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Abstract. Identifying patterns and associations in data is fundamental
to discovery in science. This work investigates a very simple instance
of the problem, where each data point consists of a vector of binary
attributes, and attributes are treated equally. For example, each data
point may correspond to a person and the attributes may be their sex,
whether they smoke cigarettes, whether they have been diagnosed with
lung cancer, etc. Measuring similarity of attributes in the data is equiv-
alent to measuring similarity of sets—an attribute can be mapped to
the set of data points which have the attribute. Furthermore, there is
one identified base set (or attribute) and only similarity to that set is
considered—the other sets are just ranked according to how similar they
are to the base set. For example, if the base set is lung cancer suffer-
ers, the set of smokers may well be high in the ranking. Identifying set
similarity or correlation has many uses and is often the first step in de-
termining causality. Set similarity is also the basis for comparing binary
classifiers such as diagnostic tests for any data set. More than a hundred
set similarity measures have been proposed in the literature is but there
is very little understanding of how best to choose a similarity measure for
a given domain. This work discusses numerous properties that similar-
ity measures can have, weakening some previously proposed definitions
so they are no longer incompatible, and identifying important forms of
symmetry which have not previously been considered. It defines order-
ing relations over similarity measures and shows how some properties
of a domain can be used to help choose a similarity measure which will
perform well for that domain.

Keywords: binary similarity measure, set similarity, STASS, data min-
ing, clustering, classification, diagnostic test

1 Introduction

Recognition of associations in data is an important contributing factor to progress
in science. To give an (over simplified) example, the correlation between cigarette
smoking and lung cancer was recognised, prompting the hypothesis that a causal
relationship exists and this lead to further research and eventual acceptance of
the hypothesis. Refinement of our understanding of the mechanism and appro-
priate social policy is ongoing. With the phenomenal growth in volume of data,
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automated discovery of patterns in data is becoming more important. Here we
consider one instance of the problem that is particularly simple but has been
applied in many different domains. Specifically, we consider the case where data
points are vectors of binary attributes, thus attributes can be viewed as sets.
Furthermore, there is one distinguished set that all other sets are compared to,
resulting in a ranking of all sets. We refer to this as the “similarity to a single
set” or STASS problem. Even when the raw data is not binary, we are often in-
terested in binary classifications such as diagnostic tests, and their relative merit.
Each possible classifier or test can be considered an attribute or set (albeit in-
ferred rather than directly measured), with the base set being the gold standard
or ground truth. Thus comparison of binary classifiers for any data set is an
instance of the STASS problem. By furthering our understanding of the STASS
problem, discovery in many domains may be enhanced. Furthermore, some of
the insights may be applicable to discovering associations in more general cases.

This paper is structured as follows. Section 2 gives a brief introduction to set
similarity, precisely defining the problem we address, discussing set similarity
measures, how similarity to a single set relates to other problems concerning
similarity and discussing some related papers that discuss larger collections of
set similarity measures and properties of these measures. Section 3 defines prop-
erties measures may have, and some relationships between these properties. In
several cases these are weaker versions of properties proposed elsewhere in the
literature and new forms of symmetry are introduced. Section 4 discusses how
measures vary according to how much importance or weight they give to “true
positives” versus “false positives”, and how this relative weight can be used for
ordering measures. Section 5 proposes a general way in which domain knowl-
edge can be used to help choose a measure that performs well for that domain.
The approach is validated by experiments from the software debugging domain.
Section 6 concludes.

2 Set similarity

We first define the STASS problem formally, then discuss how measuring set
similarity can be viewed and briefly discuss more general similarity problems.

2.1 The STASS problem

We assume a universe of cases C of finite cardinality T (for example, people or
tests cases for a computer program). A base set is defined, which is the subset
of the cases with some particular (base) attribute (for example, the person has
lung cancer or the test case fails—the program behaves incorrectly). There are
an additional K attributes that each case may or may not have (for example,
whether the person smokes or a particular statement of the program is executed
when the test case is used). For each of these attributes k, we compute a numeric
measure of the similarity of the set of cases with attribute k and the base set.
These numeric measures are used to rank the attributes according to how well
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they correlate with the base attribute. A strong positive correlation may be of
interest (for example, smoking may cause lung cancer or statement k may be a
bug that causes the failure). In some domains a high negative correlation may
also be of interest (it may indicate inhibition). We formally define the STASS
problem as follows:

Definition 1 (STASS problem). Given a finite set C, a set B ⊆ C and a
finite number of sets Ak ⊆ C, 1 ≤ k ≤ K, the STASS problem is to find a
ranking of the sets Ak, 1 ≤ k ≤ K (in injection from {1 . . .K} to {1 . . .K})
which gives the relative similarity of each Ak to B.

Note that there may be ties in the ranking. We will use M to denote the
cardinality of the base set (the number of members) and N the cardinality of
its complement (the number of non-members), so N = T −M . For example,
M is the number of failed tests and N is the number of passed tests. For each
additional attribute k, mk is the number of cases with attribute k and the base
attribute (the number of matches), and nk is the number of cases with attribute k
but not the base attribute (the number of non-matches). For example, mk is the
number of failed tests that execute statement k and nk is the number of passed
tests that execute statement k. Similarity measures are evaluated separately for
all K attributes, so we typically leave the subscripts implicit.

Throughout we will be interested in comparing measures of set similarity
(and other numbers) and will use the following notation:

Definition 2 (result of comparison). The result of comparison of two num-
bers x and y, C(x, y), is 1 if x > y, 0 if x = y and -1 if x < y.

2.2 Set similarity measures

It is common to present a single set comparison as a two by two contingency
table as follows, where B is the base attribute and A some other attribute:

B B̄

A m n

Ā o p

Total M N

The table is also known as a confusion matrix, with m, n, o and p representing
counts of “true positive”, “false positive” (type I error), “false negative” (type II
error) and “true negative” cases, respectively. Set similarity measures are often
defined by functions over m, n, o and p, or these values divided by T , giving the
relative frequency (we assume T > 0). Here we are not interested in the absolute
measures of similarity (they are often arbitrary in any case), just whether one
pair of sets is more or less similar to another pair of sets. Furthermore, we
are only interested in relative similarity of sets to a fixed base set: multiple
contingency tables with different attributes Ak but the same base attribute B.
Thus M and N are the same in all contingency tables we are interested in the

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1713v1 | CC-BY 4.0 Open Access | rec: 5 Feb 2016, publ: 5 Feb 2016



4

relative similarity measures of. For this reason, we define measures in terms of
M , N , m and n (the information content is the same since o = M − m and
p = N − n). We call the pair (M,N) a domain and the pair (m,n) a point in
the domain (0 ≤ m ≤ M and 0 ≤ n ≤ N). In a STASS problem the base set
fixes the domain and each attribute corresponds to a point.

Though these variables are all natural numbers, in some circumstances we
are interested in how similarity measures scale. In Section 4.1 we require simi-
larity measures to be defined for some points where m and n are non-integral
rationals. Here we generalise this further to allow real numbers so we can enjoy
the familiar definitions and properties associated with functions over reals. Sim-
ilarity measures are often defined over rationals (in terms relative frequencies)
and all proposed measures we know of can be generalised to functions over reals.

Name Formula Name Formula

Jaccard m
M+n

Tarantula
m
M

m
M

+ n
N

Russell and Rao m
M+N

Zoltar m

M+n+ 10000M−m∗n
m

Simple Matching m+N−n
M+N

Ochiai m√
M∗(m+n)

Faith
m+ 1

2
(N−n)

M+N
Pearson Nm−Mn√

MN(m+n)(M+N−m−n)

Ample2 m
M
− n

N
Ample

∣∣m
M
− n

N

∣∣
Op m− n

N+1
Added Value m

max(M,m+N−n)

Wong3 m− h, where h =

{
n if n ≤ 2
2 + 0.1(n− 2) if 2 < n ≤ 10
2.8 + 0.001(n− 10) if p > 10

Fig. 1. Some of the many proposed set similarity measures

Definition 3 (Set similarity measure). A (set similarity) measure is a par-
tial function from a pair of natural numbers (M,N) and a pair of non-negative
real numbers (m,n) to a real number. It is undefined if m > M or n > N or
M = N = 0. The application of a measure f will be written fMN (m,n) to em-
phasise that the domain (M,N) is the same for all attributes that appear in the
same ranking and (m,n) is a point in the domain.

Figure 1 defines a small sample of measures proposed in the literature. All
these have been evaluated for software debugging [NLK11] (our own research
area) and some, such as Tarantula, Zoltar, Wong3, Ample, Ample2, and Op were
developed specifically for debugging. Other measures have been developed for
and used in many different domains. Jaccard [Jac01] was developed for botany,
Ochiai [Och57] was developed for marine zoology (it is also known as Cosine
in other areas) and both have been used in many other domains. As well as
botany and software engineering, Jaccard has been used in disciplines such as
ecology [CCCS05], chemistry [FVB02], genetics [SY10], paleontology [PH99],

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1713v1 | CC-BY 4.0 Open Access | rec: 5 Feb 2016, publ: 5 Feb 2016



5

f()

n

m

(0, 0)

(0, N)

(M,N)

Fig. 2. Domain and plot of a measure for fixed M and N

physics/mathematics [LHN06] and psychology [Tve77], to give just a few exam-
ples.

