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Abstract1

Aggregation during dispersal from source to settlement sites can allow2

persistence of weak competitors, by creating conditions where stronger3

competitors are more likely to interact with conspecifics than with less4

competitive heterospecifics. However, different aggregation mechanisms across5

scales can lead to very different patterns of settlement. Little is known about6

what ecological conditions are required for this mechanism to work effectively. We7

derive a metacommunity approximation of aggregated dispersal that shows how8

three different scales interact to determine competitive outcomes: the spatial scale9

of aggregation, the spatial scale of interactions between individuals, and the10

time-scale of arrival rates of aggregations. We use stochastic simulations and a11

novel metacommunity approximation to show that an inferior competitor can12

invade only when the superior competitor is aggregated over short spatial scales,13

and aggregations of new settlers are small and rare.14

Introduction15

One of the most significant and longest lasting problems in ecology, dating back to its16

start as a quantitative discipline (Gause, 1932), is the paradox of coexistence: if two17

species have the same resource requirements and similar environmental tolerances, why18

does the species with higher fitness not drive the other to extinction (Hutchinson,19

1961)? In general, unequal competitors can only coexist if there is some form of20

stabilizing mechanism: an ecological process which increases the weaker competitor’s21

growth rate at low densities (Chesson, 2000b). One of the major factors stabilizing22
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species interactions are differential responses to spatial heterogeneity (Chesson, 2000a).23

The effectiveness of any spatial stabilizing mechanism at promoting coexistence is24

determined by the scales of dispersal and of interactions among competing species25

(Chesson et al., 2005). Short distance dispersal has been shown to affect intraspecific26

crowding and coexistence of species that interact over similarly local scales (Bolker and27

Pacala, 1999, Snyder and Chesson, 2003, 2004). However, clustering of conspecifics due28

to short range-dispersal by itself is not sufficient to allow a weaker competitor to invade29

a system(Chesson and Neuhauser, 2002). Instead, coexistence can occur if each species30

uses space in substantially different ways, either through endogenous spatial patterns of31

density (e.g. Bolker and Pacala, 1999, Snyder and Chesson, 2004), or through32

species-specific responses to environmental variation (e.g. Snyder and Chesson, 2003,33

Snyder, 2008). Also, dispersal can occur over distances that are orders of magnitude34

larger than the scales of species interactions (Kinlan and Gaines, 2003), which limits the35

application of dispersal as a mechanism of coexistence.36

Many transport mechanisms associated with large sale dispersal, such as large marine37

current features (Siegel et al., 2008), can also lead to the aggregation of propagules in38

transit. These aggregated transport mechanisms create patterns of clustered settlement39

at scales much smaller than the scale of dispersal itself. Aggregated dispersal has been40

proposed as one factor driving coexistence of sedentary species in metacommunities41

(Potthoff et al., 2006, Berkley et al., 2010, Aiken and Navarrete, 2014). It has been42

demonstrated to enhance coexistence in field marine field plots (Edwards and43

Stachowicz, 2011), and given that many plant species face strongly density-dependent44

seed mortality (Harms et al., 2000), aggregated seed dispersal may play a significant45
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role in shaping plant communities (Muller-Landau and Hardesty, 2005, Potthoff et al.,46

2006). Aggregated long-distance dispersal can allow the coexistence of unequal47

competitors as long as the two species only rarely travel together in the same packets48

(Berkley et al., 2010). This works because the aggregated settlement of conspecifics49

results in higher intra-specific competition with no commensurate increase in50

inter-specific competition. This was previously shown to stabilize coexistence at small51

scales, such as insect herbivores competing for patchy plant resources (Ives and May,52

1985). Aggregated dispersal can also allow two species to coexist even if they use space53

in the same way (Berkley et al., 2010) because it leads to each recruit settling near54

conspecifics, even if dispersal started from an area of low density. This is unlike55

non-aggregated dispersal where recruits will only experience conspecific clustering if56

they disperse from an area with high adult density, which are already difficult to invade57

(Chesson and Neuhauser, 2002).58

Aggregated dispersal has been shown to stabilize coexistence over large scales in cases59

where competing species interact within patches that are connected by dispersal (that60

is, they form a metacommunity, Leibold et al., 2004) which are themselves the same size61

as propagule aggregations (Potthoff et al., 2006, Berkley et al., 2010). Given the wide62

range of possible aggregation mechanisms, such as marine currents (Siegel et al., 2008)63

or seed transport by wind and animal vectors (Muller-Landau and Hardesty, 2005), and64

the variety of spatial scales that individuals interact at, mismatches between the scale of65

aggregation and of interaction should be the rule. For instance, in the Southern66

California Bight, propagule aggregations can be nearly 100 km wide (Siegel et al.,67

2008), but benthic macro-algal species may only be interacting with neighbours up to 168
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km along the coast (Cavanaugh et al., 2014). Further, many species, while competing69

for the same resources, may either interact at different spatial scales (Ritchie, 2009) or70

be dispersed by different processes with significantly different scales of aggregation (for71

instance, if the larvae of one species are active swimmers, while its competitors larvae72

are passive, the first species will likely be less aggregated when they settle (Harrison73

et al., 2013)).74

Previous theoretical work on the role of spatial scale on coexistence with75

non-aggregated dispersal (e.g. Bolker and Pacala, 1999, Snyder and Chesson, 2004)76

provides a guide to how scales of aggregation and interactions may affect dynamics.77

However, it is built on the assumption that aggregated recruitment can only arise if78

source populations are already aggregated. Our goal is to understand the relative79

importance of aggregated dispersal and of species interactions for coexistence over a80

broad range of spatial scales. Towards this goal, we define key properties of propagule81

aggregation and of adult interactions to predict the effects of aggregated dispersal on82

coexistence. We first derive a single expression approximating settlement variability as83

a function of the scale of aggregation, the distribution of propagules among84

aggregations (packets), and of the spatial scale over which variability is measured. This85

approximation is useful both for incorporating aggregated dispersal into ecological86

models and for defining a set of metrics that can be used in the field to test model87

predictions. We use a combination of stochastic simulations and a novel moment-closure88

approximation to predict scales of aggregated dispersal that lead to coexistence. Our89

results show that aggregated dispersal can play a role in shaping community structure90

across a much wider range of spatial scales than has been previously shown.91
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Materials and Methods92

Approximating aggregated dispersal93

We approximate aggregation as a set of discrete aggregates, or packets (sensu Siegel94

et al., 2008, Berkley et al., 2010) of individuals. All aggregated dispersal mechanisms95

are then defined by three processes: how propagules are distributed between packets,96

where packets settle, and where propagules settle relative to the center of the packet.97

The outcome of all these processes will be a spatial distribution of settlers across a98

landscape. In mathematical terms, the pattern of settlers arriving on the landscape over99

a fixed period of time is a cluster point process (Illian et al., 2008). Cluster point100

processes are described by three functions: the intensity λc(χ,P) of cluster centers at a101

given location χ given a set of ecological state variables P, the probability p(n|χ,P) of102

finding n points in a cluster at location χ, and the probability δ(χ′, χ,P) of finding a103

point from a given cluster at location χ′, given a cluster occurs at location χ.104

Cluster point processes are general enough to describe any type of aggregated dispersal.105

However, for the sake of simplicity and tractability we focus on a subset of cluster point106

processes, called Neyman-Scott processes (Illian et al., 2008). Here, space is assumed to107

be homogeneous, so that packets settle at the same intensity (λc(χ,P) = λc(P)) and108

have the same properties (p(n|χ,P) = pc(n|P)) at all points in the landscape. Finally,109

packets are assumed to be isotropic (δ(χ′, χ,P) = δ(ε) where ε is the distance between a110

location and the packet center). The first assumption is equivalent to assuming a111

propagule rain, where all sites are equally likely to get settlers. Therefore, all points will112

have a mean settlement intensity of λ(P) = λc(P)E(pc(n|P) = λc(P)µ(P), where µ(P)113
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is the mean number of propagules per packet.114

