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Abstract

We explore environmentally-induced tumors in the context of the on-
going conflict between long-evolved cancer control mechanisms and the
central flaw of multicellularity, using a number of convergent necessary
conditions statistical models based on the Data Rate Theorem linking
control and information theories. Multicellular cancer suppression is an
inherently unstable dynamic process that can fail through sufficient en-
vironmental insult, in particular for humans, involving the synergism of
chemical exposures with the chronic inflammation of ‘social’ exposures
that may be seen as accelerated aging.

Key Words: chemical exposure; control theory; information theory; social
exposure

Nothing in biology makes sense except in the light of evolution.
(Dobzhansky 1973).

...[A]ll models are wrong, but some are useful. (Box and Draper
1987).

1 Introduction

Recent controversy highlights an ongoing debate on the relative importance of
environmental and intrinsic factors in the development and progression of malig-
nancy. Thomasetti and Vogelstein (2015) argue that, in most cases, cancer onset
is an inevitable consequence of the natural dynamics of stem cell proliferation,
and often a matter of ‘bad luck’. Wu et al. (2016) reply that stem cell division
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per se accounts for minimal rates of cancer in the context of significant envi-
ronmental insult (Ledford 2015). Here, we use necessary conditions asymptotic
theorems from control and information theories to construct a set of statistical
models of cancer proliferation focused on the central flaw of multicellularity,
which Aktipis et al. (2015) describe as follows:

Multicellularity requires the suppression of cell-level fitness in or-
der to promote organism level fitness... Cancer represents a break-
down of this multicellular cooperation, with cancer cells ‘cheating in
ways that can have devastating effects for organism level fitness... Ef-
fective multicellularity requires not just cooperation among cells but
also mechanisms for suppressing conflict that results from mutations
that can enhance cell-level fitness at the expense of the organism...
In other words, effective multicellularity requires the suppression of
somatic cheating to some degree, and the cancer that results from
that cheating.

Nunney (1999) further notes that, as animals become larger, cancer control
becomes more difficult at a rate about the 4/10 power of the cell count, con-
sequent, in part, on a synergism with increased lifespan. Large animals must
then have tissue-specific cancer control mechanisms whose development may
constitute a real barrier to their evolution.

We explore a series of control theory models of the suppression of cheating
in multicellular organisms based on the Data Rate Theorem (DRT) that links
control and information theories in the specific circumstance of inherent system
instability (Nair et al. 2007). Inherently unstable biological systems can respond
quickly to environmental or physiological signals and thus may have significant
evolutionary advantage under certain powerful selection pressures, as exempli-
fied, in addition to multicellularity itself, by consciousness, blood pressure and
gene expression (Wallace 2012).

Control theory has already found a place in the current cancer literature.
For example, Schattler and Ledzewicz (2015 Ch 8) explore the Stepanova (1980)
model of interaction between tumorigenesis and immune surveillance, comment-
ing that

The competitive interaction between tumor cells and the immune
system is complex... and... involves an excessively large number
of events with the kinetics of the interplay strongly nonlinear and
characterized by multi-stability, i.e., persistence of both benign and
malignant scenarios. The possible outcome of this interplay is not
only constituted by tumor suppression or tumor outbreak, but there
exist many intermediate scenarios.

They go on to examine deviations from nonequilibrium steady states using a
linearized model in which stability is defined in terms of a matrix eigenstructure
having negative eigenvalues, a standard method whose often complicated sym-
metries are more fully explored by Golubitsky (1991). Here, via the DRT, we
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Figure 1: Adapted from Kreeger and Lauffenburger (2010). Environmental
context impinges on molecular and genetic regulatory processes to produce ma-
lignant phenotypes.

relax the stability conditions and take a more active perspective in which the
immune system and other tissue-specific mechanisms (Nunney 1999) exercise
ongoing control over the inherent instability of multicellularity in the context of
accumulating environmental insult.

Indeed, an emerging strain of opinion on carcinogenesis takes an explicitly
systems/network view. As Kreeger and Lauffenburger (2010) put it,

Cancer is now appreciated as not only a highly heterogeneous
pathology with respect to cell type and tissue origin but also as a
disease involving dysregulation of multiple pathways governing fun-
damental cell processes such as death, proliferation, differentiation
and migration. Thus, the activities of molecular networks that exe-
cute metabolic or cytoskeletal processes, or regulate these by signal
transduction, are altered in a complex manner by diverse genetic
mutations in concert with the environmental context.