Different measures can be equivalent in that they produce identical rankings
[NLK11]. For example, Tarantula gives the same ranking as m/n and m/(m+n)
(known as precision or positive predictive value and called error detection accu-
racy in software debugging). Note that many proposed measures are undefined
for some points, particularly for m = n = 0, due to division by zero or taking
logarithms of zero. It practice it may be necessary to add special cases to deal
with such exceptions, and/or add a small constant. Also, some literature uses
measures of dissimilarity or “distance” rather than similarity or closeness. For
example, the Jaccard distance is one minus the Jaccard similarity measure. To
measure similarity we can take any distance measure and negate it (or apply
any monotonically decreasing function).

Given a domain (M,N), a measure f can be viewed as a surface in three
dimensions m, n and f(), within a rectangle with 0 ≤ m ≤ M and 0 ≤ n ≤ N
(see Figure 2)—points in the domain are ranked according to their f value,
or height of the surface at that point. In general, there are sixteen distinct
symmetric variants of such a surface, which can be obtained by using subsets of
the following operations.

1. Reflection in a plane with constant f value. We refer to this as antisymmetry
rather than symmetry. It inverts the surface and reverses the ranking. Since
we are only interested in relative f values, we do not care which plane of
constant f value is used.

2. Reflection in the plane m = M/2. This “inverts” the m values while keeping
the domain the same. Our notation uses m̄ rather than m to indicate this.

3. Reflection in the plane n = N/2. This “inverts” the n values while keeping
the domain the same. Our notation uses n̄ rather than n to indicate this.
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4. Reflection in the plane m = n. This effectively swaps m with n and M
with N . Our notation has n appearing before m in a prefix or superscript to
indicate this.

For example, m̄n̄-antisymmetry refers to a combination of the first three oper-
ations and nm-antisymmetry refers to a combination of the first and last. We
discuss these and other symmetries more in Section 3.

2.3 Related similarity problems

What we call a domain corresponds to a “coverage space” in the PN analysis
of [FF05]. Receiver operating characteristic (ROC) analysis (see [Pow11]) uses
a version of this space scaled to the unit square. ROC curves plot the true
positive rate (TPR, m/M , “hit rate”, “sensitivity”, d′ or “recall”) against the
false positive rate (FPR, n/N , “false alarm rate”, “fall-out” or 1 − “specificity”).
Any set similarity measure can be used to derive a binary classifier by simply
providing a threshold for the value of the measure. The threshold corresponds
to a single contour or iso-metric of the surface which divides the domain in two,
and each attribute or set is mapped to true or false depending on whether the
similarity measure exceeds the threshold:

Definition 4 (Set Similarity Classifier). Given a set similarity measure f
and real number threshold t, the set similarity classifier fc is defined as follows.
For domain (M,N) (corresponding to a base set or attribute B) and natural
numbers m and n (corresponding to another set or attribute),

fc(M,N,m, n) = fMN (m,n) > t

ROC analysis is widely used to compare and visualise the effectiveness of classes
of binary classifiers as the threshold is adjusted. Often the area under the ROC
curve is used as a measure of effectiveness. We discuss ROC analysis further in
Section 5.4. As mentioned in the introduction, comparison of binary classifiers
of a data set is also an instance of STASS.

The STASS problem is closely related to the problem of measuring evidential
support or confirmation: determining the extent to which evidence E confirms
a hypothesis H. Statistical hypothesis testing is the cornerstone of much of
science. For each attribute Ak in a STASS problem we can have a null hypothesis
that Ak and B are independent and an alternative hypothesis that there is
some (perhaps causal) relationship between Ak and B. Hypotheses are typically
tested by choosing a test statistic T , computing its value tobs from the data
and comparing this to some threshold α (often 0.05 or 0.01). The value tobs can
typically be interpreted as the probability of the null hypothesis holding, and the
null hypothesis is rejected if and only if tobs is below α. Note that when testing
multiple hypotheses, α should be lowered to ensure there is a sufficiently small
probability that none of the corresponding null hypotheses are rejected purely by
chance. In the STASS context there is no threshold α but the test statistic T can
be viewed as a set distance measure and used to rank the attributes based on the
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tobs for the corresponding hypotheses. It is tempting to think the highest ranked
attributes are those with the most plausible alternative hypotheses, though it is
actually those with the least plausible null hypotheses.

STASS is an instance of the more general problem of comparing similarity of
arbitrary pairs of sets. There are two main ways in which this problem can be
generalised further. The first is measuring correlation of non-binary attributes.
Attributes can be one of a relatively small number of values for which no natural
ordering exists. Alternatively, they can have a larger number of values, often with
some natural ordering, allowing them to be mapped to integers or real numbers,
for example. Many ways of measuring correlations for such attributes have been
devised and they can be applied to the simpler case of binary attributes. Some
measures that are distinct in the general case are equivalent in the binary case,
and measures that are distinct for arbitrary pairs of sets may be equivalent for
STASS.

The second way the set similarity problem can be generalised is by structuring
the sets in a more complex way, rather than just ranking them. This can be
done for both binary and non-binary attributes. For example, we may want to
identify “clusters” of attributes where the similarity of pairs of attributes within
a cluster is relatively high and the similarity of pairs of attributes in different
clusters is relatively low. Additionally, we may want a hierarchical structure such
as a dendrogram or decision tree for classification or other purposes. Or we may
want to extract interesting “association rules” which relate different attributes.

For association rules, there is generally a distinction made between discrimi-
nant rules and characteristic rules—see [KS96], for example. Discriminant rules
are of the form E → B, where E is a combination of one of more attributes.
They can be seen as a form hypothesis about a cause for the base attribute B
(in general, the conclusion may also be a combination of attributes). Character-
istic rules are the converse, B → E, and can be seen as a way of describing the
base set. The STASS problem is often used to rank possible causes of the base
attribute, and hence it can naturally be viewed as ranking discriminant rules,
where E is also restricted to be a single attribute. However, STASS can equally
be used to rank possible effects. For example, the base attribute may be taking
some new drug and the other attributes may be possible effects. Thus the STASS
problem can apply to both discriminant and characteristic rules.

Problems such clustering, hierarchical classification and association rule min-
ing all have some notion of similarity at their core. Furthermore, the algorithms
proposed to solve such problems often have steps that measure and rank simi-
larity. We believe that a deeper understanding of the STASS problem will have
implications for these more general problems. One characteristic of our approach
that makes it simpler than many other approaches to problems of similarity is
that we assume all cases are given equal importance (thus a set similarity mea-
sure can simply be applied to each attribute separately in order to obtain the
ranking). Cases can be given varying importance for both information-theoretic
and domain specific reasons. A case that has nearly all attributes or very few
attributes provides little discrimination between attributes and has little infor-
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mation content, whereas a case with exactly half the attributes has maximal dis-
crimination and information content. Rather than simply counting the number of
cases with a particular attribute, it may be desirable to compute a weighted sum
where cases with more information content are given more importance. There
are also application areas where domain knowledge suggests quite different rela-
tive importance. In the software debugging domain, for example, we know that
test case failure is caused by execution of buggy statements. If a failed test case
executes very few statements it is therefore particularly helpful for locating a
bug and it is rational to give it high weight [NLK09], whereas naive use of in-
formation theory would give it low weight. In this paper we assume the simple
approach of treating all cases equally.

2.4 Collections of similarity measures

There have been numerous papers that survey similarity measures for sets and
(in some cases) non-binary data, discuss properties of such measures and/or
compare them empirically in various ways. For example, [EF02] [TCBO07] and
[GSS12] consider several similarity measures used for evidential support (or con-
firmation), and discusses various properties such as forms of symmetry. [TKS02]
discusses 21 measures used for association rule mining, properties of those mea-
sures including symmetries, how several measures can become equivalent if con-
tingency tables are normalised in various ways, and suggests how a relatively
small set of representative tables can be generated that can help a domain ex-
pert choose between different measures. [KS96] discusses properties of measures
of “interestingness” of association rules, focussing on the difference between dis-
criminant and characteristic rules and compares 11 measures. [LMVL08] dis-
cusses 20 measures used for association rule mining, properties of those measures
and how they can be compared. [GH06] surveys measures of “interestingness”
of association rules and properties of those measures. Thirty eight measures for
ranking rules are discussed; methods for filtering rules are also discussed. Both
“objective” and “subjective” (more domain dependent) measures are discussed.
[Cha07] discusses 51 similarity measures used in the (more general) non-binary
case, and compares/classifies them, including a dendrogram. [CCT10] discusses
76 set similarity measures and compares/classifies them, including a dendrogram.
[LCKL15], expanding on [NLK11] and other work compares 157 similarity mea-
sures for software debugging. Similarity measures have also been developed and
evaluated for software debugging automatically, using methods such as genetic
programming [Yoo12,NNK15], leading to numbers of similarity measures in the
hundreds of thousands at least.

3 Properties of set similarity measures

We now discuss properties of set similarity measures in the context of the STASS
problem. Many of the properties of similarity measures previously proposed and
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discussed [TKS02,KS96,LMVL08,GH06] are overly strict for the STASS prob-
lem. For STASS we are only concerned with relative measures of similarity for
different Ai rather than the absolute measure computed for a single Ai. Further-
more, we are only concerned with relative similarity within a single domain—M
and N are the same in any comparison that is relevant to a STASS problem.