We introduce an interaction scale by assuming that space is divided into circular115

patches of radius ν defined as the scale of interaction. Each patch will then have a116

volume Vol(ν), where V ol(ν) is a function that depends on the dimension of the space117

that individuals interact in: if space is one-dimensional, V ol(ν) = 2ν, and if space is118

two-dimensional, V ol(ν) = πν2. If we define si as the number of settlers in patch i, the119

mean number of settlers across all patches, s̄ will be s̄ = V ol(ν)λ(P). The probability of120

finding s settlers in a given patch is approximately (Sheth and Saslaw, 1994, Illian121

et al., 2008):122

p(s|λ, κ, ν) =
V ol(ν)λ

s!κ0.5
[V ol(ν)λκ−0.5 + s(1− κ−0.5)]e−V ol(ν)λκ−0.5−s(1−κ−0.5) (1)

where κ is a function summarizing all the effects of patch size, the distribution of123

propagules between packets, and the distribution of propagules within a packet. κ124

measures how aggregated settlement is, ranging from 1 where the number of settlers in125

each patch is randomly distributed following a Poisson distribution, to ∞. κ also defines126

the mean-variance relationship for this distribution, with V ar(s) = λV ol(ν)κ = s̄κ.127

While the expression for κ is complex, it can be closely approximated by a simple128

function (Appendix A):129

κ ≈ 1 + (
σ2 + µ2 − µ

µ
)

a( ν
ω

)b

1 + a( ν
ω

)b
(2)

The parameters µ and σ2 are the mean and variance of the distribution of propagules130

among packets, ω is the square root of the mean square distance of settlers from their131
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packet center (the standard deviation of the one dimension packet distribution), and a132

and b are unitless scaling coefficients. If species only interact in one-dimension, a = 1133

and b = 1.25; in two dimensions, a = 0.5 and b = 2 (Appendix A). Equation (2) implies134

that κ increases with increasing mean packet density, among-packet variability in135

individual density, with the scale of interaction, and decreases with the scale of136

aggregation (Fig. ). The first term in brackets captures the effects of the distribution of137

individuals among packets. This term can be simplified further: if all packets have the138

same number of settlers it equals µ− 1, if settlers are Poisson distributed between139

packets it equals µ, and if they are negative binomial distributed it equals µ(1 + 1
k
)140

(where k measures over-dispersion Bolker, 2008). We define µ as the time-scale of141

aggregation: as there are only a fixed number of propagules dispersing at a given time,142

if packets have higher mean densities, they must also arrive more infrequently. The143

second term in equation (2) captures the combined effects of the spatial scale of144

aggregation (ω) and of interaction (ν) on settlement variation.145

Meta-community moment closure146

To understand how scales, as defined by equation (2), will affect species persistence, we147

have to determine how spatial variability in propagule and adult densities affect the148

mean strength of local interactions (Chesson et al., 2005). To understand these149

interacting scales, we use a moment-closure approximation of a stochastic150

Lotka-Volterra meta-community model. Moment closure is a technique for151

approximating a complex stochastic system by reducing it to equations describing the152

dynamics of statistical summaries of the population (its moments), such as the mean153
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densities and spatial variances and covariances of all the species in the system (Bolker154

and Pacala, 1999, Keeling, 2000b). Here, we modify a moment closure derived for155

metapopulations (Keeling, 2000b) to incorporate both patch volume and aggregated156

settlement effects.157

We start with a continuous time model with two species, x and y, interacting in a158

one-dimensional habitat. Fig. illustrates the basic processes assumed in our model,159

comparing dynamics in metacommunity without aggregation (Fig. A) and with160

aggregation (Fig. B). Starting with species x, we assume that each individual interacts161

with all the individuals of species x and y within a patch i of radius νx with local162

densities x̃i ≡ xi
2νx

and ỹi ≡ yi
2νx

, where xi and yi indicate the number of individuals of163

species x and y in that patch. Species produce propagules at a constant per-capita rates164

rx, which are released into a global propagule pool. Packets of propagules arrive at each165

site at a rate α · νx that increases linearly with patch size νx (as more packets are166

expected to arrive at a larger patch), and may vary with global density X̃, as higher167

global densities imply more propagules and propagules may divide into more packets at168

higher densities (Fig. C). Therefore, we give α as a function of X̃, α(X̃). We also169

assume that each packet contains propagules of only one species. Given a packet of170

propagules settles with probability ps(sx|X̃, νx), sx new individuals recruit into the171

population at the site; this shifts the population density at a site from x̃ to x̃+ sx
2νx

.172

Each propagule becomes a reproductive adult at settlement, and begins interacting with173

the other settlers and adults already in the patch. Individuals of species x in a patch174

die at a rate 2νx(m+ dx,xx̃+ dx,yỹ) where m is a density-independent mortality rate per175

unit area, dx,x is the intra-specific competition rate, and dx,y is the competitive effect of176
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y on x. The same rules described above apply for species y.177

We approximate this system with multiplicative moments by using equations 1 and 2 to

approximate variability in settlement in a given patch (see Appendix B for the

derivation). This is equivalent to assuming that both x and y are log-normally

distributed between patches (Keeling, 2000b). This yields a system of five equations for

the mean densities X̃ = E(x̃) and Ỹ = E(ỹ), the multiplicative variances Vx ≡ E(x̃2)

X̃2

and Vy ≡ E(ỹ2)

Ỹ 2 , and multiplicative covariance C ≡ E(x̃ỹ)

X̃Ỹ
. Vx and Vy range between 1,

when all patches have the same density, and infinity. C ranges between zero, where the

two species never co-occur in the same patch, and infinity. C = 1 when x and y are

independently distributed over the landscape. The moment equations are:

˜dX

dt
=rxX̃ −mxX̃ − dx,xV̂xX̃2 − dx,yĈX̃Ỹ (3a)

d̃Y

dt
=ryỸ −myỸ − dy,yV̂yỸ 2 − dy,xĈX̃Ỹ (3b)

dV̂x
dt

=2rx + r2
x +

rxκ(α(X̃), µ(X̃), νx, ωx) +mx

2νxX̃
+ (

dx,x
2νx
− 2rx)V̂x (3c)

− 2dx,x(V̂x − 1)V̂ 2
x X̃ +

dx,yỸ Ĉ

2νxX̃
+ 2dx,y(1− Ĉ)Ỹ V̂xĈ

dV̂y
dt

=2ry + r2
y +

ryκ(α(Ỹ ), µ(Ỹ ), νy, ωy) +my

2νyỸ
+ (

dy,y
2νy
− 2ry)V̂y (3d)

− 2dy,y(V̂y − 1)V̂ 2
y Ỹ +

dy,xX̃Ĉ

2νyỸ
+ 2dy,x(1− Ĉ)X̃V̂yĈ

dĈ

dt
=(rx + ry)(1− Ĉ)− (dx,x + dy,x)(V̂x − 1)X̃Ĉ2 − (dy,y + dx,y)(V̂y − 1)Ỹ Ĉ2 (3e)

Equations (3a) and (3b) are a modified form of the Lotka-Volterra equations where178

intra- and inter-specific competition rates are affected by the spatial distributions of x179

and y. Equations (3c) and (3d) show that either decreasing the size of the patches (the180
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spatial scale of interaction) or increasing κ (the amount of variability due to aggregated181

settlement), will increase Vx and Vy, as these parameters only contribute to positive182

terms in the equations. See table 1 for parameter definitions.183

Individual-based simulations184

Predictions from moment approximations can break down (Keeling, 2000b). We185

therefore compared our moment approximation from system (3) with results from an186

individual-based spatial simulation model. All simulations were run in R 3.0.3 (R187

Development Core Team, 2008), and written in c++ using the Rcpp library188

(Eddelbuettel et al., 2011). We ran simulations on a linear grid with 2048 patches with189

circular boundary conditions. Each patch i had an integer number of individuals of190

species x and y, and the simulation was run forward in discrete time with a time step191

length τ .192

For all simulations, we assumed that both species in the system have identical193

density-independent mortality rates, and individuals increase one anotherś mortality194

equally via competition, regardless of species identity (m = 0.01,195

dx,x = dy,y = dx,y = dy,x = d = 0.025). To measure the effect of scale on coexistence, we196

varied the fitness inequality between the two species by altering fecundity rates,197

following the approach used by Berkley et al. (2010). We set rx = 0.11 and ry = e · 0.11,198

where e measured the degree of fitness inequality. When e = 1, the two species would be199

ecologically neutral in a well mixed system. For e > 1, species y has higher fitness, and200

on average drives species x to extinction in a well mixed system. Therefore, e measures201

the strength of intra- to inter-specific competition in the well mixed system. Coexistence202
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with e > 1 can result either from increased intraspecific competition via Vx and Vy, or203

from reduced interspecific competition via C. The demographic parameters m, rx, and d204

we set so that the weaker competitor would have and equilibrium population of four205

individuals per unit area under well-mixed conditions, to keep the total population size206

in each simulation small, allowing for faster simulations and more rapid extinction rates.207

