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ABSTRACT6

Organizations like Mozilla, Microsoft, and Apple are flooded with thousands of automated

crash reports per day. Although crash reports contain valuable information for debugging,

there are often too many for developers to examine individually. Therefore, in industry, crash

reports are often automatically grouped together in buckets. Ubuntu’s repository contains

crashes from hundreds of software systems available with Ubuntu. A variety of crash report

bucketing methods are evaluated using data collected by Ubuntu’s Apport automated crash

reporting system. The trade-off between precision and recall of numerous scalable crash

deduplication techniques is explored. A set of criteria that a crash deduplication method

must meet is presented and several methods that meet these criteria are evaluated on a new

dataset. The evaluations presented in this paper show that using off-the-shelf information

retrieval techniques, that were not designed to be used with crash reports, outperform

other techniques which are specifically designed for the task of crash bucketing at realistic

industrial scales. This research indicates that automated crash bucketing still has a lot of

room for improvement, especially in terms of identifier tokenization.
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1 INTRODUCTION9

Ada is a senior software engineer at Lovelace Inc., a large software development10

company. Lovelace has just shipped the latest version of their software to hundreds11

of thousands of users. A short while later, as Ada is transitioning her team to12

other projects, she gets a call from the quality-assurance team (QA) saying that13

the software she just shipped has a crashing bug affecting two-thirds of all users.14

Worse yet, Ada and her team can’t replicate the crash. What would really be15

helpful is if every time that crash was encountered by a user, Lovelace would16

automatically receive a crash report [Seo and Kim], with some context information17

about what machine encountered the crash, and a stack trace [Seo and Kim] from18

each thread. Developers consider stack traces to be an indispensable tool for19

debugging crashed programs—a crash report with even one stack trace will help20

fix the bug significantly faster than if there were had no stack traces available at21

all [Schröter et al.].22

Luckily for Ada, Lovelace Inc. has gone through the monumental effort of23

setting up an automated crash reporting system, much like Mozilla’s Crash Error24
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Reports [Mozilla Corporation], Microsoft’s WER [Glerum et al.], or Apple’s Crash25

Reporter [app]. Despite the cost associated with setting up such a system, Ada26

and her team find the reports it provides are invaluable for collecting telemetric27

crash data [Ahmed et al.].28

Unfortunately, for an organization as large as Lovelace Inc., with so many users,29

even a few small bugs can result in an unfathomable amount of crash reports. As30

an example, in the first week of 2016 alone, Mozilla received 2 189 786 crash31

reports, or about 217 crashes every minute on average.1 How many of crash32

reports are actually relevant to the bug Ada is trying to fix?33

The sheer amount of crash reports present in Lovelace’s crash reporting system34

is simply too much for one developer, or even a team of developers, to deal with35

by hand. Even if Ada spent only one second evaluating a single crash report, she36

would still only be able to address 1/3 of Lovelace’s crash reports received during37

one day of work. Obviously, an automated system is needed to associate related38

crash reports together, relevant to this one bug, neatly in one place. All Ada would39

have to do is to select a few stack traces from this crash bucket [Glerum et al.],40

and get on with debugging her application. Since this hypothetical bucket has41

all crash stack traces caused by the same bug, Ada could analyze any number of42

stack traces and pinpoint exactly where the fault is and how to fix it.43

The questions that this paper seeks to answer are:44

RQ1: What are effective, industrial-scale methods of crash report bucketing?
RQ2: How can these methods be tuned to increase precision or recall?

45

This paper will evaluate existing techniques relevant to crash report bucketing,46

and propose a new technique that attempts to handle this fire hose of crash47

reports with industrially relevant upper bounds (O (logn) per report, where n is48

number of crash reports). In order to validate new techniques some of the many49

techniques described in the literature are evaluated and compared. The results of50

the evaluation shows that techniques based on the standard information retrieval51

statistic, term frequency × inverse document frequency (tf–idf), do better than52

others, despite the fact these techniques discard information about what is on the53

top of the stack and the order of the frames on the stack.54

1.1 Contributions55

This paper presents PartyCrasher, a technique that buckets crash reports. It56

extends the work done by Lerch and Mezini [Lerch and Mezini] to the field of crash57

report deduplication and show that despite its simplicity, it is quite effective. This58

paper contributes:59

1. a criterion for industrial-scale crash report deduplication techniques;60

2. replication of some existing methods of deduplication and evaluations of61

these methods on open source crash reports, providing evidence of how well62

each technique performs at crash report bucketing;63

1https://crash-stats.mozilla.com/api/SuperSearch/?date=>\%3d2016-01-01&date=

<\%3d2016-01-08 The total number of crashes will slowly increase over time and then