3.1 Uniform scalability

Many measures have the intuitive property that the ranking is preserved if M , N ,
m and n are all multiplied by some scaling factor s. For example, if we collect
data from T cases to get some ranking and independently collect data from
another T cases that happens to be identical, combining the 2T cases should
(one would expect) result in the same ranking. This idea can be expressed by
saying that a similarity measure is invariant under scaling of all parameters. The
following is a specialised version of the definition of [TKS02] (the more general
version is discussed in the next section).

Definition 5 (absolute uniform scalable measure). A measure f is abso-
lute uniform scalable if for all points where f is defined and all positive s

fMN (m,n) = fsMsN (sm, sn)

Although this definition captures the intuition in a reasonable way, it is
stricter than necessary for STASS because it uses equality of measures of single
points in different domains. We propose the following weaker definition, which
says that the result of comparison of similarity measures for two points is invari-
ant under uniform scaling:

Definition 6 (uniform scalable measure). A measure f is uniform scalable
if for all points where f is defined and all positive s

C(fMN (m,n), fMN (m′, n′)) = C(fsMsN (sm, sn), fsMsN (sm′, sn′))

It is clear that any absolute uniform scalable measure is a uniform scalable
measure. Uniform scalability effectively reduces degrees of freedom by one—
we can fix one of the parameters by choosing an appropriate s value. Existing
measures are defined using formulas in which the variables are not restricted
to be natural numbers, so the scaling can result in fractional numbers without
problems (if parameters must be natural numbers then the fixed parameter value
must have appropriate factors). Similarity measures are often defined in terms
of relative frequencies (m/T , n/T , etc), but this can only be done for uniform
scalable measures. All definitions in [TKS02] use relative frequencies, as do all
but Laplace Correction in [GH06] (thus the table in [GH06] showing they are
all absolute uniform scalable is unsurprising). In [LMVL08] there are definitions
for all measures in terms of m, n, etc and also in terms of relative frequencies
where possible. Some of the latter formulas also use the total number of cases,
T , resulting in measures that are uniform scalable but not absolute uniform
scalable.
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There are also measures proposed that are not uniform scalable, such as
Wong3. If such measures are used, the number of cases T should be carefully
considered as it generally affects the ranking produced. More data may not give
more reliable results, for example.

3.2 General scalability

For some measures, the base set and its complement can be scaled separately
without affecting the ranking. Absolute uniform scalability can be generalised
as follows; in [TKS02] this is called “row/column scaling invariance”.

Definition 7 (absolute general scalable measure). A measure f is abso-
lute general scalable if for all points where f is defined and all positive integers
s and t

fMN (m,n) = fsMtN (sm, tn)

Absolute general scalability effectively reduces degrees of freedom by two.
Any such measure can be defined in terms of m/M and n/N . Alternatively, we
can fix both M and N by suitable scaling, and then just have a function over
m and n. As before, in our context we prefer a weaker condition which avoids
comparison of measures for different M and N .

Definition 8 (general scalable measure). A measure f is general scalable
if for all points where f is defined and all positive integers s and t

C(fMN (m,n), fMN (m′, n′)) = C(fsMtN (sm, tn), fsMtN (sm′, tn′))

Commonly used measures are typically uniform scalable but not general scal-
able. For example, of the 21 measures investigated in [TKS02], all are uniform
scalable but only three (“odds ratio” and two variations of it) are general scal-
able. Using measures that are not general scalable should only be done with
careful consideration of the relative M and N values (the class distribution or
skew). Often there is an arbitrary relationship between M and N due to the way
data is collected. For example, if we are attempting to identify possibly causes
for are rare disease, M is likely to be limited to the number of individuals with
the disease who can be contacted and are willing to participate in the study and
N is likely to be chosen to be some “reasonable” size, somewhat similar to M
but constrained by cost and an attempt to make the set of controls similar to
those with the disease in terms of age and other attributes. The ratio of M to N
is nothing like the ratio of people with the disease to those without the disease
in the general population, for example, and changing this ratio by adjusting the
number of controls may systematically influence the results for measures that
are not general scalable.

ROC analysis deliberately scales the domain to eliminate the effects of class
distribution when comparing classifiers. However, class distribution can contain
valuable information for some domains. For example, in software debugging,
a very small proportion of test cases failing suggests there few bugs and/or
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execution of a buggy statement rarely leads to failure, whereas a large proportion
of test cases failing suggests there are multiple bugs and/or execution of a bug
leads to failure relatively frequently. This information can be useful for finding
a similarity measure that performs well for locating bugs [NL13].

3.3 Null invariance

Adding more cases with neither the base attribute or any other attribute ar-
guably (in some domains) should not affect the ranking. An “absolute” definition
is given in [TKS02]; we also give an alternative weaker version:

Definition 9 (absolute null-invariant measure). A measure f is absolute
null-invariant if for all points where f is defined and all k

fMN (m,n) = fMN+k(m,n+ k)

Definition 10 (null-invariant measure). A measure f is null-invariant if for
all points where f is defined and all k

C(fMN (m,n), fMN (m′, n′)) = C(fMN+k(m,n+ k), fMN+k(m′, n′ + k))

3.4 Monotonicity

We are interested in measuring similarity of sets (rather than dissimilarity or
distance). Thus we can expect measures to be (strictly) increasing in m and
(strictly) decreasing in n.

Definition 11 (monotone measure). A measure f is monotone if it is mono-
tonically increasing in m and monotonically decreasing in n: for all points where
f is defined we have

C(m,m′) = C(fMN (m,n), fMN (m′, n))
C(n, n′) = −C(fMN (m,n), fMN (m,n′))

This can be separated into two separate properties, as in [PS91,TKS02,Fre99].
In [NLK12] the term “strictly rational” is used and a weaker definition of “ratio-
nal” is given where measures must be increasing in m and decreasing in n, but
not strictly so. Monotonicity implies that where a measure f is differentiable,
the partial derivative with respect to m is positive and the partial derivative
with respect to n is negative. It also implies that the base set itself, (M, 0), has
the highest similarity measure and its complement, (0, N), has the lowest.

Several proposed measures are monotone for nearly all their domain. For
example, the Jaccard measure is monotone with the exception of when m = 0,
in which case it is always zero, rather than strictly decreasing in n. By slightly
modifying its definition it can be made monotone. For example, we can tweak
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the numerator so it is never quite zero using the following function, where ε is
some sufficiently small constant, such as 10−9:

tnz (x) =

{
ε if x = 0
x if x 6= 0

If we define Jaccard-m as tnz (m)/(M+n) we obtain a monotone measure which
is the same as Jaccard except when m = 0. tnz is also useful for adapting some
proposed measures to avoid division by zero and taking logarithms of zero.

Certain other proposed properties of measures are incompatible with mono-
tonicity. We find the arguments in favour of monotonicity more compelling.

Proposition 1. If f is both an absolute general scalable and absolute null-
invariant measure then for all points where f is defined,

fMN (m,n) = fMN (m,n′)

Proof. We assume w.l.o.g. that n′ > n. fMN (m,n) = fMtN+k(m, tn + k), since f
is absolute general scalable and absolute null-invariant. Let t = (N − n′) and
k = N(n′−n). Thus tN +k = N(N −n′)+N(n′−n) = N(N −n), and tn+k =
n(N −n′)+N(n′−n) = n′(N −n). Thus fMN (m,n) = fMN(N−n)(m,n

′(N −n)) =

fMN (m,n′), due to absolute general scalability.

Thus if these two “absolute” properties hold, the measure is independent of
n—given parameters M and N , it is a function of the single variable m.

Corollary 1. If f is both an absolute general scalable and absolute null-invariant
measure, f is not monotone.

Proof. If n > n′ then C(n, n′) = 1 whereas C(fMN (m,n), fMN (m,n′)) = 0.

Although these results hold for the “absolute” definitions of scalability and
null-invariance, they do not hold for our weaker variants. There are measures
that are general scalable, null-invariant and monotone. For example:

Proposition 2. Measure Op is general scalable, null-invariant and monotone.

Proof. Straightforward, since OpM
N (m,n) > OpM

N (m′, n′) if and only if m > m′

or m = m′ and n < n′.

To explore the difference in the two versions of general scalability, let us
consider Op in more detail. It is designed so that the factor for n is much smaller
than that ofm, so any change inm is more significant than the maximum possible
change in n. We can have a similar absolute general scalable measure such as
m/M − εn/N , where ε is very small (but positive, to ensure monotonicity).
However, there will be some N and M (or scaling factors) where m does not
dominate over n. There is no absolute general scalable measure that results in the
same rankings as Op in all cases. Op has been shown to be optimal for certain
software debugging problems in that no other monotone measure produces a
better ranking [NLK12,NLK11]. For these problems, no absolute general scalable
measures are optimal.
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3.5 Other forms of monotonicity

Other forms of monotonicity have been suggested in the context of measuring
interestingness of association rules in data mining. The reliability (precision,
positive predictive value or confidence) of a rule is defined as m/(m + n) and
the cover of a rule is m + n. It is suggested in [MM95], and also adopted by
[KS96,Fre99], that for rules of the same reliability, interestingness should mono-
tonically increase in cover:

Definition 12 (cover-monotone measure). A measure f is cover-monotone
if for all points where f is defined and m/(m + n) = m′/(m′ + n′) we have
C(m+ n,m′ + n′) = C(fMN (m,n), fMN (m′, n′)).

Although cover-monotonicity may be desirable for large m and small n, in
general it is incompatible with monotonicity (take m = m′ = 0, for example),
and several other properties we discuss later.

