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ABSTRACT 

The natural sciences, such as ecology and earth science, study complex interactions 

between biotic and abiotic systems in order to infer understanding and make predictions. 

Machine-learning-based methods have an advantage over traditional statistical methods in 

studying these systems because the former do not impose unrealistic assumptions (such as 

linearity), are capable of inferring missing data, and can reduce long-term expert annotation 

burden. Thus, a wider adoption of machine learning methods in ecology and earth science has 

the potential to greatly accelerate the pace and quality of science. Despite these advantages, 

machine learning techniques have not had wide spread adoption in ecology and earth science. 

This is largely due to 1) a lack of communication and collaboration between the machine 

learning research community and natural scientists, 2) a lack of easily accessible tools and 

services, and 3) the requirement for a robust training and test data set. These impediments can be 

overcome through financial support for collaborative work and the development of tools and 

services facilitating ML use. Natural scientists who have not yet used machine learning methods 

can be introduced to these techniques through Random Forest, a method that is easy to 

implement and performs well. This manuscript will 1) briefly describe several popular ML 

methods and their application to ecology and earth science, 2) discuss why ML methods are 

underutilized in natural science, and 3) propose solutions for barriers preventing wider ML 

adoption. 

 

INTRODUCTION 

 Machine Learning (ML) is a discipline of computer science that develops dynamic 

algorithms capable of data-driven decisions, in contrast to models that follow static programming 

instructions. In 1959, Arthur Samuel first defined ML as a “Field of study that gives computers 

the ability to learn without being explicitly programmed”. The very first mention of ‘machine 

learning’ in the literature occurred in 1930 and use of the term has been growing steadily since 

1980 (Fig. 1). While discussion of ML is likely to recall scenes from popular science-fiction 

books and movies, there are many practical applications of ML in a wide variety of disciplines 

from medicine to finance. Part of what makes ML so broadly applicable is the diversity of ML 

algorithms capable of performing very well under messy, real-world conditions. Despite, and 

perhaps because of this versatility, uptake of ML applications have lagged behind traditional 

statistical techniques in the natural sciences.  

 The advantage of ML over traditional statistical techniques, especially in earth science 

and ecology, is the ability to model highly dimensional and non-linear data with complex 

interactions and missing values (De’ath & Fabricius 2000; Recknagel 2001; Olden et al. 2008; 

Haupt, Pasini, et al. 2009; Knudby, Brenning, et al. 2010). Ecological data specifically are 

known to be non-linear and highly dimensional with intense interaction effects; yet, methods that 
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assume linearity and are unable to cope with interaction effects are still being used (Knudby, 

Brenning, et al. 2010; Olden et al. 2008). To make these methods work, researchers cope in 

various ways, including 1) data transformations, which can limit the interpretability of the final 

results (Knudby, Brenning, et al. 2010) 2) decompose/recompose methods to break up the system 

into bits with fewer complicated dynamics (Pasini 2009) or 3) assuming linearity without any 

modification of the data (Džeroski 2001). Several comparative studies have already shown that 

ML techniques can outperform traditional statistical approaches in a wide variety of problems in 

earth science and ecology (Lek, Delacoste, et al. 1996; Levine et al. 1996; Lawler et al. 2006; 

Prasad et al. 2006; Cutler et al. 2007; Olden et al. 2008; Zhao et al. 2011; Bhattacharya 2013; 

Manel et al. 2001; Segurado & Araújo 2004; Elith et al. 2006); however, comparing techniques 

can be difficult and requires careful consideration (Fielding 2007).  

 The exact division between ML methods and traditional statistical techniques is not 

always clear and ML methods are not always better than traditional statistics. For example, a 

system may not be linear, but a linear approximation of that system may still yield the best 

predictor. The exact method(s) must be chosen based on the problem at hand and a meta 

approach that considers the results of multiple algorithms may be best. This manuscript will 

discuss six types of ML methods and their relative strengths and weaknesses in ecology and 

earth science. Specific applications of ML in ecology and earth science will be briefly reviewed 

with the reasons ML methods are underutilized in natural sciences. Potential solutions will be 

proposed. 

 

BACKGROUND 

 The basic premise of ML is that a machine (i.e., algorithm or model) is able to make new 

predictions based on data. Some algorithms are supervised, meaning they are shown data a priori 

and then make predictions about new data based on the previous data. Some are unsupervised, 

meaning they can make predictions with no a priori data. Some are a combination of the two, 

(i.e., semi-supervised). The basic technique behind all ML methods is an iterative combination of 

statistics and error minimization or reward maximization, applied and combined in varying 

degrees. Many ML algorithms iteratively check all or a very high number of possible outcomes 

to find the best result, with “best” defined by the user for the problem at hand. The potentially 

high number of iterations is prohibitive of manual calculations and is a large part of why these 

methods are only now widely available to individual researchers. 