eventually drop to zero due to Mozilla’s data collection and retention policies.
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3. implementation of these methods in an open source crash bucketing frame-64

work;65

4. evaluation based on the automated crashes collected by the Ubuntu project’s66

Apport tool, the only such evaluation at the time of writing;67

5. a bug report deduplication method that outperforms other methods when68

contextual information is included along with the stack trace.69

1.2 What makes a crash bucketing technique useful for industrial scale crash70

reports?71

The volume, velocity, variety, and veracity (uncertainty) of crash reports makes72

crash report bucketing a big-data problem. Any solution needs to address concerns73

of big-data systems especially if it is to provide developers and stakeholders with74

value [20]. Algorithms that run in O

(

n2
)

are unfeasible for the increasingly large75

amount of crash reports that need to be bucketed. Therefore, an absolute upper-76

bound of O (n logn) is chosen for evaluated algorithms.77

The methods evaluated in this paper were methods found in the literature, or78

methods that the authors felt possibly had promise. Methods that were evaluated79

were restricted to those that met the following criteria. The criteria were chosen80

to match the industrial scenario as described in the introduction.81

1. Each method must scale to industrial-scale crash report deduplication re-82

quirements. Therefore, it must run in O (n logn) total time. Equivalently,83

each new, incoming crash must be able to be assigned a bucket in O (logn)84

time or better.85

2. No method may delay the bucketing of an incoming crash report significantly,86

so that up-to-date near-real-time crash reports, summaries, and statistics are87

available to developers at all times. This requires the method to be online.88

3. No method may require developer intervention once it is in operation, or89

require developers to manually categorize crashes into buckets. This requires90

the method to be unsupervised.91

4. No method may require knowledge of the eventual total number of buckets92

or any of their properties beforehand. Each method must be able to increase93

the number of buckets only when crashes associated with new faults arrive94

due to changes in the software system for which crash reports are being95

collected. This requires the method to be non-stationary.96

Several deduplication methods are evaluated. They can be categorized into97

two major categories. First, several methods based on selecting pre-defined parts98

of a stack to generate a signature were evaluated. The simplest of these methods99

is the 1Frame method, that selects the name of the function on top of the stack100

as a signature. All crashes that have identical signatures are then assigned to a101

single bucket, identified by the signature used to create it.102
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#1 0x00002b344498a150 in CairoOutputDev::setDefaultCTM () from /usr/lib/libpoppler-glib.so.1

#2 0x00002b344ae2cefc in TextSelectionPainter::TextSelectionPainter () from /usr/lib/libpoppler.so.1

#3 0x00002b344ae2cff0 in TextPage::drawSelection () from /usr/lib/libpoppler.so.1

#4 0x00002b344498684a in poppler_page_render_selection () from /usr/lib/libpoppler-glib.so.1

Method Signature
1Frame CairoOutputDevsetDefaultCTM

2Frame CairoOutputDev::setDefaultCTM TextSelectionPainter::TextSelectionPainter

3Frame CairoOutputDev::setDefaultCTM TextSelectionPainter::TextSelectionPainter TextPage::drawSelection

1Addr 0x00002b344498a150

1File No Signature (no source file name given in the stack)
1Mod /usr/lib/libpoppler-glib.so.1

Method Tokenization
No tokenization #1 0x00002b344498a150 in CairoOutputDev::setDefaultCTM () from /usr/lib/libpoppler-glib.so.1

Lerch 0x00002b344498a150 cairooutputdev setdefaultctm from libpoppler glib

Space #1 0x00002b344498a150 in CairoOutputDev::setDefaultCTM () from /usr/lib/libpoppler-glib.so.1

Camel 1 0 x 00002 b 344498 a 150 in Cairo Output Dev set Default CTM from usr lib libpoppler glib

so 1

Figure 1. An example stack trace (top), its various signatures (middle), and
various tokenizations of the top line of the trace (bottom).

Similarly, signature methods 2Frame and 3Frame concatenate the names of the103

two or three functions on top of the stack to produce a signature. 1Addr selects104

the address of the function on top of the stack to generate a signature rather105

than the function name. 1File selects the name of the source file in which the106

function on top of the stack is defined to generate a signature, and 1Mod selects107

either the name of the file or the name of the library, depending on which is108

available. Figure 1 shows an example stack trace and how the various signatures109

are extracted from it using these methods. All of the signature-based methods,110

as implemented, run in O (n logn) total time or O (logn) amortized time.111

The second category of methods are those based on tf–idf [Salton and McGill]112

and inverted indices, as implemented by the off-the-shelf information-retrieval113

software ElasticSearch 1.6 [Elasticsearch BV]. tf–idf is a way to normalize a token114

based on both on its occurrence in a particular document (in our case, crash115

reports), and inversely proportional to its appearance in all documents. That116

means that common tokens that appear frequently in nearly all crash reports117

have little discriminative power compared to tokens that appear quite frequently118

in a small set of crash reports.119

1.3 Background120

Of course, the idea of crash bucketing is not new; Mozilla’s system performs121

bucketing [Dhaliwal et al., Ahmed et al.], as does WER [Glerum et al.]. Many122

approaches make the assumption that two crash reports are similar if their stack123

traces are similar. Consequently, researchers [Brodie et al., Liu and Han, Modani et al.,124

