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DChIPRep, an R/Bioconductor package for differential

enrichment analysis in chromatin studies

Christophe D Chabbert, Lars M Steinmetz, Bernd Klaus

The genome�wide study of epigenetic states requires the integrative analysis of histone

modification ChIP�seq data. Here, we introduce an easy�to�use analytic framework to

compare profiles of enrichment in histone modifications around classes of genomic

elements, e.g. transcription start sites (TSS). Our framework is available via the

user�friendly R/Bioconductor package DChIPRep. DChIPRep uses biological replicate

information as well as chromatin Input data to allow for a rigorous assessment of

differential enrichment. DChIPRep is available for download through the Bioconductor

project at http://bioconductor.org/packages/DChIPRep.  Contact DChIPRep@gmail.com
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ABSTRACT16

The genome–wide study of epigenetic states requires the integrative analysis of histone modification

ChIP–seq data. Here, we introduce an easy–to–use analytic framework to compare profiles of enrichment

in histone modifications around classes of genomic elements, e.g. transcription start sites (TSS). Our

framework is available via the user–friendly R/Bioconductor package DChIPRep. DChIPRep uses

biological replicate information as well as chromatin Input data to allow for a rigorous assessment

of differential enrichment. DChIPRep is available for download through the Bioconductor project at

http://bioconductor.org/packages/DChIPRep
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INTRODUCTION27

The elementary component of eukaryotic chromatin, the nucleosome, is composed of 147bp28

DNA fragments wrapped around an octamer comprising two copies of 4 of the histone proteins.29

The N–terminal tails of these proteins are subject to multiple post–translational modifications30

(PTM) including acetylation, phosphorylation and methylation. Recent studies have highlighted31

the importance of these PTM in key cellular processes such as transcription, DNA replication32

and repair. Protocols based on chromatin immunoprecipitations followed by deep sequencing33

(ChIP–seq) allow for a genome–wide mapping of these modifications. Such endeavors have34

resulted in the generation of complex sequencing datasets that require appropriate bioinfor-35

matics tools to be analyzed. From this data, profiles of enrichment in histone modifications36

around classes of genomic elements, e.g. transcription start sites (TSS) are routinely computed.37

Once these enrichment profiles have been obtained, a common analysis task is to compare them38

between experimental conditions. However, due to a lack of tools tailored to the assessment of39

differential enrichment, these comparisons are often performed in a purely descriptive manner40

(e.g. by comparing plots of enrichment profiles around transcription start sites). In this article,41

we present a workflow to assess differential enrichment in a statistically rigorous way. This42

workflow is implemented in a user–friendly package named DChIPRep that is available via the43

Bioconductor project (Huber et al., 2015).44
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Review of existing tools and approaches45

Several software tools designed to analyze certain aspects of histone modification data are al-46

ready available. They mostly focus on the genome–wide determination of nucleosome positions47

and on the identification of genomic loci enriched in the modifications of interest. Diverse48

statistical and numerical approaches have been concurrently implemented, including Fourier49

transform (nucleR, Flores and Orozco, 2011), Gaussian filtering (Genetrack, Albert et al., 2008),50

wavelets (NUCwave, Quintales et al., 2014) as well as probabilistic or Bayesian approaches51

(NucleoFinder Becker et al., 2013, PING 2.0 Woo et al., 2013, NOrMAL Polishko et al., 2012).52

Some algorithms proposed recently go beyond the determination of nucleosome positions53

and aim at assessing differential enrichment. However, they commonly rely on the identification54

of regions of interest (e.g. around called peaks) using the ChIP–seq datasets themselves e.g.55

DiffBind, (Ross-Innes et al., 2012; Stark and Brown, 2011). Notably, csaw (Lun and Smyth, 2014)56

allows for a genome wide identification of differential binding events without an a priori57

specification of regions of interest. It uses a windowing approach and implements strategies58

for a post hoc aggregation of significant windows into regions. peer However, to the best of59

our knowledge, no direct approach to compare enrichment profiles of histone modifications60

around classes of genomic elements exists so far. Furthermore, most existing tools do not offer61

the possibility to directly correct for biases using the Input chromatin samples. Commonly,62

these profiles are analyzed in a purely descriptive manner and conclusions are drawn solely63

from plots of metagene/metafeature (e.g. transcription start site plots).64

Here we present DChIPRep, an R/Bioconductor package designed to compute and compare65

histone modification enrichment profiles from ChIP–seq datasets at nucleotide resolution. The66

workflow implemented in DChIPRep uses both the biological replicate and the chromatin Input67

information to assess differential enrichment. By adapting an approach for the differential68

analysis of sequencing count data (Love et al., 2014), DChIPRep tests for differential enrichment69

at each nucleotide position of a metagene/metafeature profile and determines positions with70

significant differences in enrichment between experimental groups. An overview of the complete71

workflow is given next.72

Overview of the implemented framework73

The framework implemented in DChIPRep consists of three main steps:74

1. The chromatin Input data is used for positionwise–normalization.75

2. The methodology of Love et al. (2014) is used to perform positionwise testing. A minimum76

log2–fold–change greater than zero is set during the testing procedure to ensure that called77

positions show an non–spurious differential enrichment.78

3. Finally, in order to assess statistical significance, local False Discovery Rates (local FDRs,79

Strimmer, 2008) are computed from the p–values obtained as a result of the testing step.80