Computing power has increased such that ML methods can be implemented with a 

desktop or even a laptop. The availability of high-performance computing and the maturation of 

the internet has opened up an even broader array of possibilities for individuals. Before the 

current availability of computing power, ecologists and earth scientists had to settle for statistical 

methods that assumed linearity (Knudby, Brenning, et al. 2010) and limited, controlled 

experiments (Fielding 1999a). Both of these restrictions limit scale of studies and accuracy of 

results. A similar acceleration has been observed for numerical modeling of natural systems, 

where model predictions have improved because increased computing power has allowed for the 

inclusion of more parameters and, more importantly, finer granularity (see Semtner 1995; Forget 

et al. 2015 for examples in oceanography). 
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 The first step in applying ML is teaching the algorithm using a training data set. The 

training data set is a collection independent variables with the corresponding dependent 

variables. The machine uses the training data to “learn” how the independent variables (input) 

relate to the dependent variable (output). Later, when the algorithm is applied to new input data, 

it can apply that relationship and return a prediction. After the algorithm is trained, it needs to be 

tested to get a measure of how well it can make predictions from new data. This requires another 

data set with independent and dependent variables, but the dependent variables are not provided 

to the learner. The algorithm predictions are compared to the withheld data to determine the 

quality of the predictions. This process requires a data set that is large enough to be split in two 

for training and testing. The type of ML method, the size and nature of the training and test data 

set, and the evaluation method should be chosen to optimize the trade-off between bias and 

accuracy to give a meaningful result for the problem at hand. 

 

Tree-based methods 

Tree-based ML methods include decision trees, classification trees, and regression trees 

(Olden et al. 2008; Hsieh 2009; Kampichler et al. 2010). For these methods, a tree is built by 

iteratively splitting the data set based on a rule that results in the divided groups being more 

homogeneous than the group before (Fig. 2). The rules used to split the tree are identified by an 

exhaustive search algorithm and give insight into the workings of the modeled system. A single 

decision tree can give vastly different results depending on the training data and typically has 

low predictive power (Iverson et al. 2004; Olden et al. 2008; Breiman 2001b). Several ensemble-

tree methods have been developed to improve predictive power by combining the results of 

multiple trees, including boosted trees and bagged trees (Breiman 1996; De’ath 2007). A boosted 

tree results from a pool of trees created by iteratively fitting new trees to minimize the residual 

errors of the existing pool (De’ath 2007). The final boosted tree is a linear combination of all the 

trees (Elith et al. 2008). Bagging is a method that builds multiple trees on subsamples of the 

training data (bootstrap with replacement) and then averages the predictions from each tree to get 

the bagged predictions (Breiman 1996; Knudby, Brenning, et al. 2010).  

Random Forest is a relatively new tree-based method that fits a user-selected number of 

trees to a data set and then combines the predictions from all trees (Breiman 2001a). The 

Random Forest algorithm creates a tree for a subsample of the data set. At every decision only a 

randomly selected subset of variables are used for the partitioning. The predicted class of an 

observation in the final tree is calculated by majority vote of the predictions for that observation 

in all trees with ties split randomly.  

Ensemble tree-based methods, especially Random Forest, have been demonstrated to 

outperform traditional statistical methods and other ML methods in earth science and ecology 

applications (Cutler et al. 2007; Kampichler et al. 2010; Knudby, Brenning, et al. 2010). They 

can cope with small sample sizes, mixed data types, and missing data (Cutler et al. 2007; Olden 

et al. 2008). The single-tree methods are fast to calculate and the results are easy to interpret 

(Kampichler et al. 2010), but they are susceptible to overfitting (Olden et al. 2008) and 

frequently require “pruning” of terminal nodes that do not give enough additional accuracy to 

justify the increased complexity caused by its presence (Breiman et al. 1984; Garzón et al. 2006; 

Cutler et al. 2007; Olden et al. 2008; Džeroski 2009). The ensemble-tree methods can be 
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computationally expensive (Olden et al. 2008; Džeroski 2009; Cutler et al. 2007), but resist 

overfitting (Breiman 2001a). Random Forest algorithms can provide measures of relative 

variable importance and data point similarity that can be useful in other analyses (Cutler et al. 

2007), but can be clouded by correlations between independent variables (Olden et al. 2008). 

Implementing Random Forest is relatively straightforward. Only a few, easy-to-understand 

parameters need to be provided by the user (Kampichler et al. 2010), but the final Random Forest 

does not have a simple representation that characterizes the whole function (Cutler et al. 2007). 

Tree methods also do not give probabilities for results, which means that data are classified into 

categories, but the probability that the classification is correct is not given. 

 

Artificial Neural Networks 

 An Artificial Neural Network (ANN) is a ML approach inspired by the way neurological 

systems process information (Recknagel 2001; Olden et al. 2008; Boddy & Morris 1999; Hsieh 

2009). There are many types of ANNs that can be supervised or unsupervised learners, but only a 

few are typically used in earth science and ecology (Pineda 1987; Kohonen 1989; Chon et al. 

1996; Recknagel 2001; Lek & Guégan 2000). An ANN has three parts: 1) the input layer, 2) the 

hidden layer, and 3) the output layer (Fig. 3). Each layer is made up of several “neurons”. Each 

neuron is connected to all the other neurons in the neighboring layer, but not the neurons in the 

same layer or in non-adjacent layers. The input layer contains one neuron for every independent 

variable. The output layer can have one neuron (for binary or continuous output) or more (for 

categorical output). The number of neurons in the hidden layer can be changed by the user to 

optimize the trade-off between overfitting and variance (Geman et al. 1992). Too many neurons 

in this layer can lead to overfitting. Each neuron has an activity level and each connection has a 

weight. The activity level of the input neurons are set by the value of the independent variable. 

Training the ANN involves an algorithmic search for an optimal set of connection weights that 

produces an output value with a small error relative to the observed value. Performance can be 

sensitive to initial connection weights and the number of hidden neurons, so multiple networks 

should be processed while varying these parameters (Olden et al. 2008). 