Bartz et al., Glerum et al., Dhaliwal et al., Dang et al., Wang et al., Lerch and Mezini,125

Wu et al.] have proposed various methods of finding similar stack traces, crash re-126

port similarity, crash report deduplication, and crash report bucketing. In order to127

motivate the evaluation and design choices it is necessary to look at what already128

has been proposed.129

Empirical evidence suggests that a function responsible for crash is often at or130

near the top of the crash stack trace [Brodie et al., Schröter et al., Wu et al.]. As131

such, many bucketing heuristics employ higher weighting for grouping functions132
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near the top of the stack [Modani et al., Glerum et al., Wang et al.]. Many of133

these methods are similar to or extensions of the 1Frame method, that assumes134

that the function name on the top of the stack is the most (or only) important135

piece of information for crash bucketing. However, at least one study refutes the136

effectiveness of truncating the stack trace [Lerch and Mezini]. The most influential137

discriminative factors seem to be function name [Lerch and Mezini] and module138

name [Bartz et al., Glerum et al.].139

Lerch and Mezini [Lerch and Mezini] did not directly address crash report140

bucketing; they addressed bug report deduplication through stack trace similar-141

ity. They deduplicated bug reports that included stack traces by comparing the142

traces with tf–idf, which is usually applied to natural language text. Although143

crash bucketing was implicit in this approach to bug-report-deduplication, the144

authors did not compare this technique against the other crash report dedupli-145

cation techniques. Unlike the signature-based methods, tf–idf-based methods do146

not consider the order that frames appear on the stack. A function at the top of147

the stack is treated identically to a function at the bottom of the stack.148

Their method of bug report deduplication is applied to to crash report dedu-149

plication and evaluated in this paper, both excluding contextual data from the150

crash report as suggested by Lerch and Mezini [Lerch and Mezini] and including151

it. These methods are listed in the evaluation section as the Lerch method and152

the LerchC method, respectively. The contextual data is collected at the same153

time as the stack trace by automated crash reporting tools. Variants of the Lerch154

and LerchC methods were also evaluated. The variants replace the tokenization155

pattern used in Lerch and LerchC with a different tokenization pattern. These156

methods were named Space, SpaceC, Camel, and CamelC. The name indicates157

that tokenization is employed, followed by a C if the evaluation included the en-158

tire context of the stack trace along with the stack trace itself. Figure 1 shows159

how each method tokenizes a sample stack frame.160

Modani et al. [Modani et al.] provide two techniques to improve performance161

of the various other algorithms. These techniques are inverted indexing and top-k162

indexing, both of which are evaluated in this paper. Inverted indexing is em-163

ployed to improve the performance of all of the tf–idf-based methods including164

Lerch and LerchC (however Modani et al. did not use tf–idf in their evaluation).165

The implementation is provided by ElasticSearch 1.6 [Elasticsearch BV]’s index-166

ing system. Top-k indexing is employed to evaluate all of the methods that use167

the top portions of stacks, including 1Frame, 2Frame, 3Frame, 1File, etc.168

1.4 Methods Not Appearing In This Report169

Mozilla’s deduplication technique, at the time of writing, as it is implemented170

in Socorro [soc] requires a large number of hand-written regular expressions to171

select, ignore, skip, or summarize various parts of the crash report. These must172

be maintained over time by Mozilla developers and volunteers in order to stay173

relevant to crashes as versions of Firefox are released. This technique typically174

uses one to three of the frames of the stack and likely has similar performance to175

1Frame, 2Frame, and 3Frame. Furthermore, the techniques employed by Mozilla176
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are extremely specific to their major product, Firefox, while the evaluation dataset177

contains crashes from 616 other systems.178

In 2005, Brodie et al. [Brodie et al.] presented an approach that normalizes the179

call stack to remove non-discriminative functions as well as flattening recursive180

functions, and compares stacks using weighted edit distance. Since pairwise stack181

matching would be unfeasible on large data sets–having a minimum worst case182

run-time of O

(

n2
)