Geng [GH06] suggests two other forms of monotonicity: for constant m + n
and o+p, the measure should be increasing in support, m

T , and confidence, m
m+n .

In the STASS context, M and N are fixed and both these forms of monotonicity
are guaranteed by monotonicity (Definition 11).

3.6 Symmetry under variable permutation

Similarity of set A to set B is intuitively same as similarity of set B to set A. This
is called symmetry under variable permutation in [TKS02] and commutativity
symmetry in [EF02]. It is equivalent to swapping the rows with the columns of
the contingency table. For STASS the base set is fixed, so this property is not
really relevant. For association rules, it is generally argued that interestingness
of discriminant and characteristic rules should be computed in different ways
[KS96,LMVL08,Fre99], thus symmetry under variable permutation is typically
not advocated in the data mining literature, and [EF02] also argues against it.

3.7 n̄m̄-symmetry

We now move on to forms of symmetry related the discussion in Section 2.2 (also
discussed in [Car62,TKS02,EF02,GSS12,TCBO07]). Only one of these symme-
tries preserves monotonicity, and we discuss it first. Two others preserve mono-
tonicity if measures are negated (they are forms of antisymmetry). All others
preserve monotonicity in m or n but not both, so even if measures are negated,
they are not monotone. For this reason we do not consider these other forms of
symmetry here. The three forms of symmetry that can preserve monotonicity are
discussed in the context of debugging in [NL13]. Here we show how these forms
of symmetry can also be adapted to allow for a form of scaling. In Section 3.13
we provide a graphical summary of all six of these forms of symmetry; readers
may wish to refer to this section, particularly Figures 3 to 5.

The first form of symmetry is based on the intuition that if two sets are similar
then their complements are also similar. Thus if we take the complement of each
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set (including the base set) we may expect the ranking to remain unchanged.
Taking the complement of the base set means swapping M with N and m with
n. Taking the complement of the other sets means replacing m with M −m and
n with N − n. This is equivalent to negating all attributes or swapping ones
and zeros in the encoding of all sets or swapping both the rows and columns of
the contingency table. In [TKS02] an “absolute” version of this is defined, called
inversion invariance and in [EF02] it is called commutative symmetry.

Definition 13 (inversion invariant measure). A measure f is inversion in-
variant if for all points where f is defined, fMN (m,n) = fNM (N − n,M −m).

The domains on the two sides of the equation only the same when M = N .
In general, the domains are a reflection of each other in the line n = m or a 90◦

rotation. The crux of this (and indeed any) form of symmetry is how a single
point is mapped to its reflected/rotated position; we use the term “dual”. This
can be used to define the dual of a measure (the reflected/rotated surface), and
symmetry can be defined in terms of the result of comparison of measures applied
to pairs of points. For this form of symmetry, the dual of a point (or measure)
is the reflection in the three vertical planes n = m, m = M/2 and n = N/2.
Reflection in the latter two planes is equivalent to a 180◦ rotation around the
vertical line at the center of the domain. When M = N , the three reflections
collectively are equivalent to a reflection in the single vertical plane n = M −m,
through points (M, 0) and (0, N).

Definition 14 (n̄m̄-duals and symmetry). Given a domain (M,N), the n̄m̄-
dual of a point (m,n), written P n̄m̄(M,N,m, n), is (N − n,M −m).
The n̄m̄-dual of a measure f , written Dn̄m̄(f), is defined as follows:

Dn̄m̄(f)
M
N (m,n) = fNM (md, nd), where (md, nd) = P n̄m̄(M,N,m, n)

A measure f is n̄m̄-symmetric if for all points where f is defined

C(fMN (m,n), fMN (m′, n′)) = C(Dn̄m̄(f)
M
N (m,n),Dn̄m̄(f)

M
N (m′, n′))

More explicitly, for a n̄m̄-symmetric measure f we have

C(fMN (m,n), fMN (m′, n′)) = C(fNM (N − n,M −m), fNM (N − n′,M −m′))

Taking the n̄m̄-dual of a measure preserves monotonicity and a measure being
its own n̄m̄-dual is a sufficient (though not necessary) condition for it to be n̄m̄-
symmetric. Many measures are not n̄m̄-symmetric yet their n̄m̄-duals are rarely
used as similarity measures. For example, the Jaccard measure, m/(M + n)
is common but its n̄m̄-dual, (N − n)/(M + N − n) is rarely (if ever) used,
even though it has similar attributes to Jaccard. Distinguishing between them is
hardly intuitive: J10

10 (5, 5) < J10
10 (6, 6) whereas D10

10(5, 5) > D10
10(6, 6), where J is

the Jaccard measure and D its n̄m̄-dual. Note that the n̄m̄-dual of the Jaccard
similarity measure is quite distinct from the Jaccard distance.
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3.8 nm-antisymmetry

The more similar a set is to the base set, the less similar it is to the complement
of the base set. Thus if we take the complement of the base set we may expect
the ranking will be inverted. This is like swapping ones and zeros in our encod-
ing of just the base set, or swapping just the rows of the contingency tables. An
“absolute” definition called hypothesis symmetry is given in [EF02] and a defi-
nition that relies on measures having a particular range is called antisymmetry
for normalised measures in [TKS02].

Definition 15 (nm-duals and antisymmetry). Given a domain (M,N), the
nm-dual of a point (m,n), written Pnm(M,N,m, n), is (n,m).
The nm-dual of a measure f , written Dnm(f), is defined as follows:

Dnm(f)
M
N (m,n) = −fNM (md, nd), where (md, nd) = Pnm(M,N,m, n)

A measure f is nm-antisymmetric if for all points where f is defined

C(fMN (m,n), fMN (m′, n′)) = C(Dnm(f)
M
N (m,n),Dnm(f)

M
N (m′, n′))

Note that the nm-dual of a measure negates the measure (inverts the surface).
A constant could be added to preserve the minimum and maximum values over
the domain, but in our context we are only interested in relative rather than
absolute values so there is no advantage in doing so. The nm-dual of a measure
preserves monotonicity. It is an inverted reflection of the surface in the plane
n = m.

3.9 m̄n̄-antisymmetry

As with nm-antisymmetry, if we take the complement of every set except the
base set we may expect the ranking will be inverted. This is like swapping ones
and zeros in our encoding of everything except the base set, or swapping just the
columns of the contingency tables. The definition of antisymmetry for normalised
measures [TKS02] combines an “absolute” version of both m̄n̄-antisymmetry and
nm-antisymmetry. An absolute version of nm-antisymmetry is called evidence
symmetry in [EF02]. The m̄n̄-dual of a measure is the inverted 180◦ rotation of
the surface (or inverted reflection in the planes m = M/2 and n = N/2).

Definition 16 (m̄n̄-duals and antisymmetry). Given a domain (M,N), the
m̄n̄-dual or rotation-dual of a point (m,n), written Pr(M,N,m, n), is (M −
m,N − n).
The m̄n̄-dual or rotation-dual of a measure f , written Dr(f), is defined as
follows:

Dr(f)
M
N (m,n) = −fNM (md, nd), where (md, nd) = Pr(M,N,m, n)

A measure f is m̄n̄-antisymmetric or rotation-antisymmetric if for all points
where f is defined

C(fMN (m,n), fMN (m′, n′)) = C(Dr(f)
M
N (m,n),Dr(f)

M
N (m′, n′))

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1713v1 | CC-BY 4.0 Open Access | rec: 5 Feb 2016, publ: 5 Feb 2016



16

As with the nm-dual of a measure, a constant could be added and mono-
tonicity is preserved. When there are multiple forms of symmetry, all forms are
satisfied.

Proposition 3. If a measure f has any two of the properties n̄m̄-symmetry,
nm-antisymmetry and m̄n̄-antisymmetry, it has all three properties.

Proof. Straightforward.

A special case of this is proved in [EF02] and the combination of all forms
of “absolute” symmetry is referred to as total symmetry. [GSS12] also discusses
all these forms of absolute symmetry, plus the additional forms obtained by
symmetry under variable permutation.

3.10 Correlation consistency

The first property suggested in [PS91] is that pairs of attributes that are sta-
tistically independent should have a zero measure of similarity. The property
of Bayesian confirmation [GSS12] says a measure should be less than, equal or
greater than zero dependent on whether the conditional probability of a hy-
pothesis H given evidence E is greater, equal or less than the probability of
H, respectively. In our context, only relative values are important, but it seems
reasonable to say that positively correlated attributes are more similar than at-
tributes with zero correlation, which are more similar than attributes with neg-
ative correlations. Attributes have zero correlation with the base attribute when
Mn = Nm. A larger m (or smaller n) value corresponds to positive correlation
and a larger n (or smaller m) value corresponds to negative correlation.

Definition 17 (correlation-consistent measure). f is correlation-consistent
if for all points where f is defined we have, if Nm > Mn, Nm′ = Mn′ and
Nm′′ < Mn′′ then fMN (m,n) > fMN (m′, n′) > fMN (m′′, n′′).