 ANN can be a powerful modeling tool when the underlying relationships are unknown 

and the data are imprecise and noisy (Lek & Guégan 1999). Interpretation of the ANN can be 

difficult and neural networks are often referred to as a “black box” method (Lek & Guégan 1999; 

Olden et al. 2008; Wieland & Mirschel 2008; Kampichler et al. 2010). ANNs can be more 

complicated to implement and are more computationally expensive than tree-based ML methods 

(Olden et al. 2008), but ANNs can accommodate a major gain in computational speed with a 

minor sacrifice in accuracy. For example, an ANN with one fourth the computational cost of a 

traditional satellite data retrieval algorithm (that uses an iterative method) can come to within 

1/10 of the traditional algorithm accuracy (Young 2009). The user-defined parameters, such as 

the number of hidden neurons and the initial connection weights, can be complicated and 

overfitting can be a problem (Kampichler et al. 2010). Many ANNs mimic standard statistical 

methods (A. Fielding pers. comm.), so a good practice while using ANNs is to also include a 

rigorous suite of validation tests and a general linear model for comparison (Özesmi et al. 2006).  

 

Support Vector Machines 
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 A Support Vector Machine (SVM) finds a plane that divides two classes in a feature 

space. It does this by finding the plane giving the largest gap between two classes, the Maximal 

Margin Classifier (MMC), which is typically the plane that is equidistant from the points in each 

class closest to the boundary (Fig. 4A; Moguerza & Muñoz 2006; Rasmussen & Williams 2006; 

Zhao et al. 2008; Hsieh 2009; Kampichler et al. 2010; Zhao et al. 2011). A new data point would 

be classified according to which side of the decision boundary it fell. This MMC works very well 

on data that are easily separated by a straight line, but data are often noisy and cannot be 

separated by a straight plane. In this case, a Support Vector Classifier can be used to create a 

“buffer zone” around the hard decision boundary (Fig. 4B). Some data sets cannot be divided by 

a linear decision boundary. In this case a type of algorithm known as a kernel computes the mean 

squared error of the product of a pairwise multiplication of every data point and uses that to draw 

decision boundaries around groups of data.  

 SVMs perform very well on binary classification tasks, especially when classifying 

images or sounds (Durbha et al. 2007; Acevedo et al. 2009; Zhao et al. 2011; Duro et al. 2012). 

They can distinguish more classes and cope with non-linear decision boundaries with additional 

modification (Kreßel 1999; Hsieh 2009), but with these modifications are not guaranteed to 

converge to the optimal classifier and can be difficult to interpret (Lee et al. 2004). Like tree 

methods, SVM is not a probability model and does not assign probabilities to its classifications. 

When there is some overlap in the data and a support vector classifier becomes necessary, 

logistic regression can be more useful than SVM because it calculates probabilities. When the 

decision boundaries are non-linear SVM performs better than logistic regression and linear 

discriminant analysis because of the kernels.  

 

Genetic Algorithms 

 Genetic Algorithms (GA) are based on the process of evolution in natural systems in that 

a population of competing solutions evolves over time to converge on an optimal solution 

(Holland 1975; Goldberg & Holland 1988; Olden et al. 2008; Koza 1992; Haupt & Haupt 2004). 

Solutions are represented as “chromosomes” and model parameters are represented as “genes” 

on those chromosomes (Fig. 5). Training a GA has four steps: 1) random potential solutions are 

generated (chromosomes), 2) potential solutions are altered using “mutation”, and 

“recombination”, 3) solutions are evaluated to determine fitness (minimizing error), and 4) the 

best solutions cycle back to step 2 (Holland 1975; Mitchell 1998; Haefner 2005). Each cycle 

represents a “generation”. Depending on the nature of the problem the GA is trying to solve, the 

chromosome can be strings of bits, real values, rules, or permutations of elements (Recknagel 

2001).  

 An advantage of GA is the removal of the often arbitrary process of choosing a model to 

apply to the data (Jeffers 1999). In a GA, multiple models are compared. GAs have seen a rise in 

popularity due to development of the Genetic Algorithm for Rule-Set Prediction (GARP) used to 

predict species distributions (Stockwell & Noble 1992). GAs are very popular in hydrology (see 

Mulligan & Brown 1998 for description of how GA was used to find the Pareto Front) and 

meteorology (Haupt 2009). GAs are able to cope with uneven sampling and small sample sizes 

(Olden et al. 2008). GAs were developed with broad application in mind and can use a wide 

range of model structures and model-fitting approaches (Olden et al. 2008). As a result, a larger 
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burden is placed on the user to select complicated model parameters with little guidance, and the 

fixed-length “chromosomes” can limit the potential range of solutions (Olden et al. 2008). GAs 

are not best for all problems and many traditional statistical techniques can perform just as well 

or better (Olden et al. 2008). GARP, in particular, can be susceptible to overfitting (Elith et al. 

2008; Lawler et al. 2006). 

 

Logic-Based Methods 

 Logic-based methods, such as Fuzzy Logic and Inductive Logic Programming, (Fig. 6) 

provide a practical approach to automating complex analysis and inference in a long workflow 

(Williams et al. 2009). They represent and process knowledge in terms of natural language in a 

set of “if/then” rules (Wieland 2008). The if/then rules are created through an algorithm that 

iteratively selects each class and refines the if-statement until only the selected class remains 

(Džeroski 2009). The National Center for Atmospheric Research (NCAR) has developed three 

logic-based algorithms to address a complex problem in meteorology (Williams et al. 2009) and 

logic-based methods have been widely used in ecology for the induction of rules for 

classification problems (Bouchon-Meunier et al. 2007). 

 Logic-based algorithms and the resulting rules can be easy to understand and interpret, as 

long as the rule sets are not too large, but overfitting can be a problem (Kampichler et al. 2010).  