–they index a hash of the top k function names at the top of183

the stack and use a B+Tree look-up data structure. Several approaches since have184

used some stack similarity metric, and found that the most discriminative power185

is in the top-most stack frames—i.e., the functions that are closer to the crash186

point.187

Liu and Han[Liu and Han] grouped crashes together if they suggest the same188

fault location. The fault locations were found using a statistical debugging tool189

called SOBER [Liu et al.], that, trained on failing and passing execution traces190

(based on instrumenting Boolean predicates in code [Liblit et al.]), returns a ranked191

list of possible fault locations. Methods involving full instrumentation [Liu and Han]192

or static call graph analysis [Wu et al.] are also deemed unfeasible, as they are193

not easy to incorporate into already existing software, and often incur pairwise194

comparisons to bucket regardless of instrumentation cost. Methods that already195

assume buckets such as Kim et al. [Kim et al.] and Wu et al. [Wu et al.] are dis-196

regarded as well.197

Modani et al. [Modani et al.] propose several algorithms. The first algorithm198

employs edit distance, requiring O

(

n2
)

total time. The second and third algo-199

rithms are similar, employing longest common subsequences and longest common200

prefixes, respectively. The longest common subsequence problem is, in general,201

NP-hard in the number of sequences (corresponding to crashes for the purposes202

of this evaluation). The longest common prefix algorithm can be implemented203

sufficiently efficiently for the purposes of this evaluation, but was not evaluated204

here because it must produce at least as many buckets as the 1Frame algorithm,205

that already creates too many buckets. Thus no Modani et al. [Modani et al.]206

comparison algorithms were used.207

In addition to comparison algorithms that might be used for deduplication di-208

rectly, Modani et al. [Modani et al.] also provide several algorithms for identifying209

frames that may be less useful in each stack and removing them from those stacks.210

These algorithms would then be combined with their other algorithms and are211

not evaluated in this paper. One such algorithm removes frequent frames, such as212

main() that occur in many stacks. A similar effect is gained from tf–idf, because213

the inverse document frequency reduces the weight of terms that are found in214

many documents (crashes). These filtering techniques were not evaluated.215

Bartz et al. [Bartz et al.] also used edit distance on the stack trace, but a216

weighted variant with weights learned from training data. Consequently, they217

were able to consider other data in the crash report aside from the stack trace.218

The weights learned suggested some interesting findings: substituting a module in219

a call stack resulted in a much higher distance; as well, the call stack edit distance220

was found to be the highest-weighted factor, despite the consideration of other221
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crash report data, confirming the intuition in the literature of the stack trace’s222

importance.223

The methods based on edit distance—viz., Brodie et al. [Brodie et al.], Modani224

et al. [Modani et al.], Bartz et al. [Bartz et al.]2—are disqualified due to their225

requirement of pairwise comparisons between stack traces, with an upper-bound226

of O

(

n2
)

.227

Schröter et al. [Schröter et al.] empirically studied developers’ use of stack228

traces in debugging and found that bugs are more likely to be fixed in the top229

10 frames of their respective crash stack trace, further confirming the surprising230

significance of the top-k stack frames in crash report bucketing, which is also231

corroborated more recently by Wu et al. [Wu et al.].232

Glerum et al. [Glerum et al.] describe the methods used by Microsoft’s Win-233

dows Error Reporting (WER) service. Although they tout having over 500 heuris-234

tics for crash report bucketing—-many derived empirically—a large bulk of the235

bucketing is attributed to top-1 module offset; over 91% of bucketing is attributed236

to eight heuristics alone.237

To avoid the O(n2) pairwise comparisons common to many of the previous ap-238

proaches, Dhaliwal et al. [Dhaliwal et al.] proposed a weighted edit distance tech-239

nique that creates representative stack traces—a probability distribution based240

on all stack traces seen within a bucket. Thus, instead of computing similarity241

against all stack traces in a bucket, one would only use the weights derived from242

all stack traces in the bucket simultaneously.243

The method described in Dhaliwal et al. [Dhaliwal et al.] is not included in244

the evaluation because it first subdivides buckets produced by the 1Frame dedupli-245

cation method, and requires O

(

|B|2
)

total time to run, where |B| is the number246

of buckets. Its use of the 1Frame method already produces a factor of 1.67 times247

too many buckets. Despite the optimization in Dhaliwal et al. [Dhaliwal et al.]248

that attempts to avoid O

(

n2
)

behaviour, it has O

(

|B|2
)

behaviour. Since the249

number of buckets increases over time, though at a slower rate, this method will250

eventually become computationally unfeasible if old data is not discarded.251

Kim et al. [Kim et al.] constructed Crash Graphs, that are simply directed252

graphs using stack frames as nodes and their adjacency to other stack frames as253

