-correlated behaviors including aggression, dominance, and boldness are believed to
contribute to the success of some invasive over native species (Pintor, Sih & Kerby, 2009;
Hudina, Hock & Zganec, 2014), but these same behaviors can be considerably muted in duration
or intensity when observed in the field (Bergman & Moore, 2003; Larson & Magoulick, 2009).
One of ecology’s most fundamental challenges is scaling up from the type of small area and
short duration experiments that are easy to conduct, to the larger areas and longer durations over
which ecological processes often operate (Lodge et al., 1998). This same challenge applies when
relating animal behaviors observed in the laboratory to ecological function and intra- or inter-
specific interactions in situ.

We propose here that linking laboratory behavioral observations to past field interactions
or function of specific, individual organisms may be an overlooked application of stable isotope
analysis. Stable isotopes of elements such as carbon and nitrogen are assimilated into tissues of
consumer organisms relative to their diets in predictable and quantifiable ways (DeNiro &
Epstein, 1978; DeNiro & Epstein, 1981). Importantly, stable isotopes of consumers equilibrate
with those of their diets at different rates for different tissues, giving snapshots of ecological

interactions that may scale from previous days to years (Buchheister & Latour, 2010). Analyzing
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stable isotope ratios in organisms can provide ecological insights ranging from habitat use and
movement (Hobson, 1999) to trophic position (Post, 2002). For example, stable isotope analysis
of feathers has been used to make inferences about migration and habitat use of several species
of seabirds that spend winter months far from land and are therefore difficult to study during this
period (Phillips et al. 2009). In another example, Cherel et al. (2008) used stable isotope analysis
to identify the trophic position and diet composition of southern elephant seals (Mirounga
leonina) which forage at depths exceeding 1000 m and have largely digested their meals by the
time they return to land, precluding them from being studied using traditional methods (e.g.,
direct observation, gut content analysis). Similarly to how these and other studies have applied
stable isotope analysis to infer the influence of past behavior on current success of organisms, we
propose that stable isotope analysis could permit researchers to link laboratory interactions with
previous in situ habitat selection, movement, diet choice, or competitive interactions (Figure 1).
We conducted laboratory behavioral assays to measure individual dominance of invasive
rusty crayfish, Orconectes rusticus, and used stable isotope analysis to hindcast trophic position
of these crayfish under natural field conditions. We predicted that more dominant crayfish in the
behavioral assays would have higher trophic positions if dominance were related to competitive
ability in the field (e.g., ability to access high quality food such as macroinvertebrates; Roth,
Hein & Vander Zanden, 2006) or willingness to pursue high-risk, high-reward prey such as fish
or other crayfish (Taylor & Soucek, 2010). Alternatively, dominance and trophic position may
not be associated if laboratory behaviors are ultimately uninformative with respect to past
interactions of organisms. Numerous previous studies have used stable isotope analysis to infer
various in situ behaviors of organisms, such as habitat use and diet preferences (e.g., Hildebrand

et al., 1996; Rubenstein & Hobson, 2004); however, our study is the first to our knowledge to

4

Peer] PrePrints | https://doi.org/10.7287/peerj.preprints.1746v1 | CC-BY 4.0 Open Access | rec: 15 Feb 2016, publ: 15 Feb 2016




93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

seek a direct relationship for individual organisms between laboratory behaviors and field
function as determined by stable isotope analysis, and proposes the linkage of laboratory

behavioral assays and stable isotopes as a more common practice in the future.

Methods

Orconectes rusticus was introduced via the bait trade to the Laurentian Great Lakes circa
1960 and has negatively affected fish, macrophytes, and freshwater macroinvertebrates
(McCarthy et al., 2006; Peters ef al. 2014). The invasion success of this crayfish has made it the
focal point of a large number of laboratory and field studies (e.g., Olsen et al., 1991; Wilson et
al., 2004) and hence, a useful organism to test for linkages between field and laboratory
behavior. We collected adult form II (reproductively inactive) male O. rusticus (n=40) by hand
on 16 June 2015 in the Chippewa River, Michigan (43.5652°, -84.9183°), where this species is
invasive. Because size influences the outcome of crayfish agonistic trials (Bergman & Moore,
2003), we used crayfish within a carapace length range of 23.41 to 27.53 mm, the smallest size
range for which we could collect 40 crayfish (see supplementary material for additional
morphometrics). Rusty crayfish in this size range are small adults of the same age class (Momot,
1967) and are therefore unlikely to have diets that differ from one another due to ontogenetic
shifts (Bondar et al., 2005; Larson, Olden & Usio, 2010). Immediately following collection, we
placed crayfish in individual 16 oz. plastic containers filled to a depth of 2 cm with river water