 

Bayesian Classifier 

 Bayesian ML methods are based on Bayesian statistical inference, which started in the 

18
th
 century with the development of Bayes’ theorem (Laplace 1986). These methods are based 

on expressing the true state of the world in terms of probabilities and then updating the 

probabilities as evidence is acquired (Bishop 2006). In most cases, it is important to know the 

probability that a new datum belongs to a given class, not just the class. A Bayesian classifier 

calculates a probability density for each class (Fig. 7A). The probability density is a curve 

showing, for any given value of the independent variable, the likelihood of being a member of 

that class (Fig. 7). The new datum is assigned to the class with the highest probability. The 

values of the independent variable that have an equal probability of being in either class are 

known as the decision boundary and this marks the dividing line between the classes. In the real 

world, it can be difficult to calculate these a priori probabilities and the user must often make a 

best-guess. 

 A Bayesian classifier gives good results in most cases and requires fewer training data 

compared to other ML methods. It is useful when there are more than two distinct classes. The 

disadvantage is that it can be very hard to specify prior probabilities and results can be quite 

sensitive to the selected prior. This method does assume that variables are independent, which is 

not always true. Some Baysian classifiers have Gaussian assumptions which may not be 

reasonable for the problem at hand. Another issue is that if a specific feature never appears in a 

class, the resulting zero probability will complicate calculations; therefore, a small probability 

must often be added, even if the feature does not appear in the class. 

 

Using ML in Earth Science and Ecology 
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 For many researchers, machine learning is a relatively new paradigm that has only 

recently become accessible with the development of modern computing. While the adoption of 

ML methods in earth science and ecology has been slow, there are several published studies 

using ML in these disciplines (e.g., Park & Chon 2007). The following is a brief review of the 

different published applications of ML in earth science and ecology. 

 

Habitat Modeling and Species Distribution 

 Understanding the habitat requirements of a species is important for understanding its 

ecology and managing its conservation. Habitat modelers are interested in using multiple data 

sets to make predictions and classifications about habitat characteristics and where taxa are likely 

to be located or engaging in a specific behavior (e.g., nesting Cutler et al. 2007; Fielding 2009). 

The rule-sets developed are referred to as Species Distribution Models (SDM) and can use a 

wide variety of ML methods or none at all (Guisan & Thuiller 2005). Typically, an algorithm 

would be trained using a data set matching environmental variables to taxon abundance or 

presence/absence data. If the algorithm tests well, it can be given a suite of environmental 

variables from a different location to make predictions about what taxa are present. This 

technique has been used to identify current suitable habitat for specific taxa, model future species 

distributions including predicting invasive and rare species presence, and predict biodiversity of 

an area (Tan & Smeins 1996; Kampichler et al. 2000; Cutler et al. 2007; Olden et al. 2008; 

Knudby, Brenning, et al. 2010). Common tools include Random Forest (Cutler et al. 2007; Peters 

et al. 2007), classification and decision trees (Ribic & Ainley 1997; Kobler & Adamic 2000; Bell 

1999; Vayssièrs et al. 2000; Debeljak et al. 2001; Miller & Franklin 2002), neural networks 

(Mastrorillo et al. 1997; Guégan et al. 1998; Özesmi et al. 2006; Brosse et al. 2001; Thuiller 

2003; Fielding 1999a; Dedecker et al. 2004; Manel et al. 2001; Segurado & Araújo 2004), 

genetic algorithms (D’Angelo et al. 1995; Stockwell & Peters 1999; McKay 2001; Wiley et al. 

2003; Termansen et al. 2006; Stockwell 1999; Peterson et al. 2002), and Bayesian classifiers 

(Fischer 1990; Brzeziecki et al. 1993; Guisan & Zimmermann 2000).  

 

Species Identification 

 Identifying taxa can require specialized knowledge only possessed by a very few and the 

data set requiring expert curation can be large (e.g., automated collection of images and sounds). 

Thus, this step is a major bottleneck in biodiversity studies. In order to increase throughput, 

algorithms are trained on images, sounds, and other types of data labeled with taxon names. (For 

more information about automated taxon identification specifically, see Edwards et al. (1987) 

and MacLeod (2007).) Then, algorithms are shown new data and asked to classify them to genus 

or species. This technique has been used to identify plankton, spiders, and shellfish larvae from 

images (Boddy & Morris 1999; Sosik & Olson 2007; Goodwin et al. 2014; Do et al. 1999). 

Audio files of amphibian, bird, bat, insect, elephant, cetacean, and deer sounds have been 

classified to species using ML techniques (Acevedo et al. 2009; Armitage & Ober 2010; Kasten 

et al. 2010; Parsons & Jones 2000; Jennings et al. 2008; Chesmore 2004). Fish and algal species 

have been identified using acoustic (Simmonds et al. 1996) and optical characteristics (Boddy et 

al. 1994; Balfoort et al. 1992). ML has been used to differentiate between the radar signals of 

birds and abiotic objects (Rosa et al. 2016). In some cases, individuals of the same species can be 
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distinguished even if the individuals themselves are unknown a priori (Reby et al. 1998; Fielding 

1999a). Common tools include support vector machines (Acevedo et al. 2009; Armitage & Ober 

2010; Goodwin et al. 2014; Sosik & Olson 2007; Fagerlund 2007; Rosa et al. 2016), Random 

Forest (Armitage & Ober 2010; Rosa et al. 2016), Bayesian classifiers (Fielding 1999a), genetic 

algorithms (Jeffers 1999), and neural networks (Armitage & Ober 2010; Parsons & Jones 2000; 

Simmonds et al. 1996; Jennings et al. 2008; Do et al. 1999; Boddy et al. 1994; Balfoort et al. 