3.11 Correlation antisymmetry

Correlation consistency suggests a form of antisymmetry may exist between the
positively correlated and negatively correlated halves of the domain. When M =
N , this is the same as nm-antisymmetry: the line of zero correlation, Mn = Nm,
is the same as n = m and in this special case, a monotone nm-antisymmetric
measure must be correlation-consistent. Here we define correlation-antisymmetry.
It is a form of antisymmetry around Mn = Nm and it coincides with nm-
antisymmetry for M = N . It can be seen as scaling so the domain is a square,
then reflection in n = m, then scaling back to the original domain. All general-
scalable nm-antisymmetric measures are correlation-antisymmetric (see Propo-
sition 4), but not all correlation-antisymmetric measures are general-scalable
or nm-antisymmetric. Correlation-symmetry maps a point (m,n) to the point
(Mn/N,Nm/M). A point with integral coordinates may thus have a dual with
non-integral coordinates, which is why we define measures over reals (rationals
would be sufficient). An alternative is to assume uniform scalability and multiply
everything by MN to obtain integers.
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Definition 18 (nm-scaled-duals and antisymmetry). For domain (M,N),
the nm-scaled-dual, or correlation-dual, of point (m,n), written Pc(M,N,m, n),
is (Mn/N,Nm/M).
The nm-scaled-dual, or correlation-dual, of a measure f , written Dc(f), is de-
fined as follows:

Dc(f)
M
N (m,n) = −fMN (md, nd), where (md, nd) = Pc(M,N,m, n)

A measure f is nm-scaled-antisymmetric, or correlation-antisymmetric, if for
all points where f is defined

C(fMN (m,n), fMN (m′, n′)) = C(Dc(f)
M
N (m,n),Dc(f)

M
N (m′, n′))

Note that the correlation-dual of f uses the same domain as f , even though m
and n are swapped; this is due to the scaling.

Proposition 4. If f is a general scalable nm-antisymmetric measure then f is
correlation-antisymmetric.

Proof. (sketch) It is straightforward to show that the nm-dual of a general scal-
able measure is general scalable. f can be scaled, multiplying M and m by N/M ,
the nm-dual can be taken and the result scaled in the same way by M/N (N and
n are multiplied by this factor because the nm-dual has been taken) to obtain
Dc(f).

Proposition 5. If f is a monotone correlation-antisymmetric measure then f
is correlation-consistent.

Proof. We prove positively correlated points have higher values than points with
zero correlation; the proof for negatively correlated points is similar. Let Nm >
Mn and Nm′ = Mn′; we need to show that fMN (m,n) > fMN (m′, n′). m >
Mn/N and n < Nm/M , so by monotonicity, fMN (m,n) > fMN (Mn/N, n) >
fMN (Mn/N,Nm/M). We have

C(fMN (m,n), fMN (m′, n′))
= −C(fMN (Mn/N,Nm/M), fMN (Mn′/N,Nm′/M)) by correlation-antisymmetry
= C(fMN (Mn′/N,Nm′/M), fMN (Mn/N,Nm/M)) by the definition of C
= C(fMN (m′, n′), fMN (Mn/N,Nm/M)) since Nm’ = Mn’

This must equal 1, because fMN (m,n) > fMN (Mn/N,Nm/M).

3.12 Error symmetry

In a similar way to nm-scaled-antisymmetry, we can defined a scaled version of
n̄m̄-symmetry. Instead of symmetry around the line n = M −m, we have scaled
symmetry around the line Mn = MN −Nm, between points (M, 0) and (0, N).
We call it error symmetry as this line is where the false positive rate, n/(n+ p),
equals the false negative rate, o/(m+ o).
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Definition 19 (n̄m̄-scaled-duals and symmetry). For domain (M,N), the
n̄m̄-scaled-dual, or error-dual, of point (m,n), written Pe(M,N,m, n), is (M −
Mn/N,N −Nm/M).
The n̄m̄-scaled-dual, or error-dual, of a measure f , written De(f), is defined as
follows:

De(f)
M
N (m,n) = fMN (md, nd), where (md, nd) = Pe(M,N,m, n)

A measure f is n̄m̄-scaled-symmetric, or error-symmetric, if for all points where
f is defined

C(fMN (m,n), fMN (m′, n′)) = C(De(f)
M
N (m,n),De(f)

M
N (m′, n′))

Error symmetry is important for the concepts introduced in Section 4. Scaled
versions of rotation-duals and antisymmetry can be defined but they are the
same as the basic (non-scaled) versions because M and N are not swapped. As
with the basic symmetries, any two scaled symmetries implies the third.

3.13 Further discussion of symmetries

We first graphically depict the forms of symmetry presented then discuss them
further. Figure 3 illustrates the different forms of symmetry for the special case
of M = N , where the domain is a square, error-symmetry is the same as n̄m̄-
symmetry and correlation-antisymmetry is the same as nm-antisymmetry. A
reference measure and each of its three duals are drawn as arrows. Each arrow
depicts two representative points on the surface (the tail and head of the arrow)
and their relative height, the arrow head being lower (for monotone measures
this means smaller m value and/or greater n value). It can be seen that the
nm-dual of the reference measure is the reflection in the n = m line, except
that the direction of the arrow is reversed, which indicates antisymmetry. The
rotation-dual is the inverted rotation, or double reflection in the lines m = M/2
and n = N/2. Inverting the rotation-dual and reflecting in the n = m line gives
the n̄m̄-dual. This is also the reflection of the reference measure in the line
m = M − n.

When M 6= N , the line m = n remains the line of symmetry for the basic
(non-scaled) symmetries: between the reference and nm-antisymmetry, and also
between n̄m̄-symmetry and m̄n̄-antisymmetry—see Figure 4. It is also the line of
symmetry between the original domain and the domain with M and N swapped.
Both nm-antisymmetry and n̄m̄-symmetry give points in this “dual” domain—
they are not necessarily in the original domain. For m̄n̄-antisymmetry (rotation)
we have the inverted 180◦ rotation, as before, and the domain is unchanged.
There is no symmetry along orthogonal diagonals.

For M 6= N , the scaled versions of symmetry correspond to a scaled ver-
sion of Figure 3—see Figure 5. The diagonals are no longer at 45◦ and both
nm-scaled-antisymmetry (correlation) and n̄m̄-scaled-symmetry (error) are no
longer reflections in the diagonals, but they are skewed reflections. However, m̄n̄-
antisymmetry (rotation) is still an inverted 180◦ rotation or double reflection.
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Fig. 3. Symmetries when M = N
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Fig. 4. Basic symmetries when M 6= N
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Fig. 5. Scaled symmetries when M 6= N
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When M 6= N , both n̄m̄-symmetry and nm-antisymmetry impose no con-
straint on the ranking produced, since the duals use a different domain. For
example, given a measure f , the following n̄m̄-symmetric measure f2 produces
the same ranking when M < N (and similar constructions yields measures with
the same ranking when M < N and nm-antisymmetric measures).

f2MN (m,n) =


fMN (m,n) if M < N

fMN (m,n) +Dn̄m̄(f)
M
N (m,n) if M = N

Dn̄m̄(f)
M
N (m,n) if M > N

For the other forms of symmetry, or when M = N , arbitrary ranking for al-
most half the domain can be preserved. For example, we can obtain a correlation-
antisymmetric measure f3 from an arbitrary measure f by using f for points
above the line of symmetry and its dual for points below. By adding/subtracting
a sufficiently large constant c, monotonicity is preserved.

f3MN (m,n) =


fMN (m,n) + c if Mn < Nm
0 if Mn = Nm

Dc(f)
M
N (m,n)− c if Mn > Nm

Various statistical measures can be adapted in such a way to obtain mono-
tone correlation-antisymmetric measures. For example, the Fisher exact test
(which computes Bayesian probabilities) can be made into a similarity measure
and may be preferable to its various approximations (φ, etc) in some circum-
stances. Note that m̄n̄-antisymmetric measures have a distinct form of symmetry
around the same line: rotation (or double reflection) rather than a scaled sin-
gle reflection. For M 6= N , the Pearson measure is m̄n̄-antisymmetric but not
correlation-antisymmetric, whereas reliability (confidence factor) is correlation-
antisymmetric but not m̄n̄-antisymmetric.

Neither form of symmetry around the Mn = Nm diagonal constrains the
ranking of the portion of the domain that has a positive correlation with the
base attribute. In many STASS problems it is primarily the top parts of the
ranking that are important (see [FF05], for example) — we often pay close
attention to attributes that are highly ranked and the rest are all but ignored.
Of all the forms of symmetry and duals discussed, only error-symmetry and the
relationship between points which are error-duals has a significant impact on the
top-most part of the ranking. We now investigate this in more detail.

4 Relative weight of m and n

Different measures give different importance or weight to m and n. In many
commonly used measures, m is given more weight than n (matches are considered
more importance than non-matches). For example, with the Jaccard measure, a
10% increase in m must always be accompanied by a greater than 10% increase
in n to avoid the measure increasing. In contrast, measures which are error-
symmetric give the same weight to m and n overall, and some measures give
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more weight to n overall, though this is less common in practice. The relative
weight of m and n is one important way to distinguish between measures.

Monotonicity implies the surface slopes down along the line from (M, 0) to
(0, N), or any line where m decreases and n increases. The relative weight of
m and n gives an indication of the typical slope of orthogonal lines. A high
m weight indicates that partial derivatives with respect to m are significantly
greater than the absolute value of partial derivatives with respect to n, and (0, 0)
is lower than (M,N) on the surface. Equivalently, a high m weight indicates that
contours of the surface are close to horizontal whereas a low m weight indicates
the contours are close to vertical. For the Ample2 measure, all contours are
parallel to Nm = Mn and equal weight is given to m and n; this measure is
error-symmetric. Here we give two different, but related ways of defining the
relative weight of m and n. One gives a partial order for monotone measures
and the other gives a total order.