and a rock for shelter.

Agonistic assays
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Laboratory agonistic assays for crayfish are often conducted after isolating individuals
for at least one week to remove possible previous social experience that could influence
interactions (Seebacher & Wilson, 2007). We conducted our experiment directly following
collection (17 June 2015 during daylight hours [07h19-18h59]), but believe that retaining any
existing dominance hierarchies from the field would increase the likelihood of a relationship
between laboratory behaviors and previous field function.

We conducted three rounds of twenty, randomized paired assays, with each crayfish
fighting one opponent per round (no interactions between individuals were repeated). In order to
track individual crayfish, we randomly assigned each crayfish a number from 1 to 40, which we
wrote on the dorsal side of its carapace using a permanent marker. Prior to the start of each
assay, crayfish were placed on opposite sides of a separator in a 19 1 bucket and allowed to
acclimate for 15 minutes. We then removed the separator and allowed the crayfish to interact for
10 minutes. During each assay, we scored each of the two crayfish individually based on the
interactions that took place when they were within one body length of each other. All agonistic
assays were watched and scored in real time by a single observer to ensure consistency in
scoring. The agonistic assays within each of the three rounds were held in a random order, and
the observer had no knowledge of totaled crayfish scores from previous rounds so as to avoid
bias.

The scoring system we used has possible point values ranging from -2 (fast retreat) to 5
(unrestrained fighting) and is based on the ethogram modified from Bruski & Dunham (1987,
Table 1). Following each assay, the participating crayfish were returned to their original holding
container. We then rinsed buckets and refilled them to a depth of 5 cm with fresh water from the

Chippewa River (18-20°C). At the conclusion of all assays, crayfish were placed in individual,
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labelled bags and euthanized by freezing at -17.8°C. We calculated the dominance score of each
crayfish by first summing its scores from each round, then taking the mean of the three resulting

SCOres.

Stable isotope analysis

Stable isotope analysis is a technique based on the principle that the ratios of heavy to
light isotopes in the tissues of consumers reflect those of their diets in a predictable way (DeNiro
& Epstein, 1978; DeNiro & Epstein, 1981). Stable isotope analysis generally entails drying and
homogenizing tissue or whole-body samples of focal organisms, then using a mass spectrometer
coupled with an elemental analyzer to determine their constituent ratios of heavy to light isotopes

(i.e., Raampie). The isotope signatures of samples (3"), expressed in per mille (%o), are then

calculated as &* = ((RRsaﬂ) -1) * 1000 where Rgndarg 18 the isotopic ratio of a standard (e.g.,
standard

Vienna PeeDee Belemnite for carbon; air for nitrogen). This technique is often used to study the
roles and interactions of organisms in ecosystems, particularly as related to trophic position and
diet composition (Vander Zanden & Rasmussen, 1999; Post, 2002), but patterns of stable isotope
spatial structure can also be applied to study organismal movement and habitat use (Hobson,
1999; Seminoff et al., 2012).