For each time t, we simulated the following steps for each species (described here for208

species x for simplicity): (i) Calculate mean densities X̃t for each species at time t, and209

(ii) draw n ∼ Pois(2048 · τα(X̃)) new packets from a Poisson distribution. (iii) For210

each packet j, draw nj ∼ Pois( rX̃t
α(2νX̃t)

) individuals, and set the spatial midpoint ij of211

each packet from a uniform distribution. (iv) Distribute nj settlers in packet j across212

the patches neighbouring ij following a uniform distribution centered on ij with213

standard deviation ωx. This results in st+τ,i,x new settlers of species x in patch i at time214

t+ τ . (v) Calculate the number of individuals l dying in each patch i with215

lt+τ,i,x ∼ Pois(τ(mxt,i + dxt,i
∫ i+νx
i−νx

xt,j
2νx
dj + dxt,i

∫ i+max(νx,νy)

i−max(νx,νy)

yt,j
2νy
dj)), where the integrals216

represent the interaction kernel: the death rate increases as the average density of x and217

y increase in an area of radius νx around i. (vi) Finally, combine births and deaths to218

obtain xt+τ,i = xt,i + st+τ,i,x −min(xt,i, lt+τ,i.x). The minimum function prevents219

mortality from exceeding density in the patch at time t.220

This a form of the τ -leap algorithm for approximating continuous-time stochastic221

systems (Gillespie, 2007), with a fixed τ step size. Each simulation was run for a length222

of 1000, with 32000 steps (τ ≈ 0.03). As this is a stochastic simulation with a finite223

carrying capacity, over long enough time periods both species will eventually go extinct.224

Therefore, we used the time when the inferior competitor (x) went globally extinct as225
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our metric of coexistence. Our results were quantitatively similar for simulations ran for226

lengths of 500 (not shown), indicating our results are robust to simulation time.227

Results228

Approximating spatial and temporal scales of settlement229

Equation (2) implies that settlement variability depends heavily on the difference230

between the scale of aggregation (ω) and the scale of interaction (ν). Variability drops231

off substantially when ν
ω
< 1. For example, in a one-dimensional system, equation (2)232

predicts that patch size corresponding to 10% of the scale of aggregation results in233

settlement variation at only 5% of its maximum value. However, when ν
ω
� 1,234

increasing the scale of interaction or decreasing the scale of settlement only slightly235

increases variability; if patches are 100 times larger than aggregations, settlement236

variation will only be twice as high as when the two scales are equal.237

Equation (2) also shows the importance of the temporal scale of aggregation for238

predicting settlement variability. Variability increases as each packet becomes denser239

(and therefore less frequent). Further, settlement variability depends on the relation240

between the number of individuals in a packet and the number of available propagules.241

For aggregation mechanisms such as eddies, where packets tend to arrive at a constant242

rate but the number of individuals in a packet increases with the number of available243

propagules (density-dependent packet size), the variance to mean ratio of settlement244

increases with population density. For aggregation mechanisms such as seed pods, the245

number of individuals per packet is independent from propagule density (fixed packet246
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size), and the variance to mean ratio remains constant across population densities. This247

means that rare species will tend to experience lower settlement variability than248

abundant species in the former case but not in the latter.249

Coexistence in a metacommunity with aggregated dispersal250

A species will generally only be able to persist if its average growth rate is positive at

low density (in the absence of allee effects) (Chesson, 2000b). In our metacommunity

model (system 3), setting x as the invading species, we can find its growth rate at low

density by setting y to its single-species equilibrium density Ỹ ∗ and multiplicative

variance V ∗y . We then assume there is only 1 individual of x in every n patches. This

means that X̃ = 1
2nνx

, and Vx = n. Using equation (3a), the mean growth rate for x will

be greater than zero if:

0 <
rx −mx

2nνx
− dx,x

n

4n2ν2
x

− dx,y
CỸ ∗

2nνx
(4)

CỸ ∗ <
rx −mx − dx,x

2νx

dx,y

As expected, anything that reduces either Ỹ ∗ or the degree of spatial co-occurrence of251

the two species will promote coexistence. From equation (3), we can see that any factor252

that increases Vy would, all else equal, reduce both Ỹ ∗ and C. Note that the factor dx,x253

generally drops out in invasion analysis, as most models assume no self-competition for254

the invading population. This assumption is incompatible with the infinite population255

moment closure method we used because mean density would then becomes 1
2ν

and be256

allowed to increase even in very small patches. Simulations with and without257
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self-competition showed that our results are robust to this limitation of our258

approximation method (not shown).259

Equation (4) reveals the influence of the spatial scale of interaction, ν, on Vy through260

two antagonistic mechanisms. Reducing ν directly increases Vy, by increasing the effect261

of demographic stochasticity on local population dynamics. However, when dispersal is262

aggregated, reducing ν decreases κ. This is because, when patch size is small,263

individuals effectively do not see the additional variability added by the arrival of a264

packet. Lower κ, in turn, acts to reduce Vy. These two opposing forces mean that265

changing interaction scales will not have a simple monotonic effect on coexistence. We266

now turn to numerical and stochastic simulations to resolve the net effect of interaction267

scale on coexistence.268

Coexistence as a function of interaction and aggregation scale269

In the absence of aggregated dispersal, both moment equations or stochastic simulations270

show very little effect of the spatial scale of interaction on coexistence. We did not271

observe any spatial scale where the two species could coexist when local inter-specific272

competition was higher than intra-specific competition (not shown).273

In the presence of aggregated dispersal, coexistence depends heavily on the relative274

scales of interaction and aggregation of the two species. For both fixed density275

transport (Fig. 3A) and density-dependent transport (Fig. 3B), the inferior competitor276

is able to coexist if the superior competitor interacts at a smaller scale or is more277

densely aggregated within packets than the inferior competitor.278

When both species interact and are aggregated at the same scales, the maximum279
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interaction strength allowing for coexistence occurs at intermediate scales of interaction280

and at high propagule density in packets, approximately where the scale of interaction281

equals the scale of aggregation (Fig. A&B dashed lines). The moment equations also282

predict that species will be able to coexist at higher levels of competition under283

density-dependent packets (Fig. B) compared with fixed-size packets (Fig. A).284

The effect of aggregation scale on coexistence strongly depends on the scale of285

interaction (Fig. 5). When the aggregation scale (ω) is smaller than the scale of286

interaction (ν, Fig. 5 dotted line), reducing aggregation scales has no effect on287

coexistence. Only varying the mean number of individuals per packet will have an288

effect. However, when ω > ν, reducing the scale of aggregation or increasing the mean289

number of individuals per packet can promote coexistence.290

The fixed density and density-dependent packet transport models showed very similar291

responses to parameter changes. However, under all conditions (Fig. 3,, and 5),292

extinction times were shorter and conditions for coexistence were more stringent for the293

fixed-density model relative to the density-dependent model. Further, with fixed packet294

sizes, the weaker competitor went extinct even when the moment approximation295

(equation (4)) predicted coexistence.296

The coexistence criteria derived in equation (4) were able to accurately predict297

coexistence in the simulations except at high levels of fitness inequality and small298

interaction scales (fig. right). The mismatch between moment equations and299

simulations at high rates of competitive inequality may be due to the populations not300

following log-normal distributions at small scales or high fecundity, thus violating the301

assumptions used to construct the moment equations (Bolker and Pacala, 1997,302
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Keeling, 2000a, Bolker, 2003). The moment approximation was also not able to predict303

the differing patterns of extinction between fixed and density-dependent packet models,304

as one of the assumptions made in the approximation was was that true extinction is305

not possible.306

Discussion307

Our work suggests it is possible to approximate and extend our understanding of308

coexistence under aggregated dispersal by considering three key scales: the spatial scale309

of interaction among settlers, and both the spatial and temporal scales of aggregation310

during dispersal. Our results broaden the predicted range of spatial scales allowing311

aggregated dispersal to work as a stabilizing mechanism of coexistence. Competitors312

interacting at scales one to two orders of magnitude larger than the scale of aggregation313

can still successfully coexist at low levels of competitive inequality. Coexistence is,314

however, strongly sensitive to the time-scale of aggregation. Increasing the frequency of315

arrival of aggregated individuals (packets) substantially reduces the region of fitness316

inequalities where both species persist. Our results also reveal the role of317

density-dependent aggregation on coexistence through its impact on the strength of318

intra-specific competition among settlers. Extending the nature and range of scales319

within theories of coexistence can improve their applicability to natural systems where320

multiple transport mechanisms mediate spatiotemporal patterns of dispersal and321

aggregation. By scaling up individual aggregation during dispersal to the spatial322

distribution of aggregated communities, we provide a theory of metacommunity323
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networks emerging from the movement and interaction among individuals, rather than324

as a imposed feature of the landscape.325

Coexistence across scales of aggregation and interaction326

Aggregation scale is related but distinct from dispersal scale in that it determines how327

closely propagules settle to one another rather than how far they settle from their328

parents. As decreasing the scale of aggregation will always increase local intraspecific329

interactions, coexistence should always be easier under smaller aggregation scales,330

whereas decreasing dispersal scales may strengthen or weaken stabilizing mechanisms331