A related notion is given in [KS96], which suggests that for discriminant rules,
discrimination (1− n/N) is more important than completeness (m/M) and for
characteristic rules the reverse is the case. If we assume a STASS problem is
ranking discriminant rules, two points such that the completeness of each point
is the discrimination of the other point should thus be ordered according to their
discrimination.

Definition 20 (discriminant-biased measure). A measure f is discriminant-
biased if for all points where f is defined, m/M = 1−n′/N and m′/M = 1−n/N ,

C(fMN (m,n), fMN (m′, n′)) = C(m,m′)

This implies that for two points which are error-duals of each other, measures
should be higher for the point with a higher m value (whereas an error-symmetric
measure would give both points the same value).

4.1 A partial order for monotone measures

Op of [NLK11] is one extreme within the class of monotone measures—with
maximal weight for m. The gradient of all contours is 1

N+1 and any lower pos-
itive gradient results in the same ranking, which is optimal for some software
debugging problems. Its error-dual is another extreme, giving minimal weight
to m. This is optimal for another class of software debugging problems [NL13].
Note however that the unscaled version of the error-dual (the n̄m̄-dual) of Op
does not always give minimal weight to m and the partial order and other prop-
erties we discuss here critically depend on the scaling. For fixed M and N we
can define a partial order over monotone measures. This gives rise to a complete
lattice with these two measures as the top and bottom elements, respectively.

The partial order we define is based on the intuition that giving more weight
to m increases the number of pairs of points where the relative measures of the
two points is the same as the relative m values of the two points. Conversely,
giving more weight to n increases agreement with the ordering on the negated
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n values. For some pairs of points, the ordering on m values is the same as
the ordering on −n, and all monotonic measures agree with this ordering. For
pairs of points not constrained by monotonicity, the ordering of Op is always
the same as the ordering on m and the ordering of De(Op) is always the same
as the ordering on −n. We refer to this ordering as the set m-weight because,
assuming monotonicity and ignoring ties, it corresponds to the ordering of sets
of pairs of points where the measure agrees with the ordering on m values.

Allowing arbitrary points where m or n are not integers results in an infinite
number of points and a more complex structure overall. We therefore restrict
attention to “integral” points, but to enable the use of error-duals of measures,
our definition includes points where m or n are integers, and also their error-
duals.

Definition 21 (integral point). Given a domain (M,N), a point (m,n) is
integral if m and n are integers, or Nm/M and Mn/N are integers.

Definition 22 (greater set m-weight). Given a domain (M,N), if f and g
are measures then f wM

N g (f has greater or equal set m-weight than g for M
and N) if for all integral points (m,n) and (m′, n′) where f is defined,

1. if m ≥ m′ then C(fMN (m,n), fMN (m′, n′)) ≥ C(gMN (m,n), gMN (m′, n′)) and
2. if m < m′ then C(fMN (m,n), fMN (m′, n′)) ≤ C(gMN (m,n), gMN (m′, n′)).

If f wM
N g and g wM

N f we say f and g have equal set m-weight, f =M
N g. If

f wM
N g and g 6=M

N f we say f has greater set m-weight than g.

Clearly f wM
N f , and if f wM

N g and g wM
N h then f wM

N h, so wM
N is a partial

order over measures. For a given natural numbers M and N , =M
N partitions the

set of all measures into a set of equivalence classes. The number of equivalence
classes is finite, since M and N are finite, thus the number of integral points
and the number of rankings of those points is finite, and two measures are in the
same equivalence class if and only if they always result in the same ranking:

Proposition 6. Given a domain (M,N) and measures f and g, f =M
N g if and

only if the ranking of all integral points using f is the same as that using g.

Proof. The rankings are the same if and only if for all integral points where f
and g are defined, C(fMN (m,n), fMN (m′, n′)) = C(gMN (m,n), gMN (m′, n′)), which
is clearly the case if and only if f =M

N g.

Non-monotone measures can essentially give negative weight to m (and n),
which obfuscates the relative weights of m and n, and also means there is no
unique equivalence class with maximal or minimal set m-weight. However, by
restricting attention to monotone measures we obtain a complete lattice where
the top element is the equivalence class containing Op and the bottom element
is the equivalence class containing De(Op).

Proposition 7. For all M , N and monotone f , Op wM
N f wM

N De(Op).
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Proof. Suppose m > m′. Then OpM
N (m,n) > OpM

N (m′, n′). Also, we can have

De(Op)
M
N (m,n) > De(Op)

M
N (m′, n′) only when n > n′, in which case we have

fMN (m,n) > fMN (m′, n′) because f is monotone.

Suppose m < m′. Then OpM
N (m,n) < OpM

N (m′, n′), and De(Op)
M
N (m,n) <

De(Op)
M
N (m′, n′) only when n < n′, in which case fMN (m,n) < fMN (m′, n′)

because f is monotone. For m = m′, f , Op and De(Op) all give the same results
of comparison due to monotonicity.

It is easy to show properties such as if f wM
N g and h wM

N i then f+h wM
N g+i.

The lattice of monotone measures is symmetric, with the error-dual of a measure
giving its reflection in the lattice.

Proposition 8. Given a domain (M,N) and monotone measures f and g,
f wM

N g iff De(g) wM
N De(f).

Proof. We show the only if part; the converse follows from De(De(f)) = f . From
the definition of wM

N we must deal with two cases: m ≥ m′ and m < m′ (for
all integral points (m,n) and (m′, n′) where f is defined). The error-dual points
are (md, nd) = (M −Mn/N,N −Nm/M) and (m′d, n′d) = (M −Mn′/N,N −
Nm′/M). Thus md ≥ m′d iff n ≤ n′ and md < m′d iff n > n′ and there are four
cases overall:

– m ≥ m′ ∧ n > n′:

C(De(g)
M
N (m,n),De(g)

M
N (m′, n′))

= C(gMN (md, nd), gMN (m′d, n′d)) by De(g) definition
≥ C(fMN (md, nd), fMN (m′d, n′d)) since f wM

N g and md < m′d

= C(De(f)
M
N (m,n),De(f)

M
N (m′, n′)) by De(f) definition

– m < m′ ∧ n ≤ n′:

C(De(g)
M
N (m,n),De(g)

M
N (m′, n′))

= C(gMN (md, nd), gMN (m′d, n′d)) by De(g) definition
≤ C(fMN (md, nd), fMN (m′d, n′d)) since f wM

N g and md ≥ m′d
= C(De(f)

M
N (m,n),De(f)

M
N (m′, n′)) by De(f) definition

– m ≥ m′ ∧ n < n′: By monotonicity C(De(f)
M
N (m,n),De(f)

M
N (m′, n′)) = 1.

– m < m′ ∧ n ≥ n′: By monotonicity C(De(f)
M
N (m,n),De(f)

M
N (m′, n′)) = 0.

Thus error-symmetric measures, which are equivalent to their own error-
duals, are in the middle of the lattice. This implies the number of pairs of integral
points in the domain where the measure gives the same ordering as m equals the
number of pairs of integral points in the domain where the measure gives the
same ordering as −n. The planar error-symmetric measure Ample2 has contours
of gradient M/N and any monotone measure for which all contours have a lower
gradient has a higher set m-weight than Ample2 (and vice versa).

For several previously proposed measures all contours are also linear—see
Figure 6 ([NL13] and [FF05] have similar plots; the latter also discusses the same
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M

N−M Jacccard

M

N0 Tarantula

M

NSimple Matching

M

NFaith

M

NAmple2

Fig. 6. Contour lines for several measures

form of scaling we use for error-duals). For Jaccard (and equivalent measures),
the contours converge where m = 0 and n = −M so the maximum gradient is
1. Our monotone version, Jaccard-m, has greater set m-weight than Ample2 for
M ≥ N . Thus if J is Jaccard-m we can conclude Op wM

N J wM
N Ample2 wM

N

De(J) wM
N De(Op) for M ≥ N . The inequalities are strict unless M and N

are very small. For Tarantula, the contours converge where m = n = 0. If
tweaked appropriately so it is defined for m = n = 0 and monotone for m =
0 it is correlation symmetric. Because the contour gradients are very high at
some points and very low at other points, it is generally incomparable to planar
measures with respect to the wM

N ordering. Simple Matching, Faith, Ample2,
Op and Russel and Rao are planar measures with contour gradients of 1, 1

2 , M
N ,

1
N+1 and 0, respectively. Thus Jaccard-m wM

N Simple Matching and Faith wM
N

Simple Matching for all M and N . Simple Matching has a greater set m-weight
than Ample2 if and only if M > N .

No monotonic measure with maximal (or minimal) setm-weight is correlation-
consistent. For example, (M,N) must be ranked above (M − 1, 0), for maximal
set m-weight but below (M−1, 0) for correlation-consistency. In general, there is
a tension between correlation-consistency and having a large (or small) m weight
(which may be desirable for a particular domain). To be correlation consistent
there must be a contour close to the line Mn = Nm, so not all contours can
have a low (or high) gradient. Measures which are correlation-antisymmetric, like
those which are error-symmetric, are in the middle of the lattice of measures.

Proposition 9. If f is a correlation-antisymmetric measure and (M,N) a do-
main, the number of pairs of integral points in the domain where f gives the
same ordering as m equals the number of pairs of integral points in the domain
where f gives the same ordering as −n.