In freshwater ecology, the most commonly used stable isotopes have been carbon and
nitrogen (denoted 8'°C and 8'°N, respectively). Specifically, 8'°C provides a tracer of energy
source origin because it is fixed by primary producers at photosynthesis and is well-conserved up
food chains with little change in value with each increasing trophic level (termed discrimination;
generally 0-1 %o; Fry & Sherr, 1984). Common sources of primary productivity in freshwater

habitats that can often be distinguished by analyzing 8'°C include a benthic algal pathway, an
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open water phytoplankton pathway, and an allochthonous terrestrial detrital pathway; the
importance of these pathways to consumers can vary depending on habitat attributes (Dekar,
Magoulick & Huxel, 2009; Francis et al., 2011). In contrast to 813C, 8'°N can be used to estimate
trophic position of organisms as it generally increases or discriminates at a predictable 3.4 + 1.1
%o with each increasing trophic level, from primary producers to primary, secondary, and tertiary
consumers (Minagawa & Wada, 1984). In some cases, 8'°N can be used alone to infer trophic
position of organisms; however, this is not the case if different sources of primary productivity
used by a consumer are depleted or enriched in 8'"°N relative to each other (Vander Zanden &
Rasmussen, 1999; Post, 2002; Figure 2). Under these circumstances, mixing models can be used
to estimate contributions of different energy pathways to consumers, and subsequently correct
for differences in their 8'°N enrichment while calculating trophic position of consumers (Post,
2002).

For this experiment, we collected snails (Elimia livescens; n=45) and mussels (Elliptio
dilatata; n=5) in the same stretch of the Chippewa River and on the same date as our crayfish
(see above), which we froze at -17.8°C, to be used as primary consumer endpoints in a two end-
member stable isotope mixing model related to calculating trophic position of crayfish. We chose
these specific organisms as they are reliable primary consumers (i.e., trophic position = 2) whose
relatively large size and long lives make their isotopic signatures more robust to spatial and
temporal variation than those of primary producers (Cabana & Rasmussen, 1996; Post, 2002).
Specifically, we used snails to represent the isotopic signature of the algal food web, and filter-
feeding mussels as an additional endpoint to represent a broad range of other potential sources of
primary production in lotic systems (e.g., benthic algae, terrestrial detritus, and phytoplankton

from upstream lentic systems; Raikow & Hamilton, 2001; Cole & Solomon, 2002).
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We dissected crayfish for abdominal muscle, snails for whole body without shell, and
mussels for foot muscle. We dried samples at 60°C for 24 h, homogenized them in an ethanol-
rinsed mortar and pestle, then weighed and encapsulated aliquots weighing .64 + .04 mg of each
sample into tin capsules. We sent these samples to the Stable Isotope Mass Spectrometry Lab at
the University of Florida for analysis on a Micromass Prism II isotope ratio mass spectrometer
coupled with an elemental analyzer. Two internationally recognized standards (I-glutamic acids),
USGS40 (mean + standard deviation 8"°C, -26.39 %o + 0.11; 8"°N, -4.53 %o + 0.12; measured
repeatedly for calibration) and USGS41 (8"°C, 47.57 %o; 8"°N, 37.36 %o; measured once as a
check standard), were measured during the analysis to ensure precision.

We calculated the relative contribution of the primary productivity represented by snails

13 13
(6 Ccrayfish_8 Cmussel)

(513 Csnail_(s13 Cmussel)

(SPP) to our crayfish as SPP = * 100, where 51 Cerayfish 15 the 8"3C of

each crayfish, 51 Crnussel 1S the mean 8'3C of our mussel samples and 613C5nai] is the mean 8'°C of
our snail samples. We then calculated the relative contribution of the primary productivity

represented by mussels (MPP) as MPP = 100 — SPP. Lastly, we calculated the trophic position

815Ncrayfish_(815Nsnail*SPP+815Nmusse1(1_SPP))
A15N

(TP) of our crayfish as TP = 2 + , where 51 Nerayfish 18

the 8"°N of each crayfish, 615N5naﬂ is the mean 8"°N of the snails, 615Nmussel is the mean 8"°N of

the mussels, and AN is a trophic discrimination factor of 3.4 (Minagawa & Wada, 1984).

Statistical analysis

We used linear regression to test for a relationship between the mean dominance scores
and calculated trophic positions of our crayfish. Additionally, we performed several linear
regressions controlling for the effect of body size on crayfish dominance by using residuals, as

well as a linear regression testing for a relationship between mean dominance score and
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unaltered §'°N signatures rather than calculated trophic position (supplementary material). All

analyses were conducted using the R statistical program (R Core Team, 2014).

