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Connecting laboratory behavior to field function through

stable isotope analysis

Mael G Glon, Eric R Larson, Kevin L Pangle

Inherent difficulties of tracking and observing organisms in the field often leave

researchers with no choice but to conduct behavioral experiments under laboratory

settings. However, results of laboratory experiments do not always translate accurately to

natural conditions. A fundamental challenge in ecology is therefore to scale up from small

area and short-duration laboratory experiments to large areas and long-durations over

which ecological processes generally operate. In this study, we propose that stable isotope

analysis may be a tool that can link laboratory behavioral observations to past field

interactions or function of individual organisms. We conducted laboratory behavioral

assays to measure dominance of invasive rusty crayfish, Orconectes rusticus, and used

stable isotope analysis to hindcast trophic positions of these crayfish under preceding

natural conditions. We hypothesized that more dominant crayfish in our assays would have

higher trophic positions if dominance were related to competitive ability or willingness to

pursue high-risk, high-reward prey. We did not find a relationship between crayfish

dominance and trophic position, and therefore infer that laboratory dominance of crayfish

may not necessarily relate to their ecology in the field. However, this is to our knowledge

the first attempt to directly relate laboratory behavior to field performance via stable

isotope analysis. We encourage future studies to continue to explore a possible link

between laboratory and field behavior via stable isotope analysis, and propose several

avenues to do so.
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Abstract 24	

 Inherent difficulties of tracking and observing organisms in the field often leave 25	

researchers with no choice but to conduct behavioral experiments under laboratory settings. 26	

However, results of laboratory experiments do not always translate accurately to natural 27	

conditions. A fundamental challenge in ecology is therefore to scale up from small area and 28	

short-duration laboratory experiments to large areas and long-durations over which ecological 29	

processes generally operate. In this study, we propose that stable isotope analysis may be a tool 30	

that can link laboratory behavioral observations to past field interactions or function of 31	

individual organisms. We conducted laboratory behavioral assays to measure dominance of 32	

invasive rusty crayfish, Orconectes rusticus, and used stable isotope analysis to hindcast trophic 33	

positions of these crayfish under preceding natural conditions. We hypothesized that more 34	

dominant crayfish in our assays would have higher trophic positions if dominance were related to 35	

competitive ability or willingness to pursue high-risk, high-reward prey. We did not find a 36	

relationship between crayfish dominance and trophic position, and therefore infer that laboratory 37	

dominance of crayfish may not necessarily relate to their ecology in the field. However, this is to 38	

our knowledge the first attempt to directly relate laboratory behavior to field performance via 39	

stable isotope analysis. We encourage future studies to continue to explore a possible link 40	

between laboratory and field behavior via stable isotope analysis, and propose several avenues to 41	

do so. 42	

 43	

Keywords: mixing model; dominance; agonistic assays; Orconectes rusticus; individual 44	

variation; invasive species 45	

 46	
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Introduction  47	

 Animal behavior is inherently linked with the fields of ecology and evolution (Sih, Bell 48	

& Johnson, 2004; Réale, Reader & Sol, 2007), and informs applications such as management of 49	

biological invasions (Sih et al., 2010). Owing to logistical difficulties inherent to tracking and 50	

observing organisms without interference in the field, however, many behavioral studies are 51	

conducted ex situ in a laboratory setting, where it may be difficult to extrapolate findings to 52	

natural conditions (Niemelä & Dingemanse, 2014; Zavorka et al., 2015). For example, a suite of 53	

often-correlated behaviors including aggression, dominance, and boldness are believed to 54	

contribute to the success of some invasive over native species (Pintor, Sih & Kerby, 2009; 55	

Hudina, Hock & }ganec, 2014), but these same behaviors can be considerably muted in duration 56	

or intensity when observed in the field (Bergman & Moore, 2003; Larson & Magoulick, 2009). 57	