Proof. Consider a pair of integral points (m,n) and (m′, n′), and their corre-
lation duals, (md, nd) and (m′d, n′d). By the definition of correlation duals and
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antisymmetry, C(md,m′d) = −C(n, n′) and C(nd, n′d) = −C(m,m′) so f gives
the ordering as m for the pair of points iff Dc(f) gives the ordering as −n for
the dual pair of points.

4.2 Using a subset of the domain

It is straightforward to define a variants of set m-weight over a subset of the
domain, by just considering pairs of integral points in this subset. We still obtain
a partial order and Proposition 7 holds but Propositions 8 and 9 typically do
not. Using a subset of the domain may be desirable because some parts of the
domain, such as the positively correlated part, are generally more important
than other parts.

The choice of whether to use a particular attribute or its negation is often
influenced by our desire to find positive correlations. If an attribute has a nega-
tive correlation with the base attribute it is always possible to use its negation
instead and obtain a positive correlation (a point with negative correlation can
be replaced by its rotation-dual). If this is done systematically, whether a mea-
sure is correlation-antisymmetric is irrelevant because no points have negative
correlation. Similarly, rotational-antisymmetry is only relevant for the relative
ranking of points with zero correlation. Thus the only form of symmetry that
is important in this scenario (and assuming M 6= N) is error-symmetry and
redefining set m-weight so it did not depend on points with negative correlation
seems sensible. Note that by using rotation-duals in a different way we could
make error-symmetry irrelevant, but we see no good reason for doing so.

4.3 Quantifying the relative weight of m and n

Since we have a partial order rather than a total order, some measures are
incomparable with respect to set m-weight—f may give more weight to m than
g does for one part of the domain but less weight for another part. We suggest
the following method to quantify the relative weight of m and n. Assuming
monotonicity and ignoring ties, it corresponds to ordering on the cardinality of
the set of pairs of integral points where the measure agrees with the ordering on
m values.

We consider the ranking produced by a measure f for all integral points
and quantify how much it differs from the ranking produced from Op and/or
its error-dual. We define pMN (f, n,m) to be the position of point (n,m) in the
ranking produced by f ; where there are ties in the ranking, the mid point of the
range of tied values is used. The difference between the ranking of f and Op is
given by the total distance between positions in the rankings (also known as the
number of inversions), for all integral points:

dMN (f) =
∑

(m,n)

∣∣pMN (f, n,m)− pMN (Op, n,m)
∣∣

It is convenient to scale this value as follows:
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Definition 23 (Cardinality m-weight). Given a domain (M,N), the cardi-
nality m-weight of a measure f , wM

N (f) is

1− dMN (f)

dMN (De(Op))

For monotone measures, wM
N (f) varies from 0 (for De(Op)) to 1 (for Op),

with 0.5 for error-symmetric and correlation-antisymmetric measures. For non-
monotone measures it can potentially have a value outside this range. As with
set m-weight, the cardinality m-weight could be defined over just part of the
domain (in which case, correlation-antisymmetric measures generally will not
have a value of 0.5).

5 Using domain knowledge to choose a measure

So far, we have described various properties of similarity measures. However,
what we would ultimately like is a way to determine which measures are likely
to work best in a given domain. We now make a contribution to solving this
difficult problem. We first review a model-based approach to understanding the
software debugging problem that lead to the optimality results for the Op mea-
sure, an important boundary case. We then discuss another boundary case in
the debugging domain where De(Op) is optimal and propose a method for inter-
polating between these two boundary cases. We then report on an experiment
that validates our approach.

5.1 Model-based software debugging

In [NLK11] a very simple model program was used to investigate the software
debugging problem. It allowed the performance of different similarity measures
to be assessed under “ideal” conditions where various parameters could be con-
trolled precisely. It also allowed a more analytical approach to assessing different
measures. The model used was a program with just four statements, one of which
was a bug. Test cases for the program were simulated by choosing an execution
path through the program, some of which lead to failure of the test. The pro-
gram has eight possible execution paths, four of which include the bug and two
of those lead to failure. For a given multiset of test cases, the set of test cases
which failed was compared for similarity with the sets of tests which executed
each statement. These set similarities were used to rank the statements, and this
ranking was given a score (the best score was given for the bug being ranked
top). Overall performance for a number of test cases T was assessed by averaging
over all possible multisets of T execution paths (for larger T this was estimated
by computing a large number of multisets pseudo-randomly with an appropriate
distribution).

Experiments were conducted to determine the overall performance of numer-
ous set similarity measures as various parameters were adjusted (such as the
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total number of tests, the number of failed tests and how “consistent” the bug
was: the number of failed tests divided by the number of tests in which the bug
was executed). Additionally, it was shown analytically that for the model pro-
gram and any number of tests, Op (named Op in [NLK11]) performed at least
as well as any other similarity measure overall. Other model programs have also
been used, and by restricting attention to monotone measures, the optimality
result for Op has been strengthened to all single-bug programs and all sets of
test cases [NLK12].

5.2 Interpolating between two boundary cases

The reason why Op is optimal for the software debugging problems analysed
in [NLK11,NLK12] is that it is assumed a single bug exists and the program
fails a test only when the bug is executed. Because the simple model program
of [NLK11] has eight (equally probable) execution paths, if there are eight test
cases the most likely (or “expected”) outcome is that each of these paths is used
once. This outcome can be reflected in a contingency table for each of the four
attributes (execution of the four program statements). Here we concentrate on
the contingency table for executing the bug, since this is the cause of failure of
test cases. Recall that the bug is executed in four paths, two of which fail. In
general, with perfect knowledge of the domain, we can determine an expected
contingency table for the causes of the base attribute:

Bug
2 2
0 4

Causes
mc nc

oc pc

For now, we ignore non-causal attributes, making the simplifying assumption
that the expected outcomes for non-causal attributes typically have no statistical
correlation with the base attribute. The important feature of the contingency
table above is that the value of o for the bug, oc, is zero (there are no “false neg-
atives” or “type II errors”), whereas all other values are non-zero. The ratio for
the M column is 2:0 whereas the ratio for the N column is 2:4. Intuitively, max-
imal m-weight is optimal because the first ratio is infinitely more discriminating
than the second.

For single-bug programs we always have oc = 0, leading to optimality of Op
in this case. In the natural sciences, boundary cases such as this rarely occur
because causality is typically more complex and data is noisy. In the software
debugging domain there is another boundary case of interest, where nc = 0 (there
are no “false positives” or “type I errors”), essentially a dual to the single bug
problem [NL13]. It corresponds to the case where there may be several bugs but
they are always “deterministic” — whenever a bug is executed the test case fails.
With nc = 0 and other values non-zero, the ratio for the N column is infinitely
more discriminating than that of the M column. For this class of debugging
problems De(Op) is optimal, by similar reasoning to the proof of optimality of
Op for the single bug case.
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For single bug programs, oc = 0 and the causal attribute always has m =
M , points at the top edge of the domain in our figures. For deterministic bug
programs, nc = 0 and the causal attributes always have n = 0, points at the left
edge of the domain. We use a form of interpolation between these two boundary
cases to obtain another measure of m-weight. Given a domain and an expected
contingency table for causal attributes, we can determine the expected value for
m and n as a proportion of M and N , respectively: mc/(mc + oc) (which is the
true positive rate or one minus the false negative rate) and nc/(nc + pc) (the
false positive rate), respectively. The gradient of the line through this point and
(M, 0) gives an indication of what m-weight will lead to best performance. We
define the positive error rate (PER), which ranges from zero, for a vertical line
where minimal m-weight is optimal, to one, for a horizontal line where maximal
m-weight is optimal:

Definition 24 (positive error rate (PER)). Given a domain (M,N), and
contingency table (the expected values for causal attributes), (m,n, o, p), with
FNR = 1−m/M and FPR = n/N . The positive error rate

PER =
FPR

FNR + FPR

unless FNR = FPR = 0, in which case PER = 0.5.

The PER gives information about the quality of the causal attribute(s) as
predictors of the base attribute. It relates the number of false positives (type I
errors) as a proportion of negative cases, with the number of false negatives (type
II errors) as a proportion of positive cases. The former is larger precisely when
the PER is greater than 0.5 and when points for causal attributes are expected to
be above the line of error-symmetry, Mn = MN−Nm. There are infinitely many
ways of measuring the relative frequency of false positives and false negatives.
It can be cast as an instance of the STASS problem (by another form of dual),
so we can define monotonicity and a partial order. PER has desirable behaviour
for the two boundary cases and has the line of error symmetry as a contour. It
is a form of dual of the Tarantula measure (and precision).

We conjecture that as the positive error rate of domains increase, measures
with higher m-weight will perform best in terms of ranking causal attributes
highly, on average. This conjecture is supported by experiments, one of which is
described in detail in Section 5.3. Expert knowledge may be used to estimate the
PER for a given domain. It is a single statistic which summarises a probability
distribution and indicates the “best” we can do in terms of false positive and false
negative rates. Typically there can be several “causal” attributes with differing
false positive and false negative rates. In estimating the PER we can take into
consideration the relative cost of false positives and false negatives in determining
what is best, as is done in ROC analysis. We discuss this in Section 5.4.