Results

Snails were enriched in 8"°C (mean + standard deviation; -27.9 + 0.9 %o; Figure 2)
relative to mussels (-32.0 + 0.2 %o). The relatively depleted 5'"°C signature of the mussels likely
reflects utilization of either phytoplankton or allochthonous terrestrial detritus as food resources,
relative to the generally more °C enriched benthic algal pathway (Raikow & Hamilton, 2001;
Cole & Solomon, 2002). Our mixing model allowed us to correct for the relatively depleted 5'°N
signature of mussels with respect to the trophic positions of our crayfish. The percent reliance of
crayfish (mean + standard deviation) on the algae/snail pathway was 67.6 + 11.3 %, relative to
32.4 £ 11.3 % on the detritus or phytoplankton/mussel pathway, indicating that most of these
crayfish relied twice as much on the algal than mussel resource pathway. Trophic positions of
crayfish ranged from 2.1 to 2.6 with a mean of 2.3 £ 0.1, suggesting a range of foraging
behaviors from high reliance on primary producers like benthic algae (i.e., trophic position = 2)
to some predation on primary consumers like snails (i.e., trophic position = 3).

The mean crayfish dominance score from the agonistic assays was 29.93 (SD, 28.61;
min, -23.33; max, 80.67). We did not find a significant relationship between dominance and
trophic position (y = 0.0005x + 2.32, R* = 0.0132, Fi35=0.5084, p = 0.4802; Figure 3). Our
additional analyses accounting for the role of body size on both dominance and trophic position,
as well as those using an alternative measure of trophic position, did not affect our conclusion

that there is no association between dominance and trophic position (supplementary material).
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Discussion

We failed to find a relationship between crayfish dominance and trophic position. We
therefore infer that laboratory dominance among these organisms may not necessarily relate to
their dietary preferences in the field, despite our prediction that more dominant crayfish should
be more likely than subordinate crayfish to compete successfully for high quality food or to
pursue high-risk, high reward prey (Roth, Hein & Vander Zanden, 2006; Taylor & Soucek,
2010). However, this is to our knowledge the first attempt to relate laboratory behavior to field
performance via stable isotope analysis; therefore, more studies are warranted to further explore
linkages between these two techniques in light of possible sources of discord.

For example, other behaviors may correlate better with trophic position than dominance
in paired agonistic assays. Dominance assays may instead be more informative with respect to
acquisition of shelter to avoid fish predation or fitness via sexual selection (Garvey, Stein &
Thomas, 1994; Bergman & Moore, 2003), whereas trophic position in the field might correlate
better with other measures of laboratory behavior, such as boldness. However, dominance and
boldness have been observed to correlate as “behavioral syndromes” in crayfish (Pintor, Sih &
Kerby, 2009), and we would therefore expect boldness and dominance to both correlate with
trophic position. It is also possible that there is a temporal disconnect between our analysis of
crayfish abdominal tissue, which has an isotopic half-life of approximately 20-30 days (Glon,
Larson & Pangle, 2016), and the social memory of our crayfish, which is thought to last from 60
minutes to one week (Bergman et al., 2003). Use of a tissue with a faster turnover rate (e.g.,
haemolymph) may better reflect the most recent in situ behavior of crayfish. Further, male
crayfish of the family Cambaridae cycle between a reproductively inactive form II and an active

form I stage. We used form II male crayfish, which are typically less aggressive than crayfish in
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form I (Bergman et al., 2003). Replicating our experiment with form I individuals might alter the
results of agonistic assays and their relationship to trophic position.

Lastly, a possible limitation of our study was our relatively small sample size (n = 40;
Galvan, Sweeting & Reid, 2010). In order to determine if our lack of a significant relationship

stemmed from low power, we conducted power analyses using the pwr package in R (Champely,

RZ
1-R2

2015). We found that for our observed effect size (0.013; calculated as [Cohen, 1988]) and

an alpha of 0.05 and conventional power of 0.80, we would have required 605 crayfish replicates
to observe statistical significance. Conversely, for an alpha of 0.05 and power of 0.80, the
smallest effect size we would have detected as significant with 40 crayfish replicates was 0.21
(R*=0.173). We therefore conclude that although the effect size observed here could only be
detected as statistically significant with an uncommonly high level of replication (perhaps
dismissed as statistical significance without biological significance; Nakagawa & Cuthill, 2007),
our level of replication was adequate to find significant relatively weak effect sizes down to an
R*=0.173.