(Bolker and Pacala, 1999, Snyder and Chesson, 2004).332

Interaction scale has been identified previously as a key factor determining coexistence333

(Snyder and Chesson, 2003, 2004), but its effects tend to be ignored in metacommunity334

theory, where patches are typically treated as static and the same size for all species.335

We have shown that coexistence is easiest when the stronger competitor interacts at336

smaller spatial scales, and when species interact at scales smaller than they aggregate.337

The time-scale of aggregation in our model is a unique property of aggregated dispersal338

processes, and our work shows that coexistence is strongly sensitive to this scale.339

Increasing the frequency of arrival of aggregated individuals (packets) substantially340

reduces the region of fitness inequalities where both species persist. In marine systems,341

this predicts that ecological factors such as length of reproductive seasons or physical342

features such as eddy rotation time will have a larger impact on coexistence than343

short-range spatial mechanisms, such as small-scale ocean currents or post-settlement344

movement.345
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The effects of the three scales on coexistence outcomes are not additive, a result346

predicted by equation (2). All three scales have thresholds which, if exceeded, prevent347

coexistence no matter the value of the other scales. Our work also highlights an348

important distinction between fixed density and density-dependent packet forming349

mechanisms. We have shown that global extinction rates were substantially higher and350

parameter regions allowing coexistence were smaller with fixed packet sizes. With351

density-dependent packets, aggregation will decline with global density. This in turn352

reduces intra-specific competition at low densities. However, when packet densities are353

fixed, new settlers will still settle in high density even when their global density is low,354

increasing their chance of extinction, as any factor that increases variability at low355

densities will also increase the rate of extinction due to stochastic fluctuations (Nisbet356

and Gurney, 1982). This illustrates the joint role variability plays in both coexistence357

and stochastic extinction, and the difficulty of separating their effects (Gravel et al.,358

2011). The effect of aggregated dispersal on extinction has been studied previously with359

regards to survival in systems with advective transport (Kolpas and Nisbet, 2010),360

diffusive transport (Williams and Hastings, 2013) and in the presence of allee effects361

(Rajakaruna et al., 2013), but all these approaches assumed density-dependent packet362

transport. Density-dependent packet formation will occur when aggregations are formed363

by correlated physical transport mechanisms such as eddy-driven dispersal. Fixed364

packet dispersal will occur when a given aggregation mechanism strongly controls the365

number of propagules able to move in a given packet, including many biological366

aggregation processes such as seed pods, egg clusters, or animals eating seeds and367

depositing them in faeces.368
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Where do we expect aggregated dispersal to play a role in369

shaping community structure?370

Our results demonstrate that aggregated dispersal increases coexistence rates most371

strongly when individuals interact over small spatial scales, when each packet of settlers372

is small, and each packet carries a large number of propagules. As such, this mechanism373

will have substantially different effects on coexistence outcomes depending on the374

effective scales of interaction and aggregation in a given system. There are two types of375

systems where aggregated dispersal has been suggested to play a role in coexistence:376

larval aggregation in eddies (Potthoff et al., 2006, Berkley et al., 2010) and animal seed377

transport in terrestrial plant communities (Muller-Landau and Hardesty, 2005, Potthoff378

et al., 2006).379

In marine systems the effects of aggregated dispersal on community composition will380

depend on two factors: eddy size and the scale of post-settlement species interactions.381

As eddies get larger, there will be less inter-eddy spaces, and thus the density of larvae382

in each packet will increase (Siegel et al., 2008), equivalent to increasing the time-scale383

of aggregation. As eddy size decreases strongly with increasing latitude (Chelton et al.,384

2011), we predict that the strength of this stabilizing mechanism will decrease in regions385

close to the poles. This may explain a striking empirical regularity: species richness386

declines sharply with latitude for marine organisms with a pelagic larval stage, but387

increases for species with no pelagic larval stage (Fernández et al., 2009). If aggregated388

dispersal is driving this pattern, we would also expect that the negative389

latitude-diversity gradient should be steepest for sessile or strongly territorial species390

relative to those that move over larger areas as adults, as sessile species will interact391
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over shorter spatial scales.392

For terrestrial plant communities with animal dispersal, three factors will drive the393

strength of this stabilizing effect: how many seeds each disperser deposits at a time,394

post-deposition secondary dispersal, and the type of processes limiting plant395

establishment. The number of seeds a disperser deposits will determine the time-scale396

of aggregation, and should be related to its body size (Howe, 1989). Therefore, systems397

where larger animals are the primary seed dispersers should show higher diversity than398

those where dispersal by small animals or wind dominates. Also, any process that399

increases post-deposition spread, such as ants moving seeds (Passos and Oliveira, 2002)400

will reduce this stabilizing effect by increasing the scale of aggregation. Finally, the401

effect will be weakest for plants that need large areas to successfully establish, as the402

scale of interaction increases with plant size (Vogt et al., 2010).403

Accounting for aggregation and scale in general404

meta-community models405

Our aggregation approximation, equation (2), captured the dynamic effects of406

aggregation on population dynamics, and should be useful for modelling aggregated407

dispersal more generally. Aggregated dispersal has been shown to shape408

metacommunity dynamics beyond its effect on coexistence, by increasing extinction409

rates (Williams and Hastings, 2013), decreasing overall growth rates (Snyder et al.,410

2014), altering rates of spatial spread (Ellner and Schreiber, 2012), or reducing411

predation (Beckman et al., 2012).412

Several mechanisms have recently been shown to promote coexistence in413
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metacommunities via species-specific patterns of connectivity. These include414

asymmetrical between-patch dispersal or variability of the strength of self-recruitment415

between competitors (Salomon et al., 2010, Figueiredo and Connolly, 2012, Aiken and416

Navarrete, 2014), irregular patch distribution coupled with interspecific variation in417

dispersal rates (Bode et al., 2011), or edge effects in the presence of advective dispersal418

(Aiken and Navarrete, 2014). These studies illustrate the usefulness of the419

metacommunity framework for understanding the effects of dispersal mechanisms on420

coexistence when dispersal takes place over large scales. By abstracting the system into421

patches and the pattern of connections between them, it is much easier to model422

complex patterns of connectivity or landscape structure relative to continuous models.423

However, there are relatively few natural systems where a single spatial scale of species424

interactions can be identified, and our work shows that the effectiveness of a given425

coexistence mechanism can be sensitive to assumptions about scales of interactions, and426

in particular about their variation among species. While this is known from prior427

theoretical work in local continuous spatial systems (Snyder and Chesson, 2003, 2004),428

it has been generally overlooked in the study of coexistence across metacommunities429

that are meant to capture a broad range of spatial scales. The approach we used,430

making patch size a species-specific parameter, is generally extensible to any431

metacommunity model and captures one aspect of interaction scale: shorter scale of432

non-linear interactions can enhance the effect of stochastic forces relative to433

deterministic processes.434

Our approach can be seen as part of a broader mechanistic approach for integrating435

dispersal mechanisms to metacommunity theories. Rather than starting with the436
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assumption of a patch network, we predict this network by scaling up individual437

aggregated dispersal to spatio-temporal patterns of settlement, and by approximating438

metacommunity dynamics with a species specific scale of interactions. This approach,439

described by Black and McKane (2012) as deriving a population-level model from an440

individual-based model, allowed us to not only determine which scales were critical for441

coexistence, but also to identify the limits of the metacommunity as a useful model of442

spatial dynamics.443

To include aggregated dispersal into metacommunity theory, we have to recognize that444

the choice of patch size (and thus interaction scale) will strongly affect dynamic445

outcomes. Our work shows how aggregated dispersal can be incorporated into446

metacommunity models from first principles, and what key processes need to be447

measured for a given aggregation process to understand its dynamic effects.448
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Table 1: Parameters of packet-transport approximation and moment closure model.
α The mean arrival rate of packets at any given point in space.
µ The mean number of individuals per packet.
σ The standard deviation of the number of individuals between packets.
ωx, ωy The scale of aggregation.
νx, νy The scale that each species interacts with its neighbours at.
κ Degree of settlement aggregation at a given scale over a given period of time. Ranges

from 1 to ∞.
rx, ry Instantaneous per-area settlement rates for species x and y.
e Ratio of per-capita fecundity of species y to x (ry/rx). Measures fitness inequality

between the two species.
mx,my Instantaneous per-area density-independent mortality rates for species x and y.
dx,x, dy,y,
dx,y, dy,x

Interaction rates. Measures the degree to which mortality rate of species x within a
patch increases with the density of species y.