edges. This also proved to be a useful crash visualization technique.254

Dang et al. [Dang et al.] created the position independent model that places255

more weight on stack frames closer to the top of the stack; and favours stacks256

whose matched functions are similarly spaced from each other. Purporting sig-257

nificantly higher accuracy than previous methods, this technique suffers from a258

proposed O(n3) clustering algorithm.259

Wang et al. [Wang et al.] propose three different methods, that they refer to as260

rules. The first rule requires an incoming crash to be compared to every existing261

crash, requiring O

(

n2
)

time. The second rule compares only the top frame of262

every crash by considering two crashes related if the file names in the top frame263

of the crash are the same. This method is listed in the evaluation as the 1File264

2They first use naïve methods for indexing as well, that is evaluated here
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method. The third rule requires a set of common “frequent closed ordered sub-sets”265

of stack frames to be extracted from known “crash types” that are pre-categorized266

groups of crashes that have been bucketed using a separate method. The third267

rule requires O

(

|B|2
)

total time where |B| is the number of buckets created by268

the other method. Specifically the authors use the method of comparing the top269

frame from each stack, that is evaluated in this paper as the 1Frame method.270

This method appears to create a number of buckets roughly proportional to the271

number of seen crashes, n. Thus, the third rule requires O

(

n2
)

total time, though272

with a low coefficient. The only method from Wang et al. [Wang et al.] directly273

evaluated in this paper is the method of comparing file names at the top of the274

stack.275

Thus, there are many approaches for bucketing crash reports and crash report276

similarity, but some are less realistic or industrially applicable than others. Any277

new work in the field must attempt to compare itself against some of the prior278

techniques such as Lerch and Mezini [Lerch and Mezini].279

2 METHODOLOGY280

First, the requirements for an industrial-scale automated crash deduplication sys-281

tem were characterized by looking at systems that are currently in use. Then,282

a variety of methods from the existing literature were evaluated for applicability283

to the task of automated crash report deduplication. Several methods that met284

the requirements were selected. A general purpose Python framework in which285

any of the selected deduplication methods could be supported and evaluated was286

developed, and then used to evaluate all of the methods by simulating the process287

of automated crash reports arriving over time. Additionally, a dataset that could288

be used as a gold set to judge the performance of such methods was obtained. The289

dataset was then filtered to include only crash reports that had been deduplicated290

by human developers and volunteers.291

Various approaches of automatic crash report categorization (the exact prob-292

lem that Ada is tasked with solving) is simulated. First, a crash report arrives293

with no information other than what was gathered by the automated reporting294

mechanisms on the user’s machine. This report might include a description writ-295

ten by the user of what they were doing when the crash occurred. However, these296

descriptions are often full of foul language as opposed to useful information for297

debugging. Figure 3 is an example of one of the crash reports used in the evalua-298

tion with a user-submitted description on the second line, metadata in the middle,299

and a stack trace on the bottom.300

2.1 Mining Crash Reports301

The first step in the evaluation procedure is mining of crash reports from Ubuntu’s302

bug repository, Launchpad [Canonical Ltd.]. This was done using a modified303

version of Bicho [23], a software repository mining tool.3 Over the course of one304

month, Bicho was able to retrieve 126 609 issues from Launchpad, including 80 478305

3https://github.com/orezpraw/Bicho/
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stack traces in 44 465 issues. Some issues contain more than one stack trace. For306

issues that contained more than one stack trace, the first stack trace posted to that307

issue was selected, yielding 44 465 issues with crash reports and stack traces. The308

first stack trace is selected because it is the one that arrives with the automated309

crash report, generated by the instrumentation on the user’s machine.310

Ubuntu crash reports were used for the evaluation because they are automati-311

cally generated and submitted but many of them have been manually deduplicated312

by Ubuntu developers and volunteers. Other data sources, such as Mozilla’s Crash313

Reports have already been deduplicated by Mozilla’s own automated system, not314

by humans.315

Next, the issues were put into groups based on whether they were marked as316

duplicates of another issue, resulting in 30 664 groups of issues. These groups are317

referred to as “issue buckets” for the remainder of the paper, to prevent confound-318

ing with groups of crash reports, that will be referred to as “crash buckets.” This319

dataset is available!4320

2.1.1 Stack Trace Extraction321

Each issue and stack trace obtained from Ubuntu is formatted as plain text, as322

shown in Figure 3. They were then parsed into JSON-formatted data with indi-323

vidual fields for each item, such as address, function name, and which library the324

function came from. Unfortunately, this formatting is not always consistent and325

may be unusable. For example, some stack traces contain unintelligible binary326

data in place of the function name. This could be caused by memory corruption327

when the stack trace was captured. 2 216 crash reports and stack traces were328

thrown out because their formatting could not be parsed, leaving 41 708 crash329

reports with stack traces.330

2.1.2 Crash Report and Stack Trace Data331

Issues were then filtered to only those that had been deduplicated by Ubuntu332

developers and other volunteers, yielding 15 293 issues with 15 293 stack traces333

in 3 824 issue buckets. These crash reports were submitted to Launchpad by the334