1992; Rosa et al. 2016). 

 

Remote Sensing 

 Satellite images and other data gathered from sensors at great elevation (e.g., LIDAR) are 

an excellent way to gather large amounts of data about Earth over broad spatial scales. In order 

to be useful, these data must go through some minimum level of processing (Atkinson & Tatnall 

1997) and are often classified into land cover or land use categories (Guisan & Zimmermann 

2000). ML methods have been developed to automate these laborious processes (Fitzgerald & 

Lees 1992; Lees 1996; Lees & Ritman 1991; Atkinson & Tatnall 1997; Pal 2005; Ham et al. 

2005; Gislason et al. 2006; Guisan & Zimmermann 2000; Lakshmanan 2009). After processing, 

the data are available for research and ML can be used here too. ML methods can be used to 

infer geophysical parameters from remote sensing data, such as inferring the Leaf Area Index 

from Moderate Resolution Imaging Spectrometer data (Rumelhart et al. 1986; Krasnopolsky 

2009; Hsieh 2009). Sometimes remote sensing data and the parameters inferred from them can 

require spatial interpolation in the vertical or horizontal dimension, which is often performed 

using ML methods (Li et al. 2011; Krasnopolsky 2009). Common tools for classifying remote 

sensing images include Random Forest (Knudby, LeDrew, et al. 2010; Duro et al. 2012), support 

vector machines (Durbha et al. 2007; Knudby, LeDrew, et al. 2010; Zhao et al. 2011; Duro et al. 

2012), neural networks (Rogan et al. 2008), genetic algorithms (Haupt 2009), and decision trees 

(Huang & Jensen 1997).  

 

Resource Management 

 Making decisions about conservation and resource management can be very difficult 

because there is often not enough data for certainty and the consequences of being wrong can be 

disastrous. ML methods can provide a means of increasing certainty and improving results, 

despite data gaps. Several algorithms have been applied to water (Maier & Dandy 2000; Haupt 

2009), soil (Henderson et al. 2005; Tscherko et al. 2007), and biodiversity/wildlife management 

(Baran et al. 1996; Lek, Delacoste, et al. 1996; Lek, Belaud, et al. 1996; Giske et al. 1998; 

Guégan et al. 1998; Spitz & Lek 1999; Chen et al. 2000; Vander Zanden et al. 2004; Sarkar et al. 

2006; Worner & Gevrey 2006; Cutler et al. 2007; Quintero et al. 2014; Bland et al. 2014; Jones 

et al. 2006). ML methods have been used to model population dynamics, production, and 

biomass in terrestrial, aquatic, marine, and agricultural systems (Scardi 1996; Recknagel 1997; 

Scardi & Harding Jr. 1999; Recknagel et al. 2000; McKenna Jr. 2005; Muttil & Lee 2005; 

Recknagel et al. 2002; Džeroski 2001; Schultz et al. 2000). Some specific examples of ML 

applications in resource management and conservation include 1) inference of IUCN 

(International Union for Conservation of Nature) conservation status of Data Deficient species 

using intrinsic and extrinsic characters (Quintero et al. 2014; Bland et al. 2014), 2) predicting 
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farmer risk preferences (Kastens & Featherstone 1996), 3) predicting the production and biomass 

of various animal populations (Brey et al. 1996), 4) examining the effect of urbanization on bird 

breeding (Lee et al. 20007), 5) predicting disease risk (Guo et al. 2005; Furlanello et al. 2003), 

and 6) modeling ecological niches (Drake et al. 2006). Being able to make these types of 

predictions and inferences can help focus conservation efforts for maximum impact (Knudby, 

Brenning, et al. 2010; Guisan et al. 2013). Common ML methods for resource management 

include genetic algorithms (Haupt 2009), neural networks (Brey et al. 1996; Kastens & 

Featherstone 1996; Recknagel 1997; Giske et al. 1998; Guégan et al. 1998; Schultz et al. 2000; 

Lee et al. 20007), support vector machines (Guo et al. 2005; Drake et al. 2006), fuzzy logic 

(Tscherko et al. 2007), decision trees (Henderson et al. 2005; Jones et al. 2006), and Random 

Forest (Cutler et al. 2007; Quintero et al. 2014; Furlanello et al. 2003).  

 

Forecasting 

 Discovery of deterministic chaos in meteorological models (Lorenz 1963) led to 

reconsideration of the use of traditional statistical methods in forecasting (Pasini 2009). Today, 

predictions about weather are often made using ML methods. The most common ML methods 

used in meteorological forecasting are genetic algorithms, which have been used to model rainy 

vs non-rainy days (Haupt 2009) and severe weather (Hsieh 2009). Forecasting can be important 

for applications other than weather prediction. In atmospheric science, neural networks are able 

to find dynamics hidden in noise and successfully forecast important variables in the atmospheric 

boundary layer (Pasini 2009). The oceanography community makes extensive use of neural 

networks for forecasting sea level, waves, and sea surface temperature (Wu et al. 2006; Hsieh 

2009). In addition to being directly used for forecasting, neural networks are commonly used for 

downscaling environmental and model output data sets used in making forecasts (Casaioli et al. 

2003; Marzban 2003; Hsieh & Hsieh 2003).  