Vx, Vy Multiplicative variance of species x and y.
C Multiplicative covariance between species x and y.
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Figure 1: Factors that affect κ, the ratio of variance to mean of settlement under aggre-

gated dispersal. Settlers (black dots) are aggregated into packets (dashed circles), and

interact within patches (grid cells). κ is affected by the average (s̄) and variance (V ar(s))

in the density of settlers arriving in each patch, which are in turn affected by time scale

of packet arrival (mean packet density µ, top left), variability of densities between pack-

ets (σ2, top right), the scale of interactions (patch size v, bottom left), and the scale of

aggregated dispersal (packet size ω, bottom right).
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Figure 2: Population dynamics. A) Non-aggregated dispersal. Adults (large circles) of

species x (black) and y (grey) produce propagules (small circles) and release them into

a global propagule pool. These are randomly distributed among sites. New residents

face mortality from interactions within their patch. B) Aggregated dispersal. propagules

aggregate into packets (dashed ovals), and packets settle at random locations. C) Two

models of propagule aggregation. Either propagules are aggregated into a fixed number

of packets (top), or each packet holds a fixed number of propagules (bottom).
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Figure 3: Regions of coexistence with interspecific variability in aggregation (ω2

ω1
) and in-

teraction (ν2
ν1

) scales with aggregated dispersal with fixed packet sizes (A&C) and density-

dependent packet sizes (B&D). The scale parameters for species x are held constant

(νx = 101.5 and ωx = 101.5, chosen to allow the widest range of relative scales of aggre-

gation and interaction given the length of the simulation domain); νy and ωy are allowed

to vary. For all simulations, species y is 4 times more fecund than species x (rx = 0.11,

ry = 0.44). Shading indicates mean time to extinction for the weaker competitor. The

area below the red line corresponds to coexistence as predicted by equation (4). Dashed

lines indicate equal scales of either aggregation or interaction between species.

34PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1734v1 | CC-BY 4.0 Open Access | rec: 9 Feb 2016, publ: 9 Feb 2016



Figure 4: Regions of coexistence with aggregated dispersal and (A) with fixed packet

sizes or (B) density-dependent packet sizes when both species interact and aggregate on

the same scales. From left to right, plots represent increasing mean packet densities (µ)

for the fixed density plots (A) and increasing time between packet arrivals (α−1) for the

density dependent plots (B). The dashed line indicates equal scales of interaction and

of aggregation (ω = 101.5). Shading indicates mean time to extinction for the weaker

competitor.
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Figure 5: Regions of coexistence with aggregated dispersal and fixed (A) or density-
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Appendix A: Deriving the aggregation parameter κ580

To understand how aggregation-driven clustering affects population dynamics, it is581

necessary to distill the aggregation process down to the essential elements which will582

affect population dynamics when altered.583

We start with a abstract version of our dispersal process: settlers are treated as points584

arriving on a (one or two-dimensional) landscape, aggregated in packets (which may585

overlap with one another in space). All the mechanisms of the aggregation process are586

assumed to affect only two properties: the distribution of settlers between packets, and587

the spatial arrangement of settlers around the packet center. This describes what is588

called a spatio-temporal point process (Illian et al., 2008).589

We first assume that the scale over which packets travel is much bigger than the size of590

the packets themselves, so that edge effects are not an issue. Further, we assume we are591

looking at a small enough region of space that packets are equally likely to arrive at any592

point in space, and that the distribution of settlers between packets is the same593

everywhere; that is, space is homogeneous. We also assume that all that affects the594

probability of finding a settler at a given location in a specific packet is how far that595

settler is from the packet center (the isotropic assumption).596

We can then define α(t), the intensity1 of packets arriving at any given point in time in597

any given location. This may or may not fluctuate over time or with population density.598

For instance, if the aggregation is caused by meso-scale eddies, the number of packets599

arriving at any given point in time should not vary with population density, but it will600

1The intensity is a property of point processes, and is defined as the value that when integrated over
a finite segment of space and time equals the mean number of individuals expected to be found in that
segment.
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likely vary with season or latitude. On the other hand, if aggregation mechanism is601

seeds travelling in seed heads, the number of packets arriving will vary with the602

population density and fecundity of the source population.603

If we measure settlement aggregation over a short enough period of time, then α(t)604

should not vary substantially in that period. Given that, we can then define605

λc(t, τ) =
∫ t+τ
t

α(t)dt as the intensity of clusters per unit area in the finite interval606

t→ t+ τ . This turns the model from a spatio-temporal point process to a spatial point607

process, for which significantly more is known. For the remainder of the derivation, for608

simplicity of notation, we will drop the time-dependent terms, and simply refer to λc.609

The resulting point pattern describes the pattern of new setters arriving in that time610

interval. If packets each have a mean of µ individuals, we can also define λ = µλc as the611

intensity of settlers on the landscape in that time period.612

Finally, we need to determine how we are going to measure clustering on the landscape.613

Here, we assume space is broken into a number of patches all the same shape, W . These614

patches have a length scale, ν, which we define as the radius of a d - dimensional ball615

with the same volume as W . The function V old(ν) defines the volume of any shape616

with a length-scale ν in a system of dimension d. In one dimension, V old(ν) = 2ν, in617

two dimensions V old(ν) = πν2. From this point on, we drop the subscript d to simplify618

notation. Given our assumptions about homogeneity and isotropy, each patch will have619

an expected number of individuals λV ol(ν) = λcµV ol(ν), regardless of the shape of620

either the packets or patches. Given this, we want to know the variance of counts621

between patches.622

Given our assumptions, we can determine what the ratio of variance to mean of the623
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count of points, N, in a sample area of volume ν will be (derived from Illian et al.624

(2008), page 226. (See Table A1 and A2 for the definition of terms in this derivation):625

κ =
V ar(N)

λV ol(ν)
= 1 +

λ

V ol(ν)
dbd

∫ ∞
0

γ̄W (r)(g(r)− 1)rd−1dr (5)

For any Neyman-Scott cluster-point process defined by the above parameters and

functions, g(r) = 1 + 1
λµ

∞∑
n=2

pnn(n− 1) fd(r)
dbdrd−1 (Illian et al., 2008) . Therefore:

κ = 1 + dbd
λ

V ol(ν)

∫ ∞
0

γ̄W (r)rd−1(1 +
1

λµ

∞∑
n=2

pnn(n− 1)
fd(r)

dbdrd−1
− 1)dr (6a)

= 1 +
dbd
dbd

λ

V ol(ν)λ

∫ ∞
0

γ̄W (r)
rd−1

rd−1
(
1

µ

∞∑
n=2

pnn(n− 1)fd(r))dr (6b)

= 1 +
1

V ol(ν)

∫ ∞
0

γ̄W (r)(
1

µ

∞∑
n=2

pnn(n− 1)fd(r))dr (6c)

= 1 +

∑∞
n=2 pnn(n− 1)

V ol(ν)µ

∫ ∞
0

γ̄W (r)fd(r)dr (6d)

= 1 +
σ2 + µ2 − µ

µ

∫ ∞
0

γ̄W (r)fd(r)V ol(ν)−1dr (6e)

There are two important things to note about this equation. First, that the intensity of626

clusters on the landscape, λc(t, τ), does not enter into the equation. This means that κ627

will not vary with the length of the period in which we measure settlement clustering,628

as long as all the parameters of the aggregation process stay the same over that length629

of time. Second, this formulation cleanly separates all the interacting factors that630

determine how the aggregation process will affect settlement variability. The terms631

inside the integral, which we will refer to as the scale function S(W, fd), capture the632

interacting effects of dimension, packet shape, and patch shape and volume. The terms633
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outside the integral, which we will refer to as the mean function, M(µ, σ), capture the634

distribution of points between packets. The whole function can then be described as635