Real data analysis81

We apply DChIPRep and a modified version of its framework using methodology inspired by82

the csaw and edgeR (Lun and Smyth, 2014; McCarthy et al., 2012) packages to yeast MNase–83

seq data and compare the enrichment profiles around TSS in wild–type and mutant strains,84

demonstrating how our package can derive biological insights from large–scale sequencing85

datasets.86

PACKAGE OVERVIEW87

General architecture88

DChIPRep uses a single class DChIPRepResults that wraps the input count data and stores89

all of the intermediate computations. The testing and plotting functions are then implemented90

as methods of the DChIPRepResults object. The plotting functions return ggplot2 (Wickham,91

2009) objects than can subsequently be modified by the end–user.92

DChIPRep’s analytical method uses histone modification ChIP–Seq profiles at single nu-93

cleotide resolution around a specific class of genomic elements (e.g. annotated TSS). In the case94
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Figure 1. Illustration of the DChIPRep workflow. Chromatin Input– and ChIP–data are
analyzed jointly and positions showing significantly different enrichment are identified using
the replicate information.
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of paired–end MNAse–seq reads, such profiles can be obtained using the middle position of the95

genomic interval delimited by the DNA fragments (Fig. 1).96

Thus, the variables characterizing the samples are the genomic positions relative to a specific97

class of genomic elements (e.g. TSS). These variables take the values given by the number98

of sequenced fragments with their center at these specific positions. The data is summarized99

across genomic features (e.g. genes or transcripts) at each of these nucleotide positions, so that100

metagene/metafeature profiles are obtained. The input data for DChIPRep can be alignment101

files in the SAM format or already processed count data.102

Data import103

DChIPRep has two possible data input formats. The input data can be two count tables per104

sample (for ChIP and Input), with the genomic features used (e.g. genes or transcripts) in the105

rows and the position wise counts per genomic feature in the columns. Alternatively, one can106

provide two count tables for ChIP and Input that contain the data at the metafeature level, such107

that the data is summarized across individual genomic features. These tables then have one row108

per position relative to the genomic element (e.g. TSS) studied and one column per sample.109

DChIPRep can either import tab-separated .txt files (two files per experimental sample with110

data at the level of the individual genomic features) or two R count matrices for ChIP and111

Input data, which contain the data already summarized at a metafeature level (summarized112

across features per position). A table containing the experimental conditions and other sample113

specific annotation is needed as well. A Python script (DChIPRep.py) is also provided along114

with the package to generate suitable tab-separated input files from SAM alignment files and a115

gff annotation. The script may be customized via multiple parameters.116

Further details on the data import can be found in the package vignette, which is available117

via Bioconductor and as Supplemental Item 1 vignette DChIPRep.html.118

Computation of the metafeature profile119

Once the data is summarized on the feature level (i.e. count tables), we can compute the120

metafeature profiles with the function summarizeCountsPerPosition for each of the ChIP–121

Seq and chromatin Input samples.122

The function first filters out features with very low counts. Then, in order to summarize the123

data across features, a trimmed mean of the counts at each position is computed.124

Finally, these positionwise mean values are multiplied by the number of features retained at125

each position. This way, a raw metafeature profile for each individual sample is obtained.126

Call for enriched regions127

The statistical approach implemented in DESeq2 is used to call for significantly deferentially128

enriched positions (Love et al., 2014).129

Here, the chromatin input is used to compute normalization factors that correct for potential130

local biases in chromatin solubility, enzyme accessibility or PCR amplification. After speci-131

fying a minimum fold change, Wald tests are performed to assess significant changes in the132

metagene/metafeature profiles.133

Finally, local FDRs estimated by the fdrtool (Strimmer, 2008) package are used to assess134

statistical significance based on the p–values obtained from the Wald–test.135

All of these steps are implemented in the runTesting function (Fig. 1).136

Plotting functions137

DChIPRep provides two plotting functions to represent and inspect the final results of the138

analysis. The plotProfiles function summarizes the biological replicates by taking a position139

wise mean and then plots a smoothed enrichment profile around the genomic element class of140

interest (e.g. TSS).141

The plotSignificance function plots the unsmoothed enrichment profile and highlights142

positions with a significant difference in enrichment as returned by the runTesting function143