 

Environmental Protection and Safety 

 Just as ML can help resource managers make important decisions with or without 

adequate data coverage, environmental protection and safety decisions can be aided with ML 

methods when data are sparse. ML has been used to classify environmental samples into inferred 

quality classes in situations where direct analyses are too costly (Džeroski 2001). The 

mutagenicity, carcinogenicity, and biodegradability of chemicals have been predicted based on 

structure without lengthy lab work (Džeroski 2001). Sources of air contaminants have been 

identified and characterized in spite of lack of a priori knowledge about source location, 

emission rate, and time of release (Haupt, Allen, et al. 2009). ML can relate pollution exposure 

to human health outcomes (Džeroski 2001). Common ML methods for environmental protection 

include genetic algorithms (Haupt, Allen, et al. 2009), Bayesian classifiers (Walley et al. 1992), 

neural networks (Ruck et al. 1993; Walley & Džeroski 1996; Walley et al. 2000), and fuzzy logic 

(Srinivasan et al. 1997; Džeroski 2001; Džeroski et al. 1999). 

 

Climate Change Studies 

 One of the more pressing societal problems is the mitigation of and adaptation to climate 

change. Policy-makers require well-formed predictions in order to make decisions, but the 
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complexity of the climate system, the interdisciplinary nature of the problem, and the data 

structures prevents the effective use of linear modeling techniques. ML is used to study 

important processes such as El Niño, the Quasi Biennial Oscillation, the Madden-Julian 

Oscillation, and monsoon modes (Cavazos et al. 2002; Pasini 2009; Krasnopolsky 2009; Hsieh 

2009), and to predict climate change itself (Casaioli et al. 2003; Marzban 2003; Hsieh & Hsieh 

2003; Pasini 2009). Predictions about the greenhouse effect (Seginer et al. 1994) and 

environmental change (Guisan & Zimmermann 2000) have also been made using ML. A very 

common use of ML in climate science is downscaling and post processing data from General 

Circulation Models (refs in Pasini 2009; Hsieh 2009). Ecological niche modeling and predictive 

vegetation mapping (as discussed above) can help predict adaptation to climate change (Wiley et 

al. 2003; Iverson et al. 2004). The most commonly used ML method in climate change studies is 

the neural network (Guisan & Zimmermann 2000; Pasini 2009).  

 

DISCUSSION 

How can ML advance ecology and earth science? 

The application of ML methods in ecology and earth science has already demonstrated 

the potential for increasing the quality and accelerating the pace of science. One of the more 

obvious ways ML does this is by coping with data gaps. The Earth is under-sampled, despite 

spending hundreds of millions of dollars on earth and environmental science (e.g., Webb et al. 

2010). Where possible, ML allows a researcher to use data that are plentiful or easy to collect to 

infer data that are scarce or hard to collect (e.g., Wiley et al. 2003; Edwards Jr. et al. 2005; 

Buddemeier et al. 2008). Conservation managers are particularly well positioned to take 

advantage of ML via SDMs in invasive species management, critical habitat identification, and 

reserve selection (Guisan et al. 2013). Depending on the ML method used, one can also learn 

more about how a system works, for example through the Random Forest Variable Importance 

analysis. Another important way ML can fill in data gaps is through downscaling and performing 

spatial interpolation (Li et al. 2011). There will never be enough research funding to sample 

everything all of the time. ML can be a tractable method for addressing the data gaps that prevent 

scientific progress.  

 ML can accelerate the pace of science by quickly performing complex classification tasks 

normally performed by a human. A bottleneck in many ecology and earth science workflows are 

the manual steps performed by an expert, usually a classification task such as identifying a 

species. Rather than having all of the data classified by an expert, the expert only needs to review 

enough data to train and test an algorithm. Expert annotation can be even more time consuming 

when the expert must search through a large volume of data, like a sensor stream, for a desired 

signal (Kasten et al. 2010). This bottleneck has been addressed for some types of taxon 

identification (Cornuet et al. 1996; Acevedo et al. 2009; Armitage & Ober 2010; Sosik & Olson 

2007), finding relevant data in sensor streams (Kasten et al. 2010), and building a reference 

knowledgebase (Huang & Jensen 1997). In addition to relieving a bottleneck, ML methods can 

sometimes perform tasks more consistently than experts, especially when there are many 

categories and the task continues over a long period of time (Culverhouse et al. 2003; Jennings et 

al. 2008). In these cases, ML methods can improve the quality of science by providing more 

quantitative and consistent data (Olden et al. 2008; Acevedo et al. 2009; Sutherland et al. 2004).  
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  As discussed above, ML techniques can perform better than traditional statistical 

methods in systems that are poorly represented by linear models, but a direct comparison of 

performance between ML techniques and traditional statistical methods is difficult because there 

is no universal measure of performance and results can be very situation-specific (Fielding 

2007). The true measure of the utility of a tool is how well it can make predictions from new data 

and how well it can be generalized to new situations. Highly significant p-values, R
2
 values, and 

accuracy measurements may not reflect this. A study comparing 33 methods with 32 data sets 

found no real difference in performance and suggested that choice of algorithm be driven by 

factors other than accuracy, such as the characteristics of the data set (Lim et al. 2000). If the 

accuracy is not significantly improved using ML, it may be better to use a traditional method that 

is more familiar and accepted by peers and managers. Best practice is to test multiple methods 

(including traditional statistics) while probing the trade-off between bias and accuracy and 

choose the tool that is most useful. In many natural systems, where non-linear and interaction 

effects are common, a ML-based model is more useful can improve science by building better 

models. Individual researchers need to select a method based on the specific problem and the 

data at hand. 

 

Why don’t more people use ML? 

 Even though ML can outperform traditional statistics in some applications (Kampichler 

et al. 2000; Peters et al. 2007; Pasini 2009; Armitage & Ober 2010; Knudby, Brenning, et al. 