Their figure 1, adapted here, schematically illustrates how genetic alter-
ations convolute with environmental context to generate phenotypes, a process
in which such context modulates transcriptional, translational and posttransla-
tional processes including epigenetic influences.

A consequence of a systems perspective on cancer biology is the growing
understanding that the processes involved are highly dynamic, very subtle, and
increasingly defy the standard paradigm of carcinogenesis. As Hlatky and Hah-
nfeldt (2014) put it,
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...[A] vast number of direct observations at the level of tumor
progression are showing interactions of cancer cells with themselves
and with cells of the host, may not only promote, but also slow,
stop, or even reverse a carcinogenesis course... One is confronted
with the realization that cancer risk determination from exposures
to carcinogenic agents not only requires a multiscale effort to link
the various levels at which data are available (from molecular to cel-
lular to tissue to epidemiologic), but that the risk itself is influenced
at multiple scales, having substantial population- and tissue-level
components...

Indeed, as the fundamental study by Folkman et al. (1989) put it,

A distinguishing feature of most pre-neoplastic lesions is their
lack of obvious neovascularization, as compared with the resulting
neoplasias which are typically highly angiogenic. The ‘switch’ from
the pre-vascular state to the vascularized stage may be followed by
an increase in growth rate and metastasis.

Here, we use the DRT to construct a set of relatively simple statistical mod-
els describing how environmental and social exposures drive the expression of
malignant phenotypes in complex regulatory networks for which suppression
is an ongoing interactive process, with constant low levels of malignancy as a
‘normal’ condition of multicellularity.

As with regression models, more complicated versions are possible, and these
can, perhaps, be fitted to data. And as with all such approaches, in addition to
insight, scientific dividends lie in the empirical comparison of similar systems
under different, or different systems under similar, conditions and dynamics.

2 The Data Rate Theorem

We assume, as do Schattler and Ledzewicz, that the cancer development/cancer
control system has been placed in a nonequilibrium – but, in this case, inher-
ently unstable – steady state kept from large-scale explosive tumor growth by a
constant flow of externally-imposed control signals. Sufficiently fine-scale search
would, however, always find some positive and fluctuating level of malignancy,
in this model.

At first order near that steady state, an n-dimensional vector of system
parameters at time t, xt, determines system development at time t+1 according
to the relation

xt+1 = Axt + Stochastic and Control terms (1)

where A is an n× n matrix, and the stochastic and control loop terms are also
linear. The essence of the Data Rate Theorem (Nair et al. 2007) in this case
is that the rate control information H needed to prevent explosive instability is

4

PeerJ PrePrints | https://doi.org/10.7287/peerj.preprints.1709v1 | CC-BY 4.0 Open Access | rec: 4 Feb 2016, publ: 4 Feb 2016



determined by the relation

H > log[|det(Au)|] ≡ α0 (2)

where det is the determinant and Au is the factored-out submatrix of A having
eigenvalues ≥ 1. Since the left hand side of Eq. (2) is an information measure,
the right hand side is interpreted as the rate at which the system generates
‘topological information’. Generalizing to more complex structures, for stabil-
ity the rate of control information must be greater than the rate at which an
inherently unstable system generates topological information.

Given the relatively fixed nature – by evolution and individual development
– of the immune/cancer interaction network, the source of ‘topological infor-
mation’ is the sum total of ‘environmental insult’, in a large sense, which we
write as ‘ρ’. Under such insult, the control system responds, and Eq.(2) can be
written as

H(ρ) > f(ρ)α0 (3)

where f(0)α0 is to be interpreted as the rate at which the system generates
topological information when unperturbed by environmental exposures. What,
then, are the functions H(ρ) and f(ρ)?

We can approximateH(ρ) using a Black-Scholes approach (Black and Scholes
1973).

3 The cost of regulation

Take H(ρ) as the control information rate ‘cost’ of stability at the level of
environmental insult ρ. What is the mathematical form ofH(ρ) under conditions
of volatility i.e., variability in ρ proportional to it? Let

dρt = g(t, ρt)dt+ bρtdWt (4)

where dWt is taken as white noise and the function g(t, ρ) will ‘fall out’ of the
calculation on the assumption of certain regularities.