One of ecology’s most fundamental challenges is scaling up from the type of small area and 58	

short duration experiments that are easy to conduct, to the larger areas and longer durations over 59	

which ecological processes often operate (Lodge et al., 1998). This same challenge applies when 60	

relating animal behaviors observed in the laboratory to ecological function and intra- or inter-61	

specific interactions in situ.  62	

 We propose here that linking laboratory behavioral observations to past field interactions 63	

or function of specific, individual organisms may be an overlooked application of stable isotope 64	

analysis. Stable isotopes of elements such as carbon and nitrogen are assimilated into tissues of 65	

consumer organisms relative to their diets in predictable and quantifiable ways (DeNiro & 66	

Epstein, 1978; DeNiro & Epstein, 1981). Importantly, stable isotopes of consumers equilibrate 67	

with those of their diets at different rates for different tissues, giving snapshots of ecological 68	

interactions that may scale from previous days to years (Buchheister & Latour, 2010). Analyzing 69	
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stable isotope ratios in organisms can provide ecological insights ranging from habitat use and 70	

movement (Hobson, 1999) to trophic position (Post, 2002). For example, stable isotope analysis 71	

of feathers has been used to make inferences about migration and habitat use of several species 72	

of seabirds that spend winter months far from land and are therefore difficult to study during this 73	

period (Phillips et al. 2009). In another example, Cherel et al. (2008) used stable isotope analysis 74	

to identify the trophic position and diet composition of southern elephant seals (Mirounga 75	

leonina) which forage at depths exceeding 1000 m and have largely digested their meals by the 76	

time they return to land, precluding them from being studied using traditional methods (e.g., 77	

direct observation, gut content analysis). Similarly to how these and other studies have applied 78	

stable isotope analysis to infer the influence of past behavior on current success of organisms, we 79	

propose that stable isotope analysis could permit researchers to link laboratory interactions with 80	

previous in situ habitat selection, movement, diet choice, or competitive interactions (Figure 1).  81	

 We conducted laboratory behavioral assays to measure individual dominance of invasive 82	

rusty crayfish, Orconectes rusticus, and used stable isotope analysis to hindcast trophic position 83	

of these crayfish under natural field conditions. We predicted that more dominant crayfish in the 84	

behavioral assays would have higher trophic positions if dominance were related to competitive 85	

ability in the field (e.g., ability to access high quality food such as macroinvertebrates; Roth, 86	

Hein & Vander Zanden, 2006) or willingness to pursue high-risk, high-reward prey such as fish 87	

or other crayfish (Taylor & Soucek, 2010). Alternatively, dominance and trophic position may 88	

not be associated if laboratory behaviors are ultimately uninformative with respect to past 89	

interactions of organisms. Numerous previous studies have used stable isotope analysis to infer 90	

various in situ behaviors of organisms, such as habitat use and diet preferences (e.g., Hildebrand 91	

et al., 1996; Rubenstein & Hobson, 2004); however, our study is the first to our knowledge to 92	
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seek a direct relationship for individual organisms between laboratory behaviors and field 93	

function as determined by stable isotope analysis, and proposes the linkage of laboratory 94	

behavioral assays and stable isotopes as a more common practice in the future.  95	

 96	

Methods 97	

 Orconectes rusticus was introduced via the bait trade to the Laurentian Great Lakes circa 98	

1960 and has negatively affected fish, macrophytes, and freshwater macroinvertebrates 99	

(McCarthy et al., 2006; Peters et al. 2014). The invasion success of this crayfish has made it the 100	

focal point of a large number of laboratory and field studies (e.g., Olsen et al., 1991; Wilson et 101	

al., 2004) and hence, a useful organism to test for linkages between field and laboratory 102	

behavior. We collected adult form II (reproductively inactive) male O. rusticus (n=40) by hand 103	

on 16 June 2015 in the Chippewa River, Michigan (43.5652°, -84.9183°), where this species is 104	

invasive. Because size influences the outcome of crayfish agonistic trials (Bergman & Moore, 105	