5.3 A software debugging experiment

We use several debugging models in the style of [NLK11] that span the range
of possible PER values and for each one, determine the m-weight of the “best”
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measure (within a restricted class of measures — it is not known what the best
possible measure is in general). Here we use six models, each with four state-
ments, where execution of correct statements is statistically independent of test
case failure but execution of buggy statements is correlated to varying degrees.
The same models were used in [NNK15] to assess learning of similarity measures
for a range of data sets. In the first model, M1, only the first statement is a bug.
In models M2 to M6 the first two statements are bugs, each of which cause failure
in 20%, 40%, 60%, 80% and 100% of cases where they are executed, respectively.
The first two statements are modelled using ten execution paths, five of which
execute the statement and a number of those lead to failure, dependent on the
model. The other two statements are each modelled using just two execution
paths, one of which executes the statement. Thus there are 10×10×2×2 = 400
paths in total.

The relative discrimination of m versus n (and thus the PER) drops as we
go from model M1 to M6, and this affects what measure is best to use for each
of these models. From previous results we know that Op is the best measure to
use for M1 (because it has a single bug and the PER is 1) and its error-dual
is the best measure to use for M6 (since it has only deterministic bugs and the
PER is 0). For performance comparison we also used other measures that are
planar, of the following form, with varying values of the parameter p:

fMN (m,n) = pm/M − (1− p)n/N

With p sufficiently close to 1 this measure is equivalent to Op, with p suffi-
ciently close to 0 it is equivalent to De(Op) and for p = 0.5 it is equivalent to
Ample2. The p value is thus an alternative way of quantifying the m-weight for
this class of measures. For models M2 to M6 we experimentally determined the
p value, in multiples of 0.01, that resulted in best performance. Performance was
measured by the rank of all the bugs, scaled so that if all bugs are at the top
of the ranking the performance is 100 and if they are all at the bottom of the
ranking the performance is 0. All reported figures are averages over 100 million
multisets of 15 test cases (a relatively small number of cases is used because
performance tends to converge for larger numbers of cases, making comparison
of measures more difficult).

Figure 7 gives the results of our experiment. The first two rows give the
contingency tables for the causes in each model. The next three rows give the
expected false negative and false positive rates and the positive error rate com-
puted from the contingency tables. The next row gives the best p value found
empirically (except that 1-ε and ε are determined theoretically). We restricted p
to multiples of 0.01. This appears to affect the results as performance typically
does not increase or decrease smoothly as p changes. In particular, for model
2, we suspect the optimal p value may be rather less than 0.75. However, it is
clear that the best p value decreases across the different models, supporting our
conjecture. Figure 8 gives a graphical depiction of the same information. For
each model it plots the expected false positive and negative rates (the expected
point for the bugs in the “top left” quarter of the scaled domain). The gradi-
ent of the lines through the top left corner of the scaled domain (m/M = 1,
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M1 M2 M3 M4 M5 M6
mc, nc 40, 160 56, 144 104, 96 144, 56 176, 24 200, 0
oc, pc 0, 200 20, 180 40, 160 60, 140 80, 120 100, 100
FNR 0 0.26 0.28 0.29 0.31 0.33
FPR 0.44 0.44 0.38 0.29 0.17 0
PER 1 0.63 0.57 0.49 0.34 0
best p 1-ε 0.75 0.53 0.47 0.40 ε
cardinality w. 1 0.85 0.56 0.44 0.34 0

Op 89.14 86.19 89.17 90.62 91.22 91.25
P75 89.14 86.19 89.25 91.17 92.87 94.85
P53 88.94 86.08 89.50 92.17 94.65 97.44
P47 88.58 85.87 89.34 92.20 94.85 97.80
P40 88.00 85.59 89.00 92.02 94.88 97.93
De(Op) 73.87 81.51 86.51 90.87 94.60 98.02

Fig. 7. Six debugging models and performance results

m/M

(1− FNR)

1

0.5

n/N (FPR)0 0.5

M1

M2M3M4M5M6

Fig. 8. Expected false positive/negative rates, best planar measures for the models
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n/N = 0) and each of these points drops from zero, for M1, to minus infinity,
for M6, corresponding to the PER dropping from 1 to 0. The line segments for
each model shown in Figure 8 give the contours of the best planar metric found,
ranging from (almost) horizontal to (almost) vertical.

Row seven of Figure 7 gives the cardinality weight of the measures (with
the best p value) for M = N = 8. Note that M and N vary over the different
multisets of test cases, so these figures only give a general guide to this form
of quantifying the m weight. The wM

N relation holds between successive best
measures for all M and N . The last six rows give the performance of each
measure for each model. The maximum performance for each model is displayed
in bold font. For each column, the performance peaks at the leading diagonal
and decreases monotonically as we move away from the maximum (for the first
two models and measures we have checked more significant figures than appear
in the table). The experiments described in [NNK15] use the same models but
a different class of measures (the contours being hyperbolas with coefficients
found using machine learning) and a different performance measure (the rank
of the top-most bug rather than all bugs). They also show a trend of reducing
m-weight across the models.

5.4 PER and ROC analysis

ROC analysis can be used to visualise and determine the relationships between
a set similarity measure f , the performance of the associated binary classifier fc,
the best threshold value and the corresponding true positive and false positive
rates. Consideration of PER essentially inverts this analysis. Figure 9 gives the
ROC curve for a set similarity classifier fc. Such curves can be constructed from
“training” data sets, where correct classifications are known for all points, and
used to estimate the best threshold for “real” data. Assuming there is a known
constant cost for each false positive and a (possibly different) constant cost for
each false negative, lines of fixed cost can be drawn. The top-most (lowest cost)
such line which meets the ROC curve, and the point(s) at which it does so, gives
the optimal threshold value(s). For fc in Figure 9 this line is drawn in dashes.
For this example we assume the cost of false positives divided by M is somewhat
more that the cost of false negatives divided by N , so the gradient is somewhat
less than one. The best pair of true and false positive rates (shown in Figure 9)
are the coordinates of the point of intersection.

For the PER analysis we have suggested, the starting point is (an estimate of)
the best pair of true and false positive rates that can be achieved, using domain
knowledge. For software debugging, the discussion of [NL13] can be adapted:
at early stages of software development there are almost certain to be multiple
bugs and deterministic bugs are relatively likely so a low PER (a relatively low
false positive rate) estimate is reasonable, whereas late in development there are
fewer bugs (perhaps just one) and they are typically less consistent, hence a high
PER (a relatively low false negative rate) estimate is desirable. From this an
iso-PER line can be drawn, shown as a dotted line in Figure 9. The PER can
help with the choice of an appropriate measure f , and if it is used for a binary
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1

m/M

1n/N

best

best

iso-PER

iso-cost

Fig. 9. ROC analysis of a set similarity classifier fc

classifier fc, the ROC curve should ideally intersect with the best iso-cost line
and the iso-PER line at the same point.

Suppose that for a given classification problem with particular costs for false
negatives and false positives, we (somehow) know the best possible set similarity
measure, threshold and corresponding false negative and false positive rates. If
the relative cost of false negatives is revised to be higher, ROC analysis can
be used to determine the best threshold. Increasing the relative cost of false
negatives decreases the gradient of the iso-cost lines, thus the point at which
the lowest cost line intersects with the ROC curve is generally higher and fur-
ther right. The revised best m and n values increase (and the false negative
rate, 1 −m/M , and the threshold decrease). ROC analysis says nothing about
revising the set similarity measure — it is fixed in the analysis. However, the
revised intersection point results in an increased PER which, according to our
conjecture, suggests a measure with a higher m-weight would be best. This is
consistent with the intuition that if the cost of false negatives is relatively high,
a measure with relatively high m-weight performs best, since n is the number of
false positives and m is related to the number of false negatives.

5.5 Further work

The PER gives at best a rough idea of a probability distribution, and even
with perfect knowledge of the probability distribution we do not know how to
construct an optimal measure in general. For some classes of probability distri-
butions and methods of evaluating performance it may be possible to analyti-
cally determine the optimal set similarity measure, as has been done in the two
boundary cases. We believe the mathematics would be rather complex but even
if the assumptions are impractical, this theoretical approach may provide more
insights into the problem.

A more empirical approach is to use machine learning techniques such as
those in [NNK15] to search for good sub-optimal measures for different scenarios.
We believe this approach has great potential but is best guided by theoretical
insights to restrict the class of measures considered. Without restriction the
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number of measures is so large that even machine learning techniques run into
difficulties. The class of measures used in [NNK15] was chosen in part because
the measures are monotone and include measures which are optimal in the two
boundary cases. However, most other properties discussed here played no role in
the choice. By considering things such as forms of scalability and symmetry it
may be possible to find a better class of measures and use machine learning to
find good measures within that class.

6 Conclusion

Notions of similarity are pervasive in science. This paper explores in detail a
particularly simple instance, which we refer to as similarity to a single set or
STASS. The objects being compared are sets (or, equivalently, have just binary
attributes that are all treated equally). All objects are compared to a “base set”
using a “set similarity measure” (numeric function), resulting in a ranking of the
objects from the most similar to the base set to the least similar. It is closely
related to measuring similarity between any two sets or correlation in a two
by two contingency table or confusion matrix. Even this very simple similarity
problem has many important instances, from comparing diagnostic tests and
other binary classifiers to locating bugs in computer programs. A large number
of set similarity measures have been proposed in the literature but very little is
known about how to choose the best one for a given application.

This paper gives a comprehensive discussion of various properties a set simi-
larity measure may have in the context of STASS, refining previously identified
properties, introducing new properties and discussing some relationships between
properties. It defines new ordering relationships on set similarity measures and
a new statistic which can be useful in choosing a set similarity measure for a
given application domain.
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