Let H(ρt, t) be the minimum needed incoming rate of control information
under the Data Rate Theorem, and expand in ρ using the Ito chain rule (Protter
1990)

dHt = [∂H/∂t+ g(ρt, t)∂H/∂ρ+
1

2
b2ρ2t∂

2H/∂ρ2]dt

+[bρt∂H/∂ρ]dWt (5)

Define a quantity L as a Legendre transform of the rate H, by convention
having the form

L = −H+ ρ∂H/∂ρ (6)

Since H is an information index, it is a kind of free energy in the sense of
Feynman (2000) and L is a classic entropy measure.
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Heuristically, replacing dX with ∆X in these expressions and applying
Eq.(5),

∆L = (−∂H/∂t− 1

2
b2ρ2∂2H/∂ρ2)∆t (7)

As in the classical Black-Scholes model (Black and Scholes 1973), the terms
in g and dWt ‘cancel out’, and the effects of noise are subsumed into the Ito
correction factor, a regularity assumption making this an exactly solvable but
highly approximate model.

The conventional Black-Scholes calculation takes ∆L/∆T ∝ L. Here, at
nonequilibrium steady state, we assume ∆L/∆t = ∂H/∂t = 0, so that

−1

2
b2ρ2∂2H/∂ρ2 = 0 (8)

By inspection,
H = κ1ρ+ κ2 (9)

where the κi are nonnegative constants.
Taking the same level of approximation, we assume f(ρ) in Eq.(3) can be

similarly expressed as κ3ρ+ κ4 so that the stability relation becomes

κ1ρ+ κ2
κ3ρ+ κ4

> α0 (10)

At low ρ the stability condition is κ2/κ4 > α0, and at high ρ it becomes
κ1/κ3 > α0. If κ2/κ4 � κ1/κ3, then at some intermediate value of ρ the
essential inequality may be violated, leading to uncontrolled tumor growth. See
figure 2.

A second line of argument leads in a similar direction.

4 Information bottleneck

A different possible approach to control system dynamics uses the information
bottleneck method of Tishby et al. (1999). The underlying conceit is that the
control information needed to stabilize an inherently unstable system, which
we have written as H, can be used to define an average distortion measure in
a rate distortion calculation. This requires an iterated application of the Rate
Distortion Theorem (RDT) (Cover and Thomas 2006) to a control system in
which a series of ‘control orders’ yn = y1, ..., yn, having probability p(yn), is
sent, and the outcomes monitored as ŷn = ŷ1, ..., ŷn. The distortion measure to
be associated with the RDT is now the minimum necessary control information
for system stability, written as H(yn, ŷn). We can thus, analogously to the
standard RDT, define a new average ‘distortion’ Ĥ as

Ĥ ≡
∑
yn

p(yn)H(yn, ŷn) ≥ 0 (11)
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Figure 2: The horizontal line represents the critical limit α0. If κ2/κ4 � κ1/κ3,
at some intermediate value of accumulated environmental insult ρ the relation
(κ1ρ + κ2)/(κ3ρ + κ4) falls below that limit, and malignant growth becomes
uncontrolled.
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It then is possible to define a new, iterated, Rate Distortion Function (RDF)
R(Ĥ) in a standard manner. The central point of any RDF is that it is convex in
the distortion measure, and convexity is a very powerful mathematical condition
in describing system dynamics (e.g., Ellis 1985).

For simplicity, we take R to be a Gaussian RDF in Ĥ,

R(Ĥ) = 1/2 log[σ2/Ĥ] Ĥ < σ2

R(Ĥ) = 0 Ĥ ≥ σ2 (12)

Again following Feynman (2000), information must be recognized as a form
of free energy and a Rate Distortion Function itself, as the minimum channel
capacity needed to achieve a given level of average distortion, can be used to
define an ‘entropy’ as the Legendre transform

S = R(Ĥ)− ĤdR/dĤ (13)

Taking Onsager’s nonequilibrium thermodynamics perspective (de Groot
and Mazur 1984), the dynamics can, in first order, be characterized in terms
of the gradients of S, and we invoke an extended analog using the stochastic
differential equation (Protter 1990)

dĤt = [−µdS/dĤt − F (ρ)]dt+ βĤtdWt

= [
µ

2Ĥt

− F (ρ)]dt+ βĤtdWt (14)

where dWt is standard white noise, and F (ρ) is a function of accumulated en-
vironmental insult ρ, that, given an essential ‘topological factoring’ of the can-
cer/control network, is the only possible determinant of the rate of generation
of system ‘topological information’. β represents the magnitude of a ‘volatility’
noise term independent of σ2 in the definition of R: higher H, higher stochastic
jitter.