2003), we used crayfish within a carapace length range of 23.41 to 27.53 mm, the smallest size 106	

range for which we could collect 40 crayfish (see supplementary material for additional 107	

morphometrics). Rusty crayfish in this size range are small adults of the same age class (Momot, 108	

1967) and are therefore unlikely to have diets that differ from one another due to ontogenetic 109	

shifts (Bondar et al., 2005; Larson, Olden & Usio, 2010). Immediately following collection, we 110	

placed crayfish in individual 16 oz. plastic containers filled to a depth of 2 cm with river water 111	

and a rock for shelter.  112	

 113	

Agonistic assays 114	
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 Laboratory agonistic assays for crayfish are often conducted after isolating individuals 115	

for at least one week to remove possible previous social experience that could influence 116	

interactions (Seebacher & Wilson, 2007). We conducted our experiment directly following 117	

collection (17 June 2015 during daylight hours [07h19-18h59]), but believe that retaining any 118	

existing dominance hierarchies from the field would increase the likelihood of a relationship 119	

between laboratory behaviors and previous field function.  120	

We conducted three rounds of twenty, randomized paired assays, with each crayfish 121	

fighting one opponent per round (no interactions between individuals were repeated). In order to 122	

track individual crayfish, we randomly assigned each crayfish a number from 1 to 40, which we 123	

wrote on the dorsal side of its carapace using a permanent marker. Prior to the start of each 124	

assay, crayfish were placed on opposite sides of a separator in a 19 l bucket and allowed to 125	

acclimate for 15 minutes. We then removed the separator and allowed the crayfish to interact for 126	

10 minutes. During each assay, we scored each of the two crayfish individually based on the 127	

interactions that took place when they were within one body length of each other. All agonistic 128	

assays were watched and scored in real time by a single observer to ensure consistency in 129	

scoring. The agonistic assays within each of the three rounds were held in a random order, and 130	

the observer had no knowledge of totaled crayfish scores from previous rounds so as to avoid 131	

bias.  132	

The scoring system we used has possible point values ranging from -2 (fast retreat) to 5 133	

(unrestrained fighting) and is based on the ethogram modified from Bruski & Dunham (1987; 134	

Table 1). Following each assay, the participating crayfish were returned to their original holding 135	

container. We then rinsed buckets and refilled them to a depth of 5 cm with fresh water from the 136	

Chippewa River (18-20°C). At the conclusion of all assays, crayfish were placed in individual, 137	
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labelled bags and euthanized by freezing at -17.8°C. We calculated the dominance score of each 138	

crayfish by first summing its scores from each round, then taking the mean of the three resulting 139	

scores. 140	

 141	

Stable isotope analysis 142	

Stable isotope analysis is a technique based on the principle that the ratios of heavy to 143	

light isotopes in the tissues of consumers reflect those of their diets in a predictable way (DeNiro 144	

& Epstein, 1978; DeNiro & Epstein, 1981). Stable isotope analysis generally entails drying and 145	

homogenizing tissue or whole-body samples of focal organisms, then using a mass spectrometer 146	

coupled with an elemental analyzer to determine their constituent ratios of heavy to light isotopes 147	

(i.e., Rsample). The isotope signatures of samples (·
x
), expressed in per mille (‰), are then 148	

calculated as ·
x
 = ((

�������

���������
) -1) * 1000 where Rstandard is the isotopic ratio of a standard (e.g., 149	

Vienna PeeDee Belemnite for carbon; air for nitrogen). This technique is often used to study the 150	

roles and interactions of organisms in ecosystems, particularly as related to trophic position and 151	

diet composition (Vander Zanden & Rasmussen, 1999; Post, 2002), but patterns of stable isotope 152	

spatial structure can also be applied to study organismal movement and habitat use (Hobson, 153	