(Fig. 1). The plotting functions return ggplot2 objects that can be easily customized.144
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A CASE STUDY145

We applied DChIPRep to a paired–end MNAse–seq dataset for which biological replicates are146

available (Chabbert et al., 2015). Using the annotation from Xu et al., 2009, we compared147

the enrichment of the H3K4me2 mark in annotated ORFs (5170 items) in the wild type strain148

of Saccharomyces cerevisiae and the set2∆ mutant. We have called a significant enrichment149

(local FDR < 0.2) in the mutant for 906 positions located within 1500bp downstream of the150

transcription start site (Fig. 1).151

Analysis steps for the case study152

In order to illustrate the usage of DChIPRep we document the series of simple commands that153

are needed to be to run a typical analysis.154

After the data has been preproccesed, we first need to import a table that contains the155

annotation information for our samples. This table contains information on the count table156

file names and the desired number of up– and downstream positions to be compared, as157

well as the experimental group a sample belongs to. As mentioned above, details on the158

required format of the annotation table can be found in the package vignette in the supplement159

(Supplemental Item 1 vignette DChIPRep.html).160

We can then import the data using the function importData.161

Listing 1. Data Import

sampleTable K4me2 <− read . csv (” sampleTable K4me2 . csv ”)162

importedData <− importData ( sampleTable K4me2 )163
164

After then data import, we can perform the positionwise testing with the runTesting165

function, extract the results using the resultsDChIPRep function and finally obtain the signif-166

icance plot in Fig. 1 via a call to the plotSignificance function.167

Listing 2. Results and Firgure

t e s t R e s u l t s <− runTest ing ( importedData )168

t e s t R e s u l t s <− resultsDChIPRep ( t e s t R e s u l t s )169

p l o t S i g n i f i c a n c e ( t e s t R e s u l t s )170
171

A comparison to an csaw /edgeR–based pipeline172

The framework implemented in DChIPRep uses the DESeq2–package (Love et al., 2014) to173

perform the statistical testing. The csaw–package (Lun and Smyth, 2014) implements a strategy174

based on methods implemented in edgeR (McCarthy et al., 2012) to assess differential binding in175

ChIP–Seq data sets genome–wide. While csaw and DChIPRep are not directly comparable, we176

can adapt the csaw framework to assess the differential enrichment (for a summary of the csaw177

framework, see section 1.3. of the csaw user guide at Bioconductor).178

Specifically, we used the log–normalization factors computed from the chromatin–input as179

offsets for the GLM–model and then applied the quasi–likelihood (QL) methods of Lund et al.180

(2012) to perform a dispersion shrinkage and an appropriate F–test to assess the differential181

enrichment. Note that since edgeR does not allow for an a priori specification of a fold change182

threshold, we had to specify it post hoc. The complete analysis can be found in supplementary183

file 2 – ReproduceFiguresDChIPRepPaper.zip.184

Figure 2 shows the results of this approach. The modified pipeline identified 1127 positions185

as significantly deferentially enriched located within 1500bp downstream of the transcription186

start site. Comparing Fig. 2 to Fig. 1, we see that DChIPRep identifies deferentially enriched187

regions more consistently, while the edgeR–based pipeline often calls positions with relatively188

small fold changes as significant. This might be due to the fact that a post hoc fold change189

thresholding had to be performed. DChIPRep would therefore be less prone to calling false190

positive as it is less sensible to weak enrichment (which might be resulting from intrinsic191

variability in the performance of immunoprecipitation for example).192
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Figure 2. Results of the csaw/edgeR–based calling for enriched regions. We applied an
edgeR–based testing to the data (instead of using DESeq2). This included a post hoc
thresholding of the fold–changes. The figure shows that this pipeline often calls positions with
moderate fold–changes as significant in our example data set.

Reproducible research193

The complete code and the data used for the case study can be found in the supplementary194

material (Supplemental Item 2 ReproduceFiguresDChIPRepPaper.zip).195

DISCUSSION AND CONCLUSION196

The package DChIPRep provides an integrated analytical framework for the computation and197

comparison of enrichment profiles from replicated ChIP–seq datasets at nucleotide resolution.198

Starting from the primary alignment of paired–end reads, the software allows a rapid199

identification of significantly differentially enriched positions relative to classes of genomic200

elements and provides straightforward plotting of the enrichment profiles.201

We also applied the DChIPRep–package to a published data set. This case study demonstrates202

DChIPRep’s favourable performance when compared to a pipline inspired by the csaw–package203

for differntial binding analysis.204
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