2010; Li et al. 2011; Zhao et al. 2011; Bhattacharya 2013; Manel et al. 2001; Segurado & Araújo 

2004; Elith et al. 2006), wide acceptance of ML methods in ecology and earth science has not yet 

happened (Olden et al. 2008). The reasons for this seem to be more social than technical. New 

methods can be resisted by established scientists, which can delay wide-spread use (Azoulay et 

al. 2015). ML methods (as well as some more complex statistical models) can require a high 

degree of math skill to understand in detail, which means either a long familiarization phase or 

an acceptance of the algorithm as a “black box” (Kampichler et al. 2010). Even some of the 

names of these methods, such as support vector machine, sound very foreign in the natural 

sciences. ML methods are highly configurable; thus, it can be overwhelming for researchers to 

choose the proper test for the job (Kampichler et al. 2010). Many of them need to be run in a 

“command line” style environment, such as R or MatLab and many ecologists lack the 

familiarity with command-line-style interfaces (Olden et al. 2008). Alternatively, many of the 

traditional statistical methods are fast to calculate and give easy-to-interpret metrics, like p-

values (Olden et al. 2008; Kampichler et al. 2010). Traditional statistical methods are easier to 

find as a part of an off-the-shelf software package with a user interface and much of the 

complicated inner workings pleasantly hidden. All of these make ML methods less attractive 

than traditional statistical methods.  

Another barrier to using ML techniques is the need for adequate training and test data; 

however, it could be argued that traditional statistical methods should also be subject to 

validation with test data. It can be hard to have enough quality data to properly train and test an 

algorithm, especially for automated taxon identification (Lek & Guégan 1999; Wiley et al. 2003; 

Acevedo et al. 2009; Kampichler et al. 2010). There are techniques available for developing a 

model when the data set is too small to split into training and test sets (cross-validation, 
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Bayesian), but these methods give a weaker estimate of model error (Guisan & Zimmermann 

2000; Hsieh 2009). 

Finally, the ML research community has done a poor job of communicating the relevance 

of their discoveries to the natural science research community, largely because there is no 

professional reward for following through on the application of their results in this domain 

(Wagstaff 2012). The financial sector is applying ML, suggesting that communication is possible 

when the potential monetary reward is great enough. There is too much reliance on abstract 

metrics in the ML research community and not enough consideration of whether or not a 

particular ML advance will result in a real-world impact (Wagstaff 2012). The small community 

of ecologists using ML to develop SDMs are not communicating the value of their research to 

decision-makers and accounts of SDMs being used successfully in conservation are hidden in 

grey literature (Guisan et al. 2013). A search of ‘machine learning’ in the Web of Science 

database returns 104642 results: 46664 from computer science, 20264 from engineering, and 

11988 from computational biology. The highest ranking ecology topic in this search was 

‘environmental sciences ecology’ with 1003 results. The highest ranking earth science topic was 

‘geology’ with 677 results. Thus, the vast majority of publications available about machine 

learning are not connected to ecology or earth science disciplines. Searching for ‘machine 

learning ecology’ and ‘machine learning earth science’ gives many fewer results (144 and 32, 

respectively, according to Web of Science). As a proportion of total publication output of a 

discipline, ML has very low representation in ecology (0.11%) and earth science (0.14%), but 

some sub-disciplines, such as oceanography (1.19%), have a higher proportion of ML-related 

publications (Fig. 8A). In contrast, a traditional statistical method, linear regression, has a higher 

representation in discipline output (0.70% in ecology and 0.21% in earth science) with the 

exception of oceanography (0.54%; Fig. 8B). Communication and collaboration between the ML 

community, the ecology community, and the earth science community is poor.  

 

Next Steps 

 How can the use of ML methods in ecology and earth science be encouraged? One 

barrier that can be lowered is the lack of tools and services to support the application of ML in 

these domains. The higher use of ML algorithms built with user infrastructure, such as GRASS-

GIS (Garzón et al. 2006) and GARP (Stockwell & Noble 1992), argues that if more user-friendly 

interfaces were available, ML would be more popular. As it is, many ML techniques have to be 

developed and run via the command line, but the use of ML packages in R (a statistics software 

package with an interface much like the command line) has been gaining acceptance in ecology 

(Kangas 2004). Programming skills have become more common in the natural sciences, but user 

interfaces are still very important for adoption of techniques. 

 Research scientists want to have a good understanding of the algorithms they use, which 

makes adoption of a new method a non-trivial investment. Reducing the cost of this investment 

for ML techniques is an important part of encouraging adoption. One way to do this is through a 

trusted collaborator who can simultaneously guide the research and transfer skills. Not everyone 

can find such a collaborator, so a useful tool would be a publicly-available repository of 

annotated data sets to act as a sandbox for researchers wanting to learn and experiment with 

these methods. Psychological barriers can be reduced by using alternative names for ML 
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techniques that use familiar terms instead of the computer science names given to algorithms 

when they were first developed. Random Forest is easier for a beginner to implement, gives easy 

to interpret results, and has high performance on ecology and earth science classification 

problems (Prasad et al. 2006; Kampichler et al. 2010); thus, Random Forest would be a good 

starting point for a ML novice. Students can be exposed to ML and command line programming 

through their graduate education, eliminating the need for a costly time investment during their 

research career. In addition, an improved statistical education for students would make them 

more aware of the limitations imposed by rigid models and thus more open to trying ML for 

some problems. An important part of promoting new techniques is recognizing the practical 

needs of researchers and working within those boundaries to facilitate change. 