κ = 1 +M(µ, σ) · S(W, fd).636

The form of the scale function, S(W, fd), is still quite complex. However, given the637

definitions of the functions, there are several inferences we can make about its638

properties: 1) As fd(r) is a probability distribution, and therefore has to be positive and639

integrate to one, and given the definitions γ̄W (r) and V ol(ν), γ̄W (r)
V ol(ν)

has to be between640

zero and one, then S(W, fd) must be between zero and one. 2) If a given shape is very641

small relative to the scale of the packet, γ̄W (r) will drop to zero quickly and S(W, fd)642

will be close to zero. 3) If W has a large volume, γ̄W (r) will only drop off slowly with r,643

and therefore S(W, fd) will be close to one. Therefore, we know that the function644

S(W, fd) has to be between zero and one, and for a given patch and packet shape has to645

go to zero as ν → 0 to one as ν →∞. 4) For a given packet distribution, fd(r), and646

shape, W , if both the packet and patch were scaled by the same factor (either stretched647

or shrank in space), S(W, fd) would take the same value, meaning that S(W, fd)648

depends only on the ratio of these scales. Given these facts, it is possible to build a649

simpler approximation of equation 6e for one and two dimensional systems.650

One-dimensional approximation651

In the case of a one-dimensional pattern (settlement on a line), γ̄W (r) is simply equal to652

max(2ν − r, 0). We look at three different packet shapes to calculate fd(r). 1) The653

uniform distribution, as a representative short-tailed distribution, 2) the Gaussian (or654

normal) distribution, and 3) the Laplacian distribution, as a representative655
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heavier-tailed distribution. For all three of these distributions, fd(r) is a one-parameter656

function, as any change in the location of the distribution (its mean value) will not657

affect the distances between points drawn from that distribution. These distributions,658

their fd(r) functions, and the value for the integral S(W, fd) are given in Table .659

As table shows, the resulting functions for S(W, fd) for different distributions are very660

complex. However, all three functions share two properties: the interaction scale ν and661

packet scale ω only enter through their ratio, so the same scale effect will result if both662

interaction scale and packet scales are multiplied by the same value. Second, all three663

functions are increasing sigmoidal functions of the ratio ν
ω

. That is, if either the scale of664

interaction increases or the scale of clustering decreases, S will increase. Further, by665

regressing log(S/(1-S)) on log( ν
ω

), we were able to show that all three scale functions666

were closely fit by the function
ν
ω

1.25

1+ ν
ω

1.25 . This is illustrated in Fig. A1, showing the scale667

functions for each distribution, along side the approximate function.668

Two-dimensional approximation669

This approach becomes more complicated in two dimensions, but the overall result is670

the same. In two dimensions, patches are no longer defined by just their size, but also671

have a shape. Here we focus on circular patches, but simulations of point processes show672

that the results are quantitatively very similar for square patches (results not shown).673

For circular patches, the isotropised set covariance function γ̄W (r) is (Illian et al., 2008):674

γ̄W (r) = 2ν2acos(
r

2ν
)− r

2

√
4ν2 − r2
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We look at two packet distributions: the circular uniform and the symmetric Gaussian.675

For the circular uniform distribution, all points in the packet are distributed uniformly676

in a circle of radius
√

2ω around the center point. For the symmetric Gaussian, points677

are distributed around the packet center so that both the x and y coordinates are678

uncorrelated, and each is distributed following a Gaussian distribution with a variance679

of ω2

2
.680

For these distributions, the fd(r) functions are (modified from (Illian et al., 2008)):681

Circular uniform fd(r) =


2r
πω2 (acos( r

2
√

2ω
)− r

2
√

2ω

√
1− r2

8ω2 ) if r ≤ 2
√

2ω

0 if r ≤ 2
√

2ω

Symmetrical Gaussian fd(r) =
r

ω2
e−

r2

2ω2

For both these cases, the joint scale function, S(W, fd) is too complicated to derive a682

closed form integral. However, they can be solved via numerical integration. As before,683

we fit log( S
1−S ) to log( ν

ω
) using linear regression, using only values of ν

ω
below 1, as the684

overall variance κ will be more sensitive to changes in this range of ν
ω

. This gave us the685

two-dimensional approximation to S(W, fd) =
1
2

( ν
ω

)2

1+ 1
2

( ν
ω

)2
. As seen in Fig. A2, this686

approximation works well for both distributions, across several orders of magnitude687

variation in ν
ω

.688
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Table A1: Definitions of variables used for the derivation of κ.
Parameter Definition
λc The intensity of cluster centers on the landscape.
pn The probability of finding n points in a given packet.
µ The mean number of individuals in each packet. µ =

∑∞
n=1 pnn

σ2 The variance of points between packets. σ2 =
∑∞

n=1 pn(n− µ)2

λ = λcµ: The average density of individuals on the landscape.
ω The square root of the mean squared distance from the packet cen-

ter for a given type of packet. For one-dimensional packet distribu-
tions, this is the standard deviation of the distribution.

W The shape of the patch.
ν length scale of the patch, equal to the radius of a d - dimensional

ball with the same volume as W.
d the dimension of the system. For the simulations and moment

equations in this paper, d=1.
bd the volume of a ball with unit radius and dimension d. Equals 2 in

one dimension, π in two dimensions.
r The Euclidean distance of a point from a given focal point.
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Table A2: Definitions of functions used for the derivation of κ. From Illian et al. (2008).
Function Definition
V ol(ν) The volume of any shape with a length-scale ν.
g(r) The pair correlation function for a spatial point process. Defined as

the first derivative with respect to r of the mean number of points
found in a ball of radius r around a focal individual, divided by the
mean number points expected to find in a random ball of radius
r. Varies between zero and infinity. If the settlers are randomly
distributed across the landscape, g(r) =1 for all r.

fd(r) The distribution function of distances between points in a given
packet. This is a probability distribution function describing the
probability of any two points in a packet being exactly r distance
away from one another after settling. This function defines the
shape of the packet.

γ̄W (r) The isotropised set covariance of a patch of shape W . For a given
patch shape, this function describes the area of the overlapping be-
tween the shape and the same shape shifted r units away, averaging
over all possible directions it could be shifted in. For a given patch
shape W this will be uniquely defined, and captures the effect of
patch shape on the variance.
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Table A3: One-dimensional density functions used to model different packet shapes, and

their derived inter-point distance and scale functions. Inter-point probability distances

fd(r) were calculated by taking the product of the density function at a point x and the

same density function at a point shifted away from x by a distance r, and integrating over

the whole domain of x. Scale functions were calculated using the integral formula in the

text. In all cases, distributions were parameterized so ω equaled the standard deviation

of that distribution.

Distribution Probability density
(pX(x))

Inter-point distance den-
sity (fd(r))

Scale function (S(W, fd))

Uniform 1
2
√
3ω

if |x| <
√

(3)ω,

0 otherwise

1√
3ω
− r

6ω2 if r < 2
√

(3)ω,

0 otherwise

3
√
3νω−1−ν2ω−2

9 if νω−1 ≤√
(3),

1− 1√
νω−1

otherwise

Gaussian 1
ω
√
2π
e
−x2

2ω2 1
ω
√
π
e
−x2

4ω2 erf(νω−1) + e−ν
2ω−2

−1
νω−1

√
π

Laplacian 1√
2ω
e
−|x|

√
2

ω

ω√
2
+r

ω2 e−
√
2rω−1 3ν

4
√
2ω

(e−2
√
2νω−1 − 1)

+ 1
2e
−2
√
2νω−1

+ 1

45PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1734v1 | CC-BY 4.0 Open Access | rec: 9 Feb 2016, publ: 9 Feb 2016



0.00

0.25

0.50

0.75

1.00

0.01 0.1 1 10 100
ν

ω

S
(W

,
f d

(r
))

Packet distribution: uniform
Gaussian

Laplacian
approximation

Figure A1: Scale functions S(W, fd) for three one-dimensional packet distributions, and

the approximate scale function, plotted against ν
ω

.
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Appendix B: Deriving the moment closure for the689

aggregated dispersal meta-community model690

Our moment closure model is an extended form of the meta-population by Keeling691

