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Abstract 

Geographical Information Systems (GIS) are considered to be applications-led technology. 

Consequently, geographic information scientists commonly find themselves as guest in host 

disciplines in order to best exploit spatial analysis tools and methods, appropriately guided by 

experts in the field. An example is population genetics in evolutionary biology. Genetic 

information being linked to living organisms can be partially characterized by geographic 

coordinates. A research field named landscape genetics emerged at the intersection of 

genetics, environmental and geographic information science. Geocomputation and 

programming efforts carried out with the help of open sources technologies and dedicated to 

the analysis of genetic data gather together a key scientific community whose goal is to 

extract new knowledge from the present data tsunami caused by the advent of high throughput 

molecular data and of new sources of high resolution environmental data. While the level of 

sophistication of the population genetics functions included in the analytical frameworks 

developed until now are cutting-edge, advanced geo-competences are also required to 

reinforce the spatial side of this discipline. They will be particularly useful in conservation 

programmes for wildlife preservation, but also in farm animal genetic resources conservation. 

 

Introduction 

GIScience is inherently interdisciplinary, being a field that provides tools useful through their 

application to solving problems within other disciplines. Indeed, it has long been applied for a 

multiplicity of uses in land survey, hydrology, archeology, anthropology, transportation, etc. 

In this sense, Geographical Information Systems (GIS) are considered to be applications-led 

technology (Longley et al., 2015). Consequently, geographic information scientists commonly 

find themselves as guest in host disciplines in order to best exploit spatial analysis tools and 

methods, appropriately guided by experts in the field.  

An example is population genetics in evolutionary biology. Indeed, people, animals, plants, 

are dispersed in space and interact in that space. Genetic information being linked to living 

organisms can therefore be partially characterized by geographic coordinates. The pairing of 

both genetic and spatial information is very well illustrated by the «Genographic» project, 

launched in part by The National Geographic Society and the IBM Corporation with the goal 

of collecting and analyzing more than 100’000 samples of DNA in order to trace the origins 

and to map the movements of humans during the last 60’000 years 

(https://genographic.nationalgeographic.com/). The idea was also popularized by Luigi 

Cavalli-Sforza and colleagues in «The History and Geography of Human Genes» (Cavalli-

Sforza, Menozzi & Piazza, 1994) in which they systematically relied on geographical maps to 

show how the frequency of human genes is evolving from one population to another across 

the world. But exploiting the geographic dimension of genetic data was not new. Indeed, 

Sewall Wright and other cofounders of the field of population genetics considered 

geographics in their work from the 1930s (Epperson, 2003), as they were studying the 

distribution of allele frequencies under the influence of evolutionary forces (natural selection, 

genetic drift, mutation and migration). Basically, the main use of spatial information was to 

calculate geographical distances for comparison to genetic distances. Since then, there has 

been much advance on the notion of geographic distance towards more realistic and 

sophisticated tools, as demonstrated by Kozak et al. (2008) in their paper on the integration of 

GIS-based environmental data into evolutionary biology. 

Here our intention is far from proposing an exhaustive review of the research that took place 

at the intersection of genetics, environmental and geographic information science, and that 

mainly came within the scope of a broad discipline named landscape genetics (Manel et al., 
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2003; and see a review in Sork & Waits, 2010). Instead we shortly describe some applications 

to stress the importance of geocomputation in spatial genetics, and in particular of the 

developments carried out with the help of open sources technologies. The latter gather 

together a key scientific community active at the intersection of computer science, 

evolutionary biology (to keep it broad) and geographic information science. In 2004, 

Marturano & Chadwick (2004) already mentioned that there was “no new genetics without 

computer science”; in 2016 this is truer than ever when (georeferenced) whole genome 

sequence data are up to become the standard to analyze.  

Marturano & Chadwick also observed that open molecular data (see http://nextgen.epfl.ch/ for 

example) and open-source bioinformatics software were determining factors likely to enable 

the translation of  huge amounts of data into medical or social advances. In the following 

sections, we selected examples to illustrate four main categories of applications in which 

open-source computational landscape genetic solutions can be distributed: a) the simple use of 

geographic coordinates for map production, distance calculation, or barrier detection; b) the 

simulation of spatially distributed datasets constrained by diverse biological criteria and gene 

flow modeling; c) the determination of population structure; and d) the detection of signatures 

of natural selection in the genome of investigated species. 

 

Simple use of geographic coordinates 

The Geographic Distance Matrix Generator (Ersts, 2016) is a simple example to illustrate 

what kind of geo-service biologists may need. Analyses in phylogeography for instance may 

require to detect patterns in the distribution of genetic variation across different spatial scales, 

taking into account a common process named isolation by distance (IBD) and under which 

genetic similarity decreases with geographic distance. The Geographic Distance Matrix 

Generator is a platform-independent Java application that computes all pair wise distances 

from a simple list of geographic coordinates. With more functionalities, GenGIS (Parks et al., 

2013), is a free and open source software able to integrate biodiversity information and to 

display it on geographic maps. It includes calculation of alpha-diversity like the Shannon 

index, and geovisualization of dissimilarity matrices. In the same category, despite it is not an 

open-source development strictly speaking (free software whose sources are available upon 

request), it is worth mentioning Barrier (Manni, Guerard & Heyer, 2004), a software to 

compute geographic barriers from matrices of genetic distances. 