Applying the Ito chain rule (Protter 1990) to the expectation of Ĥ2
t , it

becomes possible to explore the second moment stability of the system (Khash-
minskii 2012). A simple calculation finds that the expectation for Ĥ2 cannot be
a real number unless the discriminant of a quadratic equation is nonnegative,
giving a necessary condition for stability as

F (ρ) ≥ β√µ (15)

We force closure on the model by taking F (ρ) as given by Eq.(10), so that,
again,

κ1ρ+ κ2
κ3ρ+ κ4

≥ β√µ ≡ α0 (16)

with similar restrictions on the constants κi for stability.
Other channel forms will have analogous stability limit conditions on ρ as a

consequence of the convexity of the RDF. It is of interest to carry the calculation
through for the ‘real’ channel, having R(Ĥ) = σ2/Ĥ.
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5 Turbulence

A third line of argument, adapted from the air traffic control model of Hu et
al. (2001), involves geodesic streamline flow in a topological quotient space for
cellular and tissue dynamics. Given the inherent instability of multicellularity,
‘acceptable’ dynamic trajectories can be envisioned as constrained to geodesic
streamlines in a large ‘biospace’ M that have been factored according to a
maximum microtumor crossection r. The equivalence class of such streamlines
is written as W (r), and the topological quotient space as M/W (r), which may
be very large indeed. Deviations from geodesics in this quotient space represent
biological trajectories having microtumors with crossection greater than r. Let
Kt be an appropriate index of the degree of deviation from such an ‘acceptable’
geodesic trajectory at time t. We can express the dynamics of Kt, in first order,
by the stochastic differential equation

dKt ≈ aKtdt+ σKtdWt (17)

where a, σ ≥ 0 and dWt represents white noise. Applying the Ito chain rule to
log[Kt], we obtain

d log[Kt] ≈ (a− σ2/2)dt+ σdWt (18)

so that, if 2a ≡ α0 < σ2, the expectation E[K]t → 0. Our assertion is that the
‘noise’ σ2 is again H(ρ)/f(ρ) from Eq.(3), since ρ is the only possible index for
the generation of topological information by biological instability, and H is the
control signal: everything else has been factored out through the construction of
geodesics in M/W (r). We again invoke the closure relation of Eq.(10).

The ‘characteristic area’ method of Wallace (2016 Section 3) can now be
used to extend this model to metastatic tumor proliferation along networks of
tissues, as opposed to the dynamics of a biochemical regulatory network studied
here.

A slightly more sophisticated model might use the product of the character-
istic dimension r and its rate of growth, dr/dt, i.e., an index r̂ ∝ dr2/dt, leading
to an equivalence class W (r̂) and a quotient topology on M/W (r̂).

6 Cognitive symmetry breaking

A deeper approach to the dynamics of cancer regulation is via the ‘cognitive
paradigm’ of Atlan and Cohen (1998), who recognized that the immune re-
sponse is not simply an automatic reflex, but involves active choice of a par-
ticular response to insult from a larger repertoire of those possible to it. Such
choice reduces uncertainty in a formal manner, and implies the existence of an
information source. See Wallace (2012, 2015) for details.

Given an information source associated with an inherently unstable, rapid-
fire cognitive cancer control system – characterized as ‘dual’ to it – an equiva-
lence class algebra can be constructed by choosing different system origin states
a0 and defining the equivalence of two subsequent states at times m,n > 0,
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written as am, an, by the existence of high-probability meaningful paths con-
necting them to the same origin point. Disjoint partition by equivalence class,
essentially similar to orbit equivalence classes in dynamical systems, defines a
symmetry groupoid associated with the cognitive process. Groupoids represent
generalizations of the group concept in which there is not necessarily a product
defined for each possible element pair (Weinstein 1996). The simplest example
would be a disjoint union of groups.

The equivalence classes define a set of cognitive dual information sources
available to the inherently unstable cancer regulation system, creating a large
groupoid, with each orbit corresponding to a transitive groupoid whose disjoint
union is the full groupoid. Each subgroupoid is associated with its own dual in-
formation source, and larger groupoids will have richer dual information sources
than smaller.