Apport tool.5 They were collected over a one month period. Because Launchpad335

places restrictions on how often the Launchpad API can be used to request data,336

and each crash report required multiple requests, it required over 20 seconds to337

download each issue. The crash reports used in the evaluation span 617 different338

source packages, each of which represents a software system. The only commonali-339

ties between them are that they are all written in C, C++, or other languages that340

compile to binaries debuggable by a C debugger, and that they are installed and341

used on Ubuntu. The most frequently reported software system is Gnome6, which342

has 2 154 crash reports with stack traces. This dataset is large, comprehensive343

and covers a wide variety of projects.344

4https://pizza.cs.ualberta.ca/bugkets.txz, augmented over time as more crash re-

ports are mined from the Launchpad Ubuntu issue repository.
5https://launchpad.net/apport
6https://www.gnome.org/
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2.2 Crash Bucket Brigade345

In order to simulate the timely nature of the data, each report is added to a346

simulated crash report repository one at a time. This is done so that no method347

can access data “from the future” to choose a bucket to assign a crash report to. It348

is first assigned a bucket based on the crashes and buckets already in the simulated349

repository, then it is added to the repository as a member of that bucket.350

2.3 Deciding when a Crash is not Like the Others351

For methods based on Lerch and Mezini, there is a threshold value, T , that de-352

termines how often, and when, an incoming crash report is assigned to a new353

bucket. A specific value for T was not described by Lerch and Mezini, so a range354

of different values from 1.0 to 10.0 were evaluated. Higher values of T will cause355

the algorithm to create new buckets more often.356

The threshold value applies to the score produced by the Lucene search engine357

inside ElasticSearch 1.6 [Elasticsearch BV]. Details of this tf–idf based scoring358

method are described within the ElasticSearch documentation.7 The scoring algo-359

rithm is based on tf–idf, but contains a few minor adjustments intended to make360

scores returned from different queries more comparable.361

2.4 Implementation362

The complete implementation of the evaluation presented in this paper is avail-363

able in the open-source software PartyCrasher.8 The implementation includes364

every deduplication method we claimed to evaluate above, a general-purpose dedu-365

plication framework, the programs used to mine and filter the data used for the366

evaluation, the programs that produced the evaluation results, the raw evaluation367

results, and the scripts used to plot them.368

2.5 Evaluation Metrics369

Two families of evaluation metrics were used. These are the BCubed precision,370

recall, and F1-score, and the purity, inverse purity, and F1-score. Both are suit-371

able for characterizing the performance of online non-stationary clustering algo-372

rithms by comparing the clusters that evolve over time to clusters created by373

hand. A comparison of BCubed and purity, along with several other metrics, and374

an argument for the advantages of BCubed over purity is provided in Amigó et375

al. [Amigó et al.]. The mathematical formulae for both metrics can be found in376

Amigó et al. [Amigó et al.]. However, purity also has an advantage over BCubed:377

specifically that it does not require O

(

n2
)

total time to compute whereas BCubed378

does.379

If a method has a high BCubed precision, this means that there would be380

less chance of a developer finding unrelated crashes in the same bucket. This is381

important to prevent crashes caused by two unrelated bugs from sharing a bucket,382

7https://www.elastic.co/guide/en/elasticsearch/guide/1.x/

practical-scoring-function.html
8https://github.com/orezpraw/partycrasher
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possibly causing one bug to go unnoticed since usually a developer would not383

examine all of the crashes in a single bucket.384

If a method has a high BCubed recall, this means that there would be less385

chance of all the crashes caused by a single bug to become separated into mul-386

tiple buckets. Reducing the scattering of a single bug across multiple buckets387

is important as scattering interferes with statistics about frequently experienced388

bugs.389

In contrast, purity and inverse purity focus on finding the bucket in the exper-390

imental results that most closely matches the bucket in the gold set. Then the391

overlap between the two closest matching buckets is used to compute the purity392

and inverse purity metrics, with high purity indicating that most of the items393

in a bucket produced by one of the methods evaluated are also in the matching394

bucket in the gold set. High recall indicates that most of the items in a bucket395

from the gold set are found in the matching bucket produced by the method being396

evaluated.397

The purity method does not, however, completely reflect the goals of the eval-398

uation. Purity and inverse purity do not capture anything besides the overlap399

between the two buckets that overlap the most. So, if a method creates a bucket400

that is 51% composed of crashes from a single bug, the other 49% doesn’t matter.401