1999; Seminoff et al., 2012). 154	

In freshwater ecology, the most commonly used stable isotopes have been carbon and 155	

nitrogen (denoted ·
13

C and ·
15

N, respectively). Specifically, ·
13

C provides a tracer of energy 156	

source origin because it is fixed by primary producers at photosynthesis and is well-conserved up 157	

food chains with little change in value with each increasing trophic level (termed discrimination; 158	

generally 0-1 ‰; Fry & Sherr, 1984). Common sources of primary productivity in freshwater 159	

habitats that can often be distinguished by analyzing ·
13

C include a benthic algal pathway, an 160	
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open water phytoplankton pathway, and an allochthonous terrestrial detrital pathway; the 161	

importance of these pathways to consumers can vary depending on habitat attributes (Dekar, 162	

Magoulick & Huxel, 2009; Francis et al., 2011). In contrast to ·
13

C, ·
15

N can be used to estimate 163	

trophic position of organisms as it generally increases or discriminates at a predictable 3.4 ± 1.1 164	

‰ with each increasing trophic level, from primary producers to primary, secondary, and tertiary 165	

consumers (Minagawa & Wada, 1984). In some cases, ·
15

N can be used alone to infer trophic 166	

position of organisms; however, this is not the case if different sources of primary productivity 167	

used by a consumer are depleted or enriched in ·
15

N relative to each other (Vander Zanden & 168	

Rasmussen, 1999; Post, 2002; Figure 2). Under these circumstances, mixing models can be used 169	

to estimate contributions of different energy pathways to consumers, and subsequently correct 170	

for differences in their ·
15

N enrichment while calculating trophic position of consumers (Post, 171	

2002). 172	

For this experiment, we collected snails (Elimia livescens; n=45) and mussels (Elliptio 173	

dilatata; n=5) in the same stretch of the Chippewa River and on the same date as our crayfish 174	

(see above), which we froze at -17.8°C, to be used as primary consumer endpoints in a two end-175	

member stable isotope mixing model related to calculating trophic position of crayfish. We chose 176	

these specific organisms as they are reliable primary consumers (i.e., trophic position = 2) whose 177	

relatively large size and long lives make their isotopic signatures more robust to spatial and 178	

temporal variation than those of primary producers (Cabana & Rasmussen, 1996; Post, 2002). 179	

Specifically, we used snails to represent the isotopic signature of the algal food web, and filter-180	

feeding mussels as an additional endpoint to represent a broad range of other potential sources of 181	

primary production in lotic systems (e.g., benthic algae, terrestrial detritus, and phytoplankton 182	

from upstream lentic systems; Raikow & Hamilton, 2001; Cole & Solomon, 2002).  183	
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We dissected crayfish for abdominal muscle, snails for whole body without shell, and 184	

mussels for foot muscle. We dried samples at 60°C for 24 h, homogenized them in an ethanol-185	

rinsed mortar and pestle, then weighed and encapsulated aliquots weighing .64 ± .04 mg of each 186	

sample into tin capsules. We sent these samples to the Stable Isotope Mass Spectrometry Lab at 187	

the University of Florida for analysis on a Micromass Prism II isotope ratio mass spectrometer 188	

coupled with an elemental analyzer. Two internationally recognized standards (l-glutamic acids), 189	

USGS40 (mean ± standard deviation ·
13

C, -26.39 ‰ ± 0.11; ·
15

N, -4.53 ‰ ± 0.12; measured 190	

repeatedly for calibration) and USGS41 (·
13

C, 47.57 ‰; ·
15

N, 37.36 ‰; measured once as a 191	

check standard), were measured during the analysis to ensure precision.  192	

We calculated the relative contribution of the primary productivity represented by snails 193	

(SPP) to our crayfish as SPP =
(��������������

���������)

(�����������
���������)

7 100, where ·
13

Ccrayfish is the ·
13

C of 194	

each crayfish, ·
13

Cmussel is the mean ·
13

C of our mussel samples and ·
13

Csnail is the mean ·
13

C of 195	

our snail samples. We then calculated the relative contribution of the primary productivity 196	

represented by mussels (MPP) as MPP = 100 2 SPP. Lastly, we calculated the trophic position 197	

(TP) of our crayfish as TP = 2 +
�������������(�

��������7�����
���������(�����))