Let XGi
be the cancer control system’s dual information source associated

with the groupoid element Gi, and let Y be the information source associated
with incoming environmental stress, in a large sense See Wallace (2012, 2015)
for details of how environmental regularities imply the existence of an environ-
mental information source.

We can construct a Morse Function (Pettini 2007) as follows.
Let H(XGi

, Y ) ≡ HGi
be the joint uncertainty of the two information

sources. Define a Boltzmann-like pseudoprobability as

P [HGi
] =

exp[−HGi
/κH]∑

j exp[−HGj/κH]
(19)

where κ is an appropriate constant depending on the particular system and its
linkages to control signals, and the sum is over the different possible cognitive
modes of the full system.

A ‘free energy’ Morse Function F can be defined as

exp[−F/κH] ≡
∑
j

exp[−HGj
/κH] (20)

Given the inherent groupoid structure, it is possible to apply an extension
of Landau’s picture of phase transition (Pettini 2007). In Landau’s formulation
of spontaneous symmetry breaking, phase transitions driven by temperature
changes occur as alteration of system symmetry, with higher energies at higher
temperatures being more symmetric. The shift between symmetries is highly
punctuated in the temperature index, here the minimum necessary control in-
formation rate H under the Data Rate Theorem for unstable control systems.
Typically, such arguments involve only a very limited number of possible phases.

Decline in the richness of control information H, or in the ability of that
information to influence the system, characterized by κ, can lead to punctu-
ated decline in the complexity of cognitive process possible within the cancer
control system, driving it into a ground state collapse in which tumors prolif-
erate beyond the acceptable topological crossection r (or the expanded index
r̂ ∝ dr2/dt).
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The essential feature is the integrated environmental insult ρ. Most of the
topology of the inherently unstable multicellular system has been ‘factored out’
via the construction of geodesics in a topological quotient spaceM/W (r) or
M/W (r̂), so that ρ remains the only possible index of the rate of topological
information generation for the DRT. Thus, in Eqs(19) and (20), H is again
replaced by the ratio H/f(ρ), where f is a dimensionless monotonic increasing
positive function.

For a fixed H, increasing ρ is then equivalent to lowering the ‘temperature’,
and the system passes from high symmetry ‘free flow’ to different forms of ‘crys-
talline’ structure – broken symmetries representing onset of significant tumor
growth.

Again, making an exactly-solvable Black-Scholes approximation, the ‘cost’
of the control information H can, in first order, be expressed in terms of a linear
function of ρ and again, in first order, taking f(ρ) ≈ κ3ρ + κ4 > 0, we obtain
an effective ‘temperature’ as

κH(ρ)/f(ρ) ≈ κ1ρ+ κ2
κ3ρ+ κ4

(21)

If κ2/κ4 � κ1/κ3, accumulated environmental insult will quickly bring the
effective ‘temperature’ below some critical value, triggering collapse into a dys-
functional ground state of tumor proliferation.

7 Discussion and conclusions

Following Eq.(10) et seq., at a low level of cumulative environmental insult ρ,
the stability condition across a spectrum of mathematical models of tumor pro-
liferation is κ2/κ4 > constant. At a high level, it is asymptotically κ1/κ3 >
constant. If κ2/κ4 � κ1/κ3, then, according to figure 2, at some point the cu-
mulative effects of environmental insult may overwhelm the ability of the cancer
control system to contain ‘normal’ conditions of malignancy to an acceptable
level, initiating significant tumor growth.

Generalizations of the models might involve better assessment of the func-
tions H(ρ) and f(ρ) in the various levels of DRT argument. Dynamics will
be driven both by normal aging and by the deleterious effect of exposure itself
on the control network that can be viewed as accelerated aging, increasing the
network constant α0 itself. Similar perspectives can, of course, be applied to
a variety of pathological developmental trajectories, for example Alzheimer’s
disease (Wallace 2015).

Not to belabor the matter, both chemical and, for humans, ‘social’, ex-
posures, in the context of the mitochondrial burdens of aging, can trigger the
chronic inflammation and other mechanisms leading to carcinogenesis (e.g., Wal-
lace 2015 Ch. 8). A successful public health attack involves reduction of such
exposures at the population level, most typically through improvements in living
and working conditions.
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