 

Simulations and gene flow modeling 

As landscape genetics is in part dedicated to the understanding of how geography and the 

environment structure genetic variation, several software include functions able to analyse 

processes and patterns of gene flow, and to identify genetic discontinuities and correlation 

between the latter and landscape features. For instance, Circuitscape (Shah & McRae, 2008) 

is a free and open-source software whose originality is to use algorithms from electronic 

circuit theory to model movement patterns and gene flow in animal and plant populations in 

the landscape. Although this program can be called through an ArcGIS Toolbox, Circuitscape 

is above all a regular Python package available from the Python packages repository. 

SimAdapt (Rebaudo et al., 2013) is a spatially explicit and individual-based landscape genetic 

simulation model. It can be combined with cellular automata to analyse evolutionary 

processes and population dynamics in changing landscapes. Of particular interest here is the 

use of the NetLogo environment, which is a free and open-source development environment 

for simulating natural and social phenomena (read the interesting paper by Thiele & Grimm, 
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2010, on the pairing of Netlogo with R). Finally, CDPOP (Landguth & Cushman, 2010) is a 

program to simulate gene flow, genetic drift, mutations, and also selection in complex 

landscapes. It is able to take into account a wide range of biological and evolutionary 

scenarios. CDPOP requires the Python2.7.x interpreter and uses thw NumPy and SciPy 

packages. 

 

Population structure 

“Population structure” means that instead of a single continuous population of a given species 

or breed, populations are subdivided in some way (distance, geographic barriers, etc.). When 

populations are subdivided, they can evolve apart and independently, and based on their 

proper genetic characteristics, it is possible to distinguish different population structures. 

Population structure is an important component of evolutionary genetics, and several software 

were developed to analyse it. TESS (Caye et al., 2016) is a program suited to detect genetic 

discontinuities in populations and to estimate individual genetic admixture proportions that 

vary in the geographical space. The program is based on a spatially explicit algorithm that 

provides an estimation of ancestry coefficients and it returns maps of geographical cluster 

assignments. TESS was developed using CMake (https://cmake.org/), an open-source and 

cross-platform family of tools designed to build package software; several R scripts come 

along with TESS for visualizing results. SPAGeDi (Spatial Pattern Analysis of Genetic 

Diversity) is a computer package also developed with CMake whose goal is to characterise 

the spatial genetic structure of georeferenced individuals or populations with the help of 

genotype data (Hardy & Vekemans, 2002). Finally, it is important to mention adegenet 

(Jombart, 2008) in this section, a R package implementing a set of tools able to explore and 

analyse genetic data, and well illustrating the usefulness of investigating spatial patterns of 

genetic variability. 

 

Detection of selection signatures 

Based on the concept of spatial coincidence, several approaches were developed in order to 

detect signatures of natural selection within the genome of studied species. The principle of 

these correlative approaches is to use geographical coordinates to compare the variation of 

environmental features with the frequency of specific genomic regions. Some of them like 

Sambada (Stucki et al., 2014) implement simple uni- and multivariate logistic regression 

models enriched with spatial statistic functionalities (Moran’s I or local indices of spatial 

association, Anselin, 1995). Sambada is written in C++ using the Scythe Statistical Library 

(Pemstein, Quinn & Martin, 2011) for matrix computation and probability distributions. 

Others are more sophisticated and take into account the structure of the populations 

investigated (see previous section) in addition to the variance explained by a given 

environmental variable. For instance, in LFMM (Frichot et al., 2013) population structure is 

considered in the model through unobserved variables obtained by means of a variant of 

Bayesian principal component analysis (latent factors mixed models). Interestingly, LFMM 

was developed in C and C++, but is also included in the R package named LEA (Frichot & 

François, 2015), which is broadly dedicated to landscape genomics and ecological association 

tests. Bayenv (Günther & Coop, 2013), SGLMM (Guillot et al., 2014), and more recently 

BayeScEnv (de Villemereuil & Gaggiotti, 2015), and Baypass (Gautier, 2015) constitute 

variants of the same approach. 

 

 

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1721v1 | CC-BY 4.0 Open Access | rec: 6 Feb 2016, publ: 6 Feb 2016



There is plenty of room for geoscientists! 

Obviously there is plenty of room for geoscientists, not at the bottom as in the title of Richard 

Feynman’s famous lecture, but in spatial genetics. Indeed, until now most of the programming 

efforts in (open) computational landscape genetics were carried out by biologists, geneticists 

or bioinformaticians. It is true that the main field of interest is evolutionary biology, naturally 

attracting biologists with programming skills. Nevertheless, migrations, gene flow, 

adaptation, etc. are processes that take place at the surface or the earth, with an undeniable 

geographic dimension. While the level of sophistication of the population genetics functions 

included in the analytical frameworks developed until now in landscape genetics are cutting-

edge, advanced geo-competences are also required to reinforce the spatial side of this 

discipline. They will be particularly useful in conservation programmes for wildlife 

preservation, but also in farm animal genetic resources conservation where the integration of 

many different thematics (socio-economy, policies, demography, genetics, environment, etc.) 

are required, involving heterogeneous types of data at different geographical scales (Bruford 

et al., 2015). New knowledge will be extracted from the present data tsunami  ̶  mainly 

constituted by the advent of high throughput molecular data and new sources of high 

resolution environmental data  ̶  only if innovative, transdisciplinary and efficient computing 

tools are developed with the contribution of geoscientists ready to submerge themselves in 

evolutionary biology. 
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