����
, where ·

15
Ncrayfish is 198	

the ·
15

N of each crayfish, ·
15

Nsnail is the mean ·
15

N of the snails, ·
15

Nmussel is the mean ·
15

N of 199	

the mussels, and �
15

N is a trophic discrimination factor of 3.4 (Minagawa & Wada, 1984). 200	

 201	

Statistical analysis 202	

 We used linear regression to test for a relationship between the mean dominance scores 203	

and calculated trophic positions of our crayfish. Additionally, we performed several linear 204	

regressions controlling for the effect of body size on crayfish dominance by using residuals, as 205	

well as a linear regression testing for a relationship between mean dominance score and 206	
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unaltered ·��N signatures rather than calculated trophic position (supplementary material). All 207	

analyses were conducted using the R statistical program (R Core Team, 2014). 208	

 209	

Results 210	

 Snails were enriched in ·
13

C (mean ± standard deviation; -27.9 ± 0.9 ‰; Figure 2) 211	

relative to mussels (-32.0 ± 0.2 ‰). The relatively depleted ·
13

C signature of the mussels likely 212	

reflects utilization of either phytoplankton or allochthonous terrestrial detritus as food resources, 213	

relative to the generally more 
13

C enriched benthic algal pathway (Raikow & Hamilton, 2001; 214	

Cole & Solomon, 2002). Our mixing model allowed us to correct for the relatively depleted ·
15

N 215	

signature of mussels with respect to the trophic positions of our crayfish. The percent reliance of 216	

crayfish (mean ± standard deviation) on the algae/snail pathway was 67.6 ± 11.3 %, relative to 217	

32.4 ± 11.3 % on the detritus or phytoplankton/mussel pathway, indicating that most of these 218	

crayfish relied twice as much on the algal than mussel resource pathway. Trophic positions of 219	

crayfish ranged from 2.1 to 2.6 with a mean of 2.3 ± 0.1, suggesting a range of foraging 220	

behaviors from high reliance on primary producers like benthic algae (i.e., trophic position = 2) 221	

to some predation on primary consumers like snails (i.e., trophic position = 3).  222	

 The mean crayfish dominance score from the agonistic assays was 29.93 (SD, 28.61; 223	

min, -23.33; max, 80.67). We did not find a significant relationship between dominance and 224	

trophic position (y = 0.0005x + 2.32, R
2
 = 0.0132, F1,38 = 0.5084, p = 0.4802; Figure 3). Our 225	

additional analyses accounting for the role of body size on both dominance and trophic position, 226	

as well as those using an alternative measure of trophic position, did not affect our conclusion 227	

that there is no association between dominance and trophic position (supplementary material).  228	

 229	
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Discussion 230	

 We failed to find a relationship between crayfish dominance and trophic position. We 231	

therefore infer that laboratory dominance among these organisms may not necessarily relate to 232	

their dietary preferences in the field, despite our prediction that more dominant crayfish should 233	

be more likely than subordinate crayfish to compete successfully for high quality food or to 234	

pursue high-risk, high reward prey (Roth, Hein & Vander Zanden, 2006; Taylor & Soucek, 235	

2010). However, this is to our knowledge the first attempt to relate laboratory behavior to field 236	

performance via stable isotope analysis; therefore, more studies are warranted to further explore 237	

linkages between these two techniques in light of possible sources of discord.  238	

For example, other behaviors may correlate better with trophic position than dominance 239	

in paired agonistic assays. Dominance assays may instead be more informative with respect to 240	

acquisition of shelter to avoid fish predation or fitness via sexual selection (Garvey, Stein & 241	

Thomas, 1994; Bergman & Moore, 2003), whereas trophic position in the field might correlate 242	

better with other measures of laboratory behavior, such as boldness. However, dominance and 243	

boldness have been observed to correlate as “behavioral syndromes” in crayfish (Pintor, Sih & 244	