That 49% could come from a different bug, or 200 different bugs, but the purity402

would be the same value. It is included in this evaluation for completeness, since403

it was used by Dang et al. [Dang et al.].404

Both metrics can be combined into F-scores. In this evaluation, F1-scores were405

used, placing equal weight on precision and recall (or purity and inverse purity.)406

BCubed and purity can be used with the gold set, hand-made buckets that407

are available from Ubuntu’s Launchpad [Canonical Ltd.] bug tracking system.408

Ubuntu developers and volunteers have manually marked many of the bugs in409

their bug tracker as duplicates. Furthermore, many of the bugs in the bug tracker410

are automatically filed by Ubuntu’s automated crash reporting system, Apport.411

This evaluation uses only bugs that were both automatically filed by Apport and412

manually marked as duplicates of at least one other bug. The dataset is biased to413

the distribution of crashes that are bucketed, which might be different than crashes414

that are not. Conversely, this prevents the evaluation dataset from containing any415

crashes that have not yet evaluated by an Ubuntu developer or volunteer.416

3 RESULTS417

After extracting crash reports from Launchpad, and implementing various crash418

report bucketing algorithms, the performance of these algorithms on the Launch-419

pad gold set was evaluated. Evaluation is multifaceted as in most information420

retrieval studies since the importance of either precision or recall are tuneable.421

3.1 BCubed and Purity422

Evaluation of the performance of bucketing algorithms is performed with BCubed423

and purity metrics. Figure 4 shows the performance of a variety of deduplication424
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methods evaluated against the entire gold set of deduplicated crash reports. The425

1File and 1Addr methods have the most precision, while LerchC has the most426

recall. F1-score is dominated by CamelC and Lerch. As in the results of Lerch and427

Mezini [Lerch and Mezini], using only the stacks outperforms using the stack plus428

its metadata and contextual information in terms of F1-score. For the CamelC,429

Lerch, and LerchC simulations, a threshold of T = 4.0 was used.430

Amigó et al. [Amigó et al.] observed differences in BCubed and purity met-431

rics. Their observation was tested empirically by the evaluation. In figure 4,432

BCubed and purity showed similar results. The best and worst methods in terms433

of BCubed precision are the same as the best and worst methods in terms of434

purity; the same holds true for BCubed recall and inverse purity, and BCubed435

F1-score and purity F1-score. However, some of the methods with intermediate436

performance are much closer together in purity F1-score than they are in BCubed437

F1-score.438

Figure 4 also shows that in general, if a method has a higher precision or439

purity, it also has a lower recall and inverse purity. For example, 3Frame has a440

higher precision than 2Frame, having a higher precision than 1Frame, but 1Frame441

has a higher recall than 2Frame and 3Frame.442

The CamelC crash bucketing method employs: tf–idf; a tokenizer that attempts443

to break up identifiers such as variable names into their component words; and444

the entire context of the crash report including all fields reported in addition to445

the stack. It outperforms other bucketing methods evaluated.446

3.2 Bucketing Effectiveness447

Figure 5 shows the number of buckets created by a variety of deduplication meth-448

ods. The number of issue buckets extracted from the Ubuntu Launchpad gold449

set is plotted as the line labelled Ubuntu. The method that created a number of450

buckets most similar to the number mined from the Ubuntu Launchpad gold set451

was LerchC. For the Lerch and LerchC simulations, a threshold of T = 4.0 was452

used.453

Figure 6 shows the performance of the Lerch method when used with a va-454

riety of different new-bucket thresholds, T . Figure 7 shows the number of buck-455

ets created by the same method with those same thresholds. Since Lerch and456

Mezini [Lerch and Mezini] did not specify what threshold they used, this evalua-457

tion explored a range of thresholds. It can be seen from the plots that the relative458

performance of T thresholds, in terms of BCubed precision, BCubed recall, and459

BCubed F1-score, becomes apparent after only 5 000 crash reports. Thus, only460

5 000 crash reports would need to be examined by hand for developers using the461