Although our study failed to find an association between crayfish dominance and stable
1sotope-estimated trophic position, we believe that there are many unexplored and promising
avenues to combine behavioral and isotope ecology in order to learn more about how behavior
observed in laboratories corresponds with movement and organismal interactions in the field.
Laboratory experiments and stable isotope analyses have both separately been used to explore
the “ecology of individuals” or variation within populations and species (Bolnick et al., 2003;
Niemeld & Dingemanse, 2014; Zavorka et al., 2015), yet to our knowledge, researchers have not
previously combined or compared these approaches for the same organisms. For example, stable

isotope analysis and behavioral assays could be combined to together evaluate whether range
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expansion of invasive species is being driven by subordinate individuals with low trophic
positions that are excluded from core habitats by dominant intraspecific competitors, or instead
bold or aggressive individuals with high trophic positions that are inclined to disperse (Hudina,
Hock & Zganec, 2014). Further, where distinct stable isotope signatures exist over habitat
gradients (Hobson, 1999), researchers could infer whether individuals with or without dispersal-
related behaviors observed in the laboratory were actually recent arrivals or longstanding
residents of their collection locations. We encourage future studies to further explore the possible
insights gained by linking laboratory behavior with field function through stable isotope analysis,

as doing so could contribute meaningfully to an array of ecological and evolutionary questions.
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Figure 1. Stable isotopes could permit researchers to hindcast the ecological interactions of
organisms, linking behaviors observed in the laboratory with previous field function or behavior.
Symbols courtesy of the Integration and Application Network (ian.umces.edu/symbols/).

Background image is of the study location where organisms were collected (Chippewa River).
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Table 1. Ethogram modified from Bruski & Dunham (1987)
Score Description

-2

Tail flip or fast retreat

Slow retreat

Within one body length with no visible interaction

Approach without threat display

Approach with threat display (e.g., meral spread, antennal whips)
Boxing, pushing, or other agonistic interaction with closed chelae
Grabbing, tearing, or other agonistic interaction with opened chelae
Full out, unrestrained fighting, usually with interlocked chelae
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I. Crayfish morphometrics

Size influences the outcome of crayfish agonistic trials (Rubenstein & Hazlett, 1974;
Bergman & Moore, 2003); therefore, to better understand what intrinsic factors might be
affecting the results of our agonistic assays, we used digital calipers to measure carapace length
(CL; from the tip of the rostrum to the posterior edge of the carapace), chelae width (at the
widest point of the palm), and chelae length (from the attachment of the carpus and the propodus
to the most distal point of the fixed finger) to the nearest hundredth of a mm. We used a digital
balance to measure mass to the nearest hundredth of a gram (Table S1). Prior to weighing, we

dabbed all crayfish dry for 10 seconds with a paper towel.
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Table S1. Crayfish morphometrics.

Standard .. .
Measurement Mean .. Minimum Maximum
Deviation

25.38 1.26 23.41 27.53

Carapace length
(mm)
Chelae length
(mm)
Chelae width 7.20 0.85 5.02 8.31

(mm)

Mass (g) 5.06 0.78 3.7 6.5

17.38 1.70 14.05 21.36
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I1. Alternative comparisons of dominance and trophic position