Kerby, 2009), and we would therefore expect boldness and dominance to both correlate with 245	

trophic position. It is also possible that there is a temporal disconnect between our analysis of 246	

crayfish abdominal tissue, which has an isotopic half-life of approximately 20-30 days (Glon, 247	

Larson & Pangle, 2016), and the social memory of our crayfish, which is thought to last from 60 248	

minutes to one week (Bergman et al., 2003). Use of a tissue with a faster turnover rate (e.g., 249	

haemolymph) may better reflect the most recent in situ behavior of crayfish. Further, male 250	

crayfish of the family Cambaridae cycle between a reproductively inactive form II and an active 251	

form I stage. We used form II male crayfish, which are typically less aggressive than crayfish in 252	
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form I (Bergman et al., 2003). Replicating our experiment with form I individuals might alter the 253	

results of agonistic assays and their relationship to trophic position.  254	

Lastly, a possible limitation of our study was our relatively small sample size (n = 40; 255	

Galván, Sweeting & Reid, 2010). In order to determine if our lack of a significant relationship 256	

stemmed from low power, we conducted power analyses using the pwr package in R (Champely, 257	

2015). We found that for our observed effect size (0.013; calculated as 
��

����
 [Cohen, 1988]) and 258	

an alpha of 0.05 and conventional power of 0.80, we would have required 605 crayfish replicates 259	

to observe statistical significance. Conversely, for an alpha of 0.05 and power of 0.80, the 260	

smallest effect size we would have detected as significant with 40 crayfish replicates was 0.21 261	

(R
2 
= 0.173). We therefore conclude that although the effect size observed here could only be 262	

detected as statistically significant with an uncommonly high level of replication (perhaps 263	

dismissed as statistical significance without biological significance; Nakagawa & Cuthill, 2007), 264	

our level of replication was adequate to find significant relatively weak effect sizes down to an 265	

R
2 
= 0.173.  266	

 Although our study failed to find an association between crayfish dominance and stable 267	

isotope-estimated trophic position, we believe that there are many unexplored and promising 268	

avenues to combine behavioral and isotope ecology in order to learn more about how behavior 269	

observed in laboratories corresponds with movement and organismal interactions in the field. 270	

Laboratory experiments and stable isotope analyses have both separately been used to explore 271	

the “ecology of individuals” or variation within populations and species (Bolnick et al., 2003; 272	

Niemelä & Dingemanse, 2014; Zavorka et al., 2015), yet to our knowledge, researchers have not 273	

previously combined or compared these approaches for the same organisms. For example, stable 274	

isotope analysis and behavioral assays could be combined to together evaluate whether range 275	
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expansion of invasive species is being driven by subordinate individuals with low trophic 276	

positions that are excluded from core habitats by dominant intraspecific competitors, or instead 277	

bold or aggressive individuals with high trophic positions that are inclined to disperse (Hudina, 278	

Hock & }ganec, 2014). Further, where distinct stable isotope signatures exist over habitat 279	

gradients (Hobson, 1999), researchers could infer whether individuals with or without dispersal-280	

related behaviors observed in the laboratory were actually recent arrivals or longstanding 281	

residents of their collection locations. We encourage future studies to further explore the possible 282	

insights gained by linking laboratory behavior with field function through stable isotope analysis, 283	

as doing so could contribute meaningfully to an array of ecological and evolutionary questions.  284	
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Figure 1. 455	

 456	

Figure 1. Stable isotopes could permit researchers to hindcast the ecological interactions of 457	

organisms, linking behaviors observed in the laboratory with previous field function or behavior. 458	

Symbols courtesy of the Integration and Application Network (ian.umces.edu/symbols/). 459	

Background image is of the study location where organisms were collected (Chippewa River). 460	
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Figure 2. 469	

 470	

 Figure 2. Isotopic biplot of ·
13

C and ·
15

N for crayfish (red circles), mussels (green triangles), 471	

and snails (blue squares). All values are expressed in per mille (‰) relative to a standard of V-472	

PDB (Vienna PeeDee Belemnite) for carbon and air for nitrogen. 473	
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Figure 3. 477	