Finally, ML successes and impacts in ecology and earth science need to be more 

effectively communicated and the results from ML analyses need to be easily interpreted for 

decision-makers (Guisan et al. 2013). The ML research community needs to do a better job of 

communicating the impact of their results for specific communities (Wagstaff 2012). For best 

communication between experts, collaborations should begin during and even before algorithm 

development to help properly define the problem being addressed, instead of developing an 

algorithm in isolation (Guisan et al. 2013). Once an algorithm has been successfully used in a 

decision-making process, the results need to be reported as a part of the published literature in 

addition to the grey literature. 

Funding agencies can facilitate this process by specifically soliciting new collaborative 

projects (research projects, workshops, hack-a-thons, conference sessions) that apply ML 

methods to ecology and earth science in innovative ways. Proper implementation of ML methods 

requires an understanding of the data science and the discipline that can best be achieved through 

interdisciplinary collaboration. 

   

CONCLUSION 

ML methods offer a diverse array of techniques, now accessible to individual researchers, 

that are well suited to the complex data sets coming from ecology and earth science. These 

methods have the potential to improve the quality of scientific research by providing more 

accurate models and accelerate progress in science by widening bottlenecks and filling data gaps. 

Application of these methods within the ecology and earth science domain needs to increase if 

society is to see the benefit. Adoption can be promoted through interdisciplinary collaboration, 

increased communication, and financial support for ML research. A good introductory ML 

method is Random Forest, which is easy to implement and gives good results. However, ML 

methods are not the answer to all problems, and in some cases traditional statistical approaches 

are more appropriate (Olden et al. 2008; Meynard & Quinn 2007); thus, these methods should be 

used with discretion. 

There are many more types of ML methods and subtly different techniques than what has 

been discussed in this paper. Implementing these ML effectively requires additional background 

knowledge. A very helpful series of lectures by Stanford Professors Trevor Hastie and Rob 

Tibshirani called “An Introduction to Statistical Learning with Applications in R” can be 

accessed online for free and gives a general introduction to traditional statistics and some ML 

methods. A suggested introductory text is "Machine Learning Methods in the Environmental 
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Sciences", by William Hsieh (Hsieh 2009), written at the graduate student level. A useful paper 

and book written for ecologists is "Machine learning methods without tears: A primer for 

ecologists" by Olden (Olden et al. 2008) and “Machine Learning Methods for Ecological 

Applications” by Fielding (Fielding 1999b). ML can be mastered by natural scientists and the 

time invested in learning it can have significant reward.  
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Figure 1: Use of the phrase ‘machine learning’ in the Google Books Ngram Viewer: This 

plot shows the use of the phrase ‘machine learning’ by decade as percentage of total words in the 

Google English Corpus. http://books.google.com/ngrams 
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Figure 2: Decision and Classification Tree Schematic: Tree-based machine learning methods 

infer rules for splitting a data set into more homogeneous data sets until a specified number of 

terminal classes or maximum variance within the terminal classes is reached. The inferred 

splitting rules can give additional information about the system being studied. 
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Figure 3: Artificial Neural Network Schematic: A neural network is made up of three layers 

(input, hidden, output). Each layer contains “neurons” with an assigned activity level. Each 

neuron has a connection to every other neuron in adjacent layers with an assigned connection 

weight. The neurons in the input layer correspond to the independent variables and the neurons 

in the output layer correspond to the dependent variables. The number and activity level of 

hidden neurons and the connection weights are varied to minimize the error in the output layer. 
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Figure 4: Support Vector Machine Schematic: A) This simplified schematic shows the plane 

inferred by the maximal margin classifier (black line) dividing the data set into two classes. A 

new datum (grey), will be classified according to its position relative to the hyperplane. B) If the 

data are noisy, and not easily separated, a “buffer zone” (dotted lines) can be used to separate the 

two classes. 
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Figure 5: Genetic Algorithm Schematic: In this simplified schematic of a genetic algorithm, the 

five potential solutions, or “chromosomes”, undergo mutation and recombination. Then the best 

performing solutions are selected for another iteration of mutation and recombination. This cycle 

is repeated until an optimal solution is found. 
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Figure 6: Logic-Based Algorithm Schematic. This diagram shows a simplified schematic of a 

fuzzy logic algorithm that controls a piece of equipment and responds to environmental variables 

according to user-defined settings. X and Y are environmental variables and the Target is user-

defined. 
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Figure 7: Bayesian Classifier Schematic: This diagram shows a simplified schematic of a 

Bayesian classifier working to assign a new datum (white triangle) to one of two classes (grey 

and black). A) Probability Density Plot: A Bayesian classifier calculates a probability density for 

each class (solid and dotted curve) across a range of values for the new datum (white triangle), 

which is classified according to which probability is highest at its value (black). The value for 

which the datum has an equal probability of being in both classes is called the decision boundary 

(black line). B) Data Plot: An object to be classified (white) can belong to one of two groups 

(grey or black). This method would classify the object within the group with the highest 

probability of being correct. In this example, the white item would be classified as a member of 

the black group because the probability is higher (Black = 8/17 * 2/8 and Grey = 9/17 *1/9) 
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Figure 8: Proportion of Machine Learning Research Articles in Earth Science and Ecology: 

This plot shows the proportion of articles about machine learning (A) and linear regression (B) in 

four natural science disciplines from 1994 to 2015. Data were collected from Web of Science 

using the discipline name (ecology, earth science, oceanography, conservation) and “machine 

learning” + discipline name or “linear regression” + discipline name as search terms.  
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