(2000b), incorporating patch size and competition. Whereas Keeling modeled the692

dynamics of numbers of individuals in patches, we model densities to enable us to693

include a measure of patch scale. Further, we incorporate a second competing species.694

We denote our two species x and y. We use xi (yi) to denote the number of individuals695

of species x (y) in patch i, x̃i (ỹi) to denote the mean density of species x (y) in patch i696

(that is, xi (yi) scaled by patch volume), and X̃ (Ỹ ) to denote the mean density per697

unit area of x (y) across all patches.698

We assume species interact in a D-dimensional space. We also assume that each species699

views this space as a set of patches, so than an individual of species x or y interacts700

only with the other individuals of its own and its competitor species that are in its701

patch. However, we do not assume that the patch structure is necessarily the same for702

both species. Instead, each species interacts in patches of radius νx or νy.703

For the derivation of moment equations, we assume that the first species, y always704

interacts over a larger spatial scale, and that the scale overlaps η patches of the705

smaller-ranged species (x), so that νy = νx · η. To take into account these different706

scales,any variable indexed ij refers to the jth smaller patch within the ith larger-scale707

patch. Any variable simply indexed i refers to the sum or mean of all the patches {ij}708

in i. This means that patches ij will have volume V olD(νx) and patch i will have709

volume V olD(νy) = V olD(νx · η). This is shown in Fig. B1. These two assumptions are710
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only for convenience of the derivation; the resulting equations are identical if νx is larger711

or smaller than νy, and our simulation results show that the assumption of strict patch712

nesting does not affect population dynamics.713

We use xij (yij to denote the number of individuals of species x (y) in patch ij. We use714

xi (yi) to denote the total number of individuals in all the smaller patches within i:715

xi ≡
∑

j xij. Equivalently, x̃ij (ỹij) and x̃i (ỹi) respectively denote the density of x in716

the smaller patch j within patch i (x̃ij ≡ xij/V ol(νx)), and the average density in patch717

i (x̃i ≡
∑η

j=1 sij/V ol(νy)).718

As we assumed that species x interacts at a smaller scale than y, we assume individuals719

of species y are well-mixed and constantly moving between smaller patches within the720

larger patch, so that ỹij = ỹi. We also define εij ≡ x̃i − x̃ij ≡
∑η
j=1 xij

V ol(νy)
− xij

V ol(νx)
as the721

deviation of the density of species x in patch ij from the overall density of the larger722

patch i.723

We assume that both species live in patches, packets arrive that can overlap multiple724

patches, and packets are defined by the following equations (defined for species x, but725

the same equations hold for species y):726

• Packets arrives at each site with a rate a(X̃, νx), and the probability that a727

number of individuals s arrive at a site given that a packet arrived there is728

px(s|X̃, νx).729

• The average number of individuals arriving at a site per unit time has a mean rate730

of rxV ol(νx)X̃, and a variance rxV ol(νx)X̃κ(X̃, νx, σx), where σx is the root-mean731

square distance each of each recruit from its packet center for species x and732

κ(X̃, νx, σx) is a function varying from 1 to ∞ (see Appendix A for the definition733
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of κ).734

In addition to the birth rates defined above, per-unit-density death rates are defined for735

x in patch ij as: mV ol(νx)x̃ij + dx,xV ol(νx)x̃
2
ij + dx,yV ol(νx)x̃ij ỹi, and for y as736

mV ol(νy)ỹi + dy,yV ol(νy)ỹ
2
i + dy,xV ol(νy)x̃iỹi.737

Note that all demographic parameters are multiplied by the patch volume, as they are738

measured in units of individuals per unit volume (or individuals2 per unit volume, in739

the case of the interaction parameters).740

The moment closure approach relies on being able to describe a master equation for the741

dynamics. This is a system of equations describing the transition rates between different742

possible states of the system. Here, the state for patch ij is given by {x̃ij(t), ỹi(t)}. A743

death of x in patch ij would lead the system to transition to {x̃ij(t)− 1
V ol(νx)

, ỹi(t)}, and744

a death of species y would lead to {x̃ij(t), ỹi(t)− 1
V ol(νy)

}. If s new individuals of species745

x arrived in the patch ij, the system would transition to {x̃ij(t) + s
V ol(νx)

, ỹi(t)}, and if s746

individuals of y arriving would lead to {x̃ij(t), ỹi(t) + n
V ol(νy)

}. Given the birth and747

death rules described above, the master equation for this system will be:748

dDx̃,ỹ

dt
= ax(X̃, νx)

∑
px(sx|X̃, νx)(x̃−

sx
V ol(νx)

)Dx̃− sx
V ol(νx)

,ỹ

+V ol(νx) · (m+ dx,xx̃+ dx,yỹ)(x̃+
1

V ol(νx)
)Dx̃+ 1

V ol(νx)
,ỹ

−V ol(νx) · (r(X̃) +m+ dx,xx̃i + dx,yỹi)x̃Dx̃,ỹ

+ay(Ỹ , νy)
∑

py(sy|Ỹ , νy)(ỹ −
sy

V ol(νy)
)Dx̃,ỹ− sy

V ol(νy)

+V ol(νy) · (m+ dy,yỹ + dy,xx̃)(ỹ +
1

V ol(νy)
)Dx̃,ỹ+ 1

V ol(νy)

−V ol(νy) · (r(Ỹ ) +m+ dy,yỹ + dy,xx̃)ỹDx̃,ỹ
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Here, Dx̃,ỹ represents the fraction of patches in the state {x̃ij, ỹi} at a given time.749

Positives term in the equation represent the stochastic rate at which different possible750

states transition to {x̃t,ij, ỹt,i} due to settlement (from states at lower densities than751

{x̃t,ij, ỹt,i}) or deaths (from states with higher densities). Negative terms represent the752

stochastic rate at which sites in this state transition to other states, either through753

settlement of new recruits or death.754

Since this is an infinitely large set of coupled equations (one for every possible density755

the system can be in), we need to simplify it to gain any sort of theoretical756

understanding. To do this, we transform it into a set of equations describing the how757

the multiplicative moments change over time (Keeling, 2000b). This approach models758

the population change in terms of the statistical moments of the population. First, the759

average densities of the sites in the system: 〈x̃ij〉 = X̃ , 〈ỹi〉 = Ỹ . Second the second760

order multiplicative moments: V̂xX̃
2 = 〈x̃ij2〉 (variation in density in x between761

small-scale sites), and V̂yỸ
2 = 〈ỹi2〉 (variation in density in y between broad-scale sites),762

and CX̃Ỹ = 〈x̃ij ỹi〉 (multiplicative covariance in density in x and y at the broader763

spatial scale).764

We finally assume that any higher order moments do not have separate dynamics, but765

are instead determined by products of all pair-wise combinations of lower-order766

moments: 〈x̃x̃ỹ〉 = 〈x̃ỹ〉〈x̃ỹ〉〈x̃x̃〉
X̃2Ỹ

= C2VxX̃
2Ỹ , 〈x̃ỹỹ〉 = C2VyỸ

2X̃, 〈x̃3〉 = V 3
x X̃

3 and767

〈ỹ3〉 = V 3
y Ỹ

3 (Keeling, 2000b). Capital letters denote population moments of their768

respective populations.769
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Dynamics for mean densities770

The mean dynamics for species x and y can be described as:771

dX̃

dt
=〈ax(X̃, V ol(ν))

∞∑
n=1

px(n|X̃, V ol(νx))(
n

V ol(νx)
)+

(mV ol(νx)x̃ij + dx,xV ol(νx)x̃
2
ij + dx,yV ol(νx)x̃ij ỹi)(

−1

V ol(νx)
)〉

dỸ

dt
=〈ay(Ỹ , V ol(νy))

∞∑
n=1

px(n|X̃, V ol(νy))(
n

V ol(νy)
)+

(mV ol(νy)ỹi + dy,yV ol(νy)ỹ
2
i + dy,xV ol(νy)x̃iỹi)(

−1

V ol(νy)
)〉

Taking the averages over sites:

dX̃

dt
=
rxV ol(νx)X̃

V ol(νx)
− mxV ol(νx)X̃

V ol(νx)
− 〈dx,xV ol(νx)

V ol(νx)
x̃2
ij +

dx,yV ol(νx)

V ol(νx)
(x̃i − εij)ỹi〉

=rxX̃ −mxX̃ − dx,xV̂xX̃2 − dx,yĈX̃Ỹ + 〈dx,yεij ỹi〉

=rxX̃ −mxX̃ − dx,xV̂xX̃2 − dx,yĈX̃Ỹ

dỸ

dt
=
ryV ol(νy)Ỹ

V ol(νy)
− myV ol(νy)Ỹ

V ol(νy)
− dy,yV ol(νy)