 478	

Figure 3. Scatterplot (with 95% CI) of mean assay dominance score for each crayfish over three 479	

agonistic assays and in situ trophic position (y =0.0005x + 2.32, R
2
 = 0.0132, F1,38 = 0.5084, p = 480	

0.4802).  481	
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Table 1. Ethogram modified from Bruski & Dunham (1987) 

Score Description 

-2 Tail flip or fast retreat 

-1 Slow retreat 

0 Within one body length with no visible interaction  

1 Approach without threat display 

2 Approach with threat display (e.g., meral spread, antennal whips) 

3 Boxing, pushing, or other agonistic interaction with closed chelae 

4 Grabbing, tearing, or other agonistic interaction with opened chelae 

5 Full out, unrestrained fighting, usually with interlocked chelae 
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I. Crayfish morphometrics 526	

 Size influences the outcome of crayfish agonistic trials (Rubenstein & Hazlett, 1974; 527	

Bergman & Moore, 2003); therefore, to better understand what intrinsic factors might be 528	

affecting the results of our agonistic assays, we used digital calipers to measure carapace length 529	

(CL; from the tip of the rostrum to the posterior edge of the carapace), chelae width (at the 530	

widest point of the palm), and chelae length (from the attachment of the carpus and the propodus 531	

to the most distal point of the fixed finger) to the nearest hundredth of a mm. We used a digital 532	

balance to measure mass to the nearest hundredth of a gram (Table S1). Prior to weighing, we 533	

dabbed all crayfish dry for 10 seconds with a paper towel. 534	
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Table S1. Crayfish morphometrics. 

Measurement Mean 
 Standard 

Deviation 
Minimum Maximum 

Carapace length 

(mm) 
25.38 1.26 23.41 27.53 

Chelae length 

(mm) 
17.38 1.70 14.05 21.36 

Chelae width 

(mm) 
7.20 0.85 5.02 8.31 

Mass (g) 5.06 0.78 3.7 6.5 
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II. Alternative comparisons of dominance and trophic position 567	

 Body size is a factor that strongly influences the outcome of agonistic encounters in 568	

crayfish, with larger individuals generally being more dominant (Bovbjerg, 1953; Rubenstein & 569	

Hazlett, 1974; Bergman & Moore, 2003). We used as small of a crayfish size range as 570	

logistically possible, but the difference between our largest and smallest study organisms was 571	

still 4.12 mm carapace length (Table S1). Despite this, most paired agonistic interaction trials 572	

were between more closely size-matched crayfish (mean ± standard deviation; 1.44 ± 1.15 mm 573	

carapace length). Regardless, we sought to determine if dominance scores might better 574	

correspond with the trophic positions of our crayfish if we corrected for the role of size 575	

differences in determining outcomes of agonistic interactions. We did not correct for potential 576	

ontogenetic effects of crayfish size on trophic position (Bondar et al., 2005; Larson, Olden & 577	

Usio, 2010), because we found no significant relationship between crayfish carapace length 578	

(Table S1) and trophic position (y = 0.002x + 2.27, R
2 
= 0.001, F1,38 = 0.02, p = 0.88). However, 579	

as we anticipated, there was a significant relationship between crayfish carapace length and mean 580	

dominance score (y = 11.503x - 261.971, R
2
 = 0.26, F1,38 = 13.03, p < 0.001; Figure S1). Yet, 581	

when we corrected for the effect of crayfish size on dominance by regressing residuals of the 582	

preceding analysis against trophic position, we still did not find a significant relationship, 583	

consistent with our main text conclusion (y = 0.00x + 2.34, R
2
 = 0.01, F1,38 = 0.54, p = 0.47; 584	

Figure S2). The lack of a relationship between dominance and trophic position is therefore 585	

conserved even when accounting for the potential influence of crayfish size on dominance.  586	

 Carapace length is the most commonly used size metric for crayfish; however, chelae size 587	

has been shown to dictate success in agonistic encounters and may be a better measure of 588	

dominance in crayfish (Garvey & Stein, 1993). We therefore ran two additional iterations of the 589	