Body size is a factor that strongly influences the outcome of agonistic encounters in
crayfish, with larger individuals generally being more dominant (Bovbjerg, 1953; Rubenstein &
Hazlett, 1974; Bergman & Moore, 2003). We used as small of a crayfish size range as
logistically possible, but the difference between our largest and smallest study organisms was
still 4.12 mm carapace length (Table S1). Despite this, most paired agonistic interaction trials
were between more closely size-matched crayfish (mean + standard deviation; 1.44 + 1.15 mm
carapace length). Regardless, we sought to determine if dominance scores might better
correspond with the trophic positions of our crayfish if we corrected for the role of size
differences in determining outcomes of agonistic interactions. We did not correct for potential
ontogenetic effects of crayfish size on trophic position (Bondar et al., 2005; Larson, Olden &
Usio, 2010), because we found no significant relationship between crayfish carapace length
(Table S1) and trophic position (y = 0.002x + 2.27, R*= 0.001, Fi133=10.02, p = 0.88). However,
as we anticipated, there was a significant relationship between crayfish carapace length and mean
dominance score (y = 11.503x - 261.971, R* = 0.26, Fi135=13.03, p <0.001; Figure S1). Yet,
when we corrected for the effect of crayfish size on dominance by regressing residuals of the
preceding analysis against trophic position, we still did not find a significant relationship,
consistent with our main text conclusion (y = 0.00x + 2.34, R’= 0.01, Fy33=0.54, p = 0.47,
Figure S2). The lack of a relationship between dominance and trophic position is therefore
conserved even when accounting for the potential influence of crayfish size on dominance.

Carapace length is the most commonly used size metric for crayfish; however, chelae size
has been shown to dictate success in agonistic encounters and may be a better measure of

dominance in crayfish (Garvey & Stein, 1993). We therefore ran two additional iterations of the
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611

612

analysis presented above, using chelae length and width instead of carapace length. We found
significant relationships between mean dominance scores and both chelae length (y = 9.125x —
128.686, R =0.29, F1 35 = 15.72, p < 0.001) and chelae width (y = 16.040x — 85.562, R* = 0.23,
Fi135=11.07, p=10.002). Yet again, regressing residuals from the chelae length or width and
dominance score analyses against trophic position did not change our main text conclusion that
that dominance and trophic position are unrelated (chelae length residuals vs trophic position; y
=0.0002x — 2.34, R* = 0.001, F; 33= 0.04, p = 0.85; chelae width residuals vs trophic position; y
=-0.0001x —2.34, R*=0.01, F, 33=0.02, p = 0.89).

The use of isotopic mixing models, applied here as a step in calculating trophic position
(Post, 2002), is dependent on a number of assumptions. For example, stream and river
ecosystems can have extremely high spatiotemporal variation in the §"°C and §'°N values of
sources of primary production owing to a number of factors (Fry & Sherr, 1984; Finlay, 2001;
Trudeau & Rasmussen, 2003). Accordingly, we followed convention in using primary
consumers rather than primary producers in mixing model calculations of trophic position (see
section V), as long-lived organisms like mussels or snails can integrate and correct for this
variability (Post, 2002; Cabana & Rasmussen, 1996). However, we cannot exclude that our field
sampling of primary consumer endpoints for our mixing model could have missed some such
variability inherent to heterogeneous lotic ecosystems, and our collection of potential prey
resources concurrent with crayfish consumers does not necessarily reflect isotopic values of prey
items for Orconectes rusticus over preceding weeks or months (Moore & Semmens, 2008).
Another assumption of mixing models is that constant discrimination factors can be used for
each trophic step and between different taxonomic groups and diet items. However,

discrimination factors can vary across taxa, diets, and tissues used (e.g., Stenroth et al., 2006;
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Caut, Angulo & Courchamp, 2009; Phillips et al., 2014), and consequently may misrepresent
trophic position of a focal organism (Bond & Diamond, 2011). Due to the potential vulnerability
of our model to the preceding assumptions, we also conducted a simpler analysis using crayfish
dominance scores and unaltered §1°N values to determine if our results were dependent on our
specific trophic position calculations. Doing so did not alter our overall nonsignificant result and
conclusion (y = 0.002x — 11.04, R* = 0.03, Fi35=1.292, p = 0.26; Figure S3). We therefore
conclude that our result of a lack of relationship between crayfish dominance in the laboratory
and trophic position in the field is robust to our measures of both crayfish dominance and trophic

position.
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length regression against calculated trophic position (y = 0.00x + 2.34, R* = 0.01, Fi33=0.54,p

=0.47).
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