V ol(νy)
V̂yỸ

2 − dy,xV ol(νy)

V ol(νy)
ĈX̃Ỹ

=ryỸ −myỸ − dy,yV̂yỸ 2 − dy,xĈX̃Ỹ

The above derivation depends on the fact that
∑η

j εij ≡ 0 for all i, so expectations772

involving εij · ỹi drop out.773
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Dynamics for variance functions774

That gives three extra equations we have derive the dynamics of: dV̂x
dt

,dV̂y
dt

, and dĈ
dt

. We775

can use the following relations to get these (Keeling, 2000b):776

d〈x̃2
ij〉

dt
=
dV̂xX̃

2

dt
= X̃2dV̂x

dt
+ 2X̃V̂x

dX̃

dt

d〈ỹ2
i 〉

dt
=
dV̂yỸ

2

dt
= Ỹ 2dV̂y

dt
+ 2Ỹ V̂y

dỸ

dt

d〈x̃iỹi〉
dt

=
dĈX̃Ỹ

dt
= X̃Ỹ

dĈ

dt
+ Ỹ Ĉ

dX̃

dt
+ X̃Ĉ

dỸ

dt

The equation for V̂x:777

X̃2dV̂x
dt

=
d〈x̃2

i 〉
dt
− 2X̃V̂x

dX̃

dt
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X̃2dV̂x
dt

=〈ax(X̃, V ol(νx))
∞∑
n=1

px(n|X̃, V ol(νx))(
2x̃ijn

V ol(νx)
+

n2

V ol(νx)2
)

+ (mxV ol(νx)x̃ij + dx,xV ol(νx)x̃
2
ij + dx,yV ol(νx)x̃ij ỹij)(−

2x̃ij
V ol(νx)

+
1

V ol(νx)2
)〉

− 2X̃V̂x
dX̃

dt

=〈2rxV ol(νx)X̃x̃ij
V ol(νx)

+
rxV ol(νx)X̃κ(X̃, νx, σx)

V ol(νx)2
+
rx

2V ol(νx)
2X̃2

V ol(νx)2
−

2mxV ol(νx)x̃
2
ij

V ol(νx)
+
mxV ol(νx)x̃ij
V ol(νx)2

−
2dx,xV ol(νx)x̃

3
ij

V ol(νx)
+

dx,xV ol(νx)x̃
2
ij

V ol(νx)2
−

2dx,yV ol(νx)x̃
2
ij ỹij

V ol(νx)
+
dx,yV ol(νx)x̃ij ỹij

V ol(νx)2
〉 − 2X̃V̂x

dX̃

dt

=2rxX̃
2 +

rxX̃κ(X̃, νx, σx)

V ol(νx)
+ r2

xX̃
2 − 2mxV̂xX̃

2 +
mxX̃

V ol(νx)

− 2dx,xX̃
3V̂ 3

x +
dx,xX̃

2V̂x
V ol(νx)

− 2dx,yX̃
2Ỹ V̂xĈ

2 +
dx,yX̃Ỹ Ĉ

V ol(νx)

− 2X̃V̂x(rxX̃ −mxX̃ − dx,x(V̂xX̃2)− dx,yĈX̃Ỹ )

=(
rxκ(X̃, νx, σx) +mx

V ol(νx)
)X̃ + (2rx + r2

x)X̃
2 + (

dx,x
V ol(νx)

− 2rx)X̃
2V̂x

− 2dx,x(V̂x − 1)V̂ 2
x X̃

3 +
dx,yX̃Ỹ Ĉ

V ol(νx)
− 2dx,y(Ĉ − 1)X̃2Ỹ V̂xĈ

Dividing out X̃2, we get:778
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dV̂x
dt

=2rx + r2
x +

rxκ(X̃, νx, σx) +mx

V ol(νx)X̃
+ (

dx,x
V ol(νx)

− 2rx)V̂x

− 2dx,x(V̂x − 1)V̂ 2
x X̃ +

dx,yỸ Ĉ

V ol(νx)X̃
− 2dx,y(Ĉ − 1)Ỹ V̂xĈ

Equivalently,

dV̂y
dt

=2ry + r2
y +

ryκ(Ỹ , νy, σy) +my

V ol(νy)Ỹ
+ (

dy,y
V ol(νy)

− 2ry)V̂y

− 2dy,y(V̂y − 1)V̂ 2
y Ỹ +

dy,xX̃Ĉ

V ol(νy)Ỹ
− 2dy,x(Ĉ − 1)X̃V̂yĈ
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The equation for Ĉ:779

X̃Ỹ
dĈ

dt
=
d〈x̃iỹi〉
dt

− Ỹ Ĉ dX̃
dt
− X̃Ĉ dỸ

dt

=〈ax(X̃, V ol(νy))
∞∑
n=1

px(n|X̃, V ol(νy))
nỹi

V ol(νy)

+ ay(Ỹ , V ol(νy))
∞∑
n=1

py(n|Ỹ , V ol(νy))
nx̃i

V ol(νy)

+ (mxV ol(νy)x̃i + dx,xV ol(νy)x̃
2
i + dx,yV ol(νy)x̃iỹi)(

−ỹi
V ol(νy)

)

+ (myV ol(νy)ỹi + dy,yV ol(νy)ỹ
2
i + dy,xV ol(νy)x̃iỹi)(

−x̃i
V ol(νy)

)〉

− Ỹ Ĉ dX̃
dt
− X̃Ĉ dỸ

dt

=rxX̃Ỹ + ryX̃Ỹ −mxX̃Ỹ Ĉ − dx,xX̃2Ỹ V̂xĈ
2 − dx,yX̃Ỹ 2V̂yĈ

2

−myX̃Ỹ Ĉ − dy,yX̃Ỹ 2V̂yĈ
2 − dy,xX̃2Ỹ V̂xĈ

2

− rxX̃Ỹ Ĉ +mxX̃Ỹ Ĉ + dx,xX̃
2Ỹ Ĉ + dx,yX̃Ỹ

2Ĉ2

− ryX̃Ỹ Ĉ +myX̃Ỹ Ĉ + dy,yX̃Ỹ
2Ĉ + dy,xX̃

2Ỹ Ĉ2

=(rx + ry)(1− Ĉ)X̃Ỹ − (dx,x + dy,x)(V̂x − 1)X̃2Ỹ Ĉ2 − (dy,y + dx,y)(V̂y − 1)X̃Ỹ 2Ĉ2

Dividing X̃Ỹ out, we get:780

dĈ

dt
= (rx + ry)(1− Ĉ)− (dx,x + dy,x)(V̂x − 1)X̃Ĉ2 − (dy,y + dx,y)(V̂y − 1)Ỹ Ĉ2

The whole system:781

Combined together, this gives us the dynamics for all five state variables:782
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˜dX

dt
= rxX̃ −mxX̃ − dx,xV̂xX̃2 − dx,yĈX̃Ỹ

d̃Y

dt
= ryỸ −myỸ − dy,yV̂yỸ 2 − dy,xĈX̃Ỹ

dV̂x
dt

= 2rx + r2
x +

rxκ(X̃, νx, σx) +mx

V ol(νx)X̃
+ (

dx,x
V ol(νx)

− 2rx)V̂x

−2dx,x(V̂x − 1)V̂ 2
x X̃ +

dx,yỸ Ĉ

V ol(νx)X̃
+ 2dx,y(1− Ĉ)Ỹ V̂xĈ

dV̂y
dt

= 2ry + r2
y +

ryκ(Ỹ , νy, σy) +my

V ol(νy)Ỹ
+ (

dy,y
V ol(νy)

− 2ry)V̂y

−2dy,y(V̂y − 1)V̂ 2
y Ỹ +

dy,xX̃Ĉ

V ol(νy)Ỹ
+ 2dy,x(1− Ĉ)X̃V̂yĈ

dĈ

dt
= (rx + ry)(1− Ĉ)− (dx,x + dy,x)(V̂x − 1)X̃Ĉ2 − (dy,y + dx,y)(V̂y − 1)Ỹ Ĉ2

If we substitute in V ol(νx) = 2νx (V ol(νy) = 2νy), the one-dimensional case, we get the783

results shown in equation (3).784
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Figure B1: Multi-scale patch configuration in one dimension.
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