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1746v1 | CC-BY 4.0 Open Access | rec: 15 Feb 2016, publ: 15 Feb 2016



	 29	

analysis presented above, using chelae length and width instead of carapace length. We found 590	

significant relationships between mean dominance scores and both chelae length (y = 9.125x – 591	

128.686, R
2
 = 0.29, F1,38 = 15.72, p < 0.001) and chelae width (y = 16.040x – 85.562, R

2
 = 0.23, 592	

F1,38 = 11.07, p = 0.002). Yet again, regressing residuals from the chelae length or width and 593	

dominance score analyses against trophic position did not change our main text conclusion that 594	

that dominance and trophic position are unrelated (chelae length residuals vs trophic position; y 595	

= 0.0002x – 2.34, R
2
 = 0.001, F1,38 = 0.04, p = 0.85; chelae width residuals vs trophic position; y 596	

= -0.0001x – 2.34, R
2 
= 0.01, F1,38 = 0.02, p = 0.89). 597	

 The use of isotopic mixing models, applied here as a step in calculating trophic position 598	

(Post, 2002), is dependent on a number of assumptions. For example, stream and river 599	

ecosystems can have extremely high spatiotemporal variation in the ·
13

C and ·
15

N values of 600	

sources of primary production owing to a number of factors (Fry & Sherr, 1984; Finlay, 2001; 601	

Trudeau & Rasmussen, 2003).  Accordingly, we followed convention in using primary 602	

consumers rather than primary producers in mixing model calculations of trophic position (see 603	

section IV), as long-lived organisms like mussels or snails can integrate and correct for this 604	

variability (Post, 2002; Cabana & Rasmussen, 1996). However, we cannot exclude that our field 605	

sampling of primary consumer endpoints for our mixing model could have missed some such 606	

variability inherent to heterogeneous lotic ecosystems, and our collection of potential prey 607	

resources concurrent with crayfish consumers does not necessarily reflect isotopic values of prey 608	

items for Orconectes rusticus over preceding weeks or months (Moore & Semmens, 2008). 609	

Another assumption of mixing models is that constant discrimination factors can be used for 610	

each trophic step and between different taxonomic groups and diet items. However, 611	

discrimination factors can vary across taxa, diets, and tissues used (e.g., Stenroth et al., 2006; 612	
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Caut, Angulo & Courchamp, 2009; Phillips et al., 2014), and consequently may misrepresent 613	

trophic position of a focal organism (Bond & Diamond, 2011). Due to the potential vulnerability 614	

of our model to the preceding assumptions, we also conducted a simpler analysis using crayfish 615	

dominance scores and unaltered ·��N values to determine if our results were dependent on our 616	

specific trophic position calculations. Doing so did not alter our overall nonsignificant result and 617	

conclusion (y = 0.002x – 11.04, R
2
 = 0.03, F1,38 = 1.292, p = 0.26; Figure S3). We therefore 618	

conclude that our result of a lack of relationship between crayfish dominance in the laboratory 619	

and trophic position in the field is robust to our measures of both crayfish dominance and trophic 620	

position. 621	

 622	
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 623	

Figure S1. Scatterplot (with 95% CI) showing significant relationship between crayfish carapace 624	

length and dominance score from behavioral assays (y = 11.503x - 261.971, R
2
 = 0.26, F1,38 = 625	

13.03, p < 0.001). 626	
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 628	

Figure S2. Scatterplot (with 95% CI)  of the residuals from crayfish dominance and carapace 629	

length regression against calculated trophic position (y = 0.00x + 2.34, R
2
 = 0.01, F1,38 = 0.54, p 630	

= 0.47). 631	
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 635	

Figure S3. Scatterplot (with 95% CI) of crayfish dominance scores and ·��N signatures (y = 636	

0.002x – 11.04, R
2
 = 0.03, F1,38 = 1.292, p = 0.26) 637	
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