Lerch method to choose a suitable value for T .462

For all the results that do not specify a value for T , T = 4.0 was used. The463

highest F1-score was observed at T = 4.0 after only processing 5 000 bugs with464

a variety of different thresholds. For Lerch, a threshold of 3.5 < T < 4.5 had the465

highest performance.466

As shown in figure 8, T = 4.0 still has the highest F1-score after every crash467

was processed. Furthermore, other values of T near 4.0 have the same F1-score,468
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including the range 3.5 ≤ T ≤ 4.5. Figure 8 also shows how the threshold can be469

tuned to create a trade-off between precision and recall. Setting a threshold of 0.0470

is similar to instructing the system to put all of the crashes into a single bucket.471

This would be the correct choice if developers were satisfied with the explanation472

that all of those crashes were created by a single bug. In that case the bug would473

likely be filed as an issue titled, “Programs on Ubuntu Crash.” The fact that474

setting the threshold to 0.0 does not result in recall quite at 1.0 is an artifact475

of optimizations employed in ElasticSearch, specifically ElasticSearch’s inverted476

index.477

Conversely, setting the threshold to 10.0 results in every crash being assigned478

to its own bucket, and therefore a perfect precision of 1.0. This would be the479

correct choice if developers considered every individual crash to be a distinct bug480

because the exact state of the computer was at least somewhat different during481

each crash. It might be more desirable to tune the value of T by using direct482

developer feedback rather than the technique employed here, comparing against483

an existing dataset. Instead of using data, one could ask developers if they had484

seen too many crashes caused by unrelated bugs in a single bucket recently. If485

they had, then T should be increased. Or, T should be decreased if developers see486

multiple buckets that seemed to be focused on crashes caused by the same bug.487

3.3 Tokenization488

Threshold isn’t the only way that a trade-off between precision and recall can489

be made. A variety of methods were tested that use the ElasticSearch/Lucene490

tf–idf-based search from Lerch and Mezini [Lerch and Mezini], but do not follow491

their tokenization strategy. The performance of several tokenization strategies is492

shown in figure 10. As in other cases, the methods with high precision had low493

recall, and the methods with high recall had low precision. All methods shown in494

figure 10 used a threshold of T = 4.0.495

The Space method is obtained by replacing the tokenization strategy in Lerch496

with one that splits words on whitespace only, such that it does not discard any497

tokens regardless of how short they are, and does not lowercase every letter in the498

input. The Space method performs worse than Lerch. However, when both stack499

traces and context are used, the SpaceC method, performance improves slightly.500

This is the opposite behaviour of Lerch. Adding context (LerchC) causes perfor-501

mance to decrease slightly. A third tokenization strategy, Camel was evaluated.502

Camel attempts to break words that are written in CamelCase into their compo-503

nent words, using a method provided in the ElasticSearch documentation.9 This504

strategy had the worst performance of the three, until it was used with context505

included, called CamelC. The addition of context allowed CamelC to outperform506

every other method evaluated in this paper.507

The worst-performing tokenization evaluated, 1Addr, was also the method that508

produced the largest number of buckets. However, tuning methods to match the509

number of buckets in the gold set without concern for performance did not result510

9https://github.com/elastic/elasticsearch/blob/1.6/docs/reference/analysis/

analyzers/pattern-analyzer.asciidoc
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in higher performance. Lerch with T = 3.0 and SpaceC with T = 4.0 were not511

the best-performing threshold or method, but both produced almost the same512

number of buckets as the gold set.513

3.4 Runtime Performance514

The current implementation of PartyCrasher requires only 45 minutes to515

bucket and ingest 15 293 crashes, using the slowest algorithm, CamelC, on a In-516

tel(R) Core(TM) i7-3770K CPU @ 3.50GHz machine with 32GiB of RAM and a517

Hitachi HDS723020BLE640 7200 RPM hard drive. Performance depends mainly518

on disk throughput, latency and RAM available for caching; ElasticSearch recom-519

mends using only solid-state drives. This works out to 335 crashes per minute,520

meeting the performance goal of 217 crashes per minute based on crash-stats from521

Mozilla. The performance of ElasticSearch is highly dependent on ElasticSearch’s522

configuration settings. The settings used during these evaluations is available in523

the PartyCrasher repository.524

4 DISCUSSION525

4.1 Threats to Validity526

Results are dependent on the gold set—a manual classification of crash report by527

Ubuntu volunteers. The results maybe biased due to the exclusive use of known528

duplicate crashes; the known and classified duplicates may not be representative529

of all crash reports. If any of these methods with with tunable parameters are530

deployed, the parameters should be tuned based on feedback from people working531

with the crash buckets, not just the gold set.532

Since the evaluation only used data from open source software, it is unknown533

if our results are applicable to closed-source domains. Only stacks that originate534

from C and C++ projects have been evaluated; it is possible that other languages,535

compilers, and their runtimes have different characteristics in how they form stack536

traces. However, these results are corroborated by studies that examined Java537

exclusively [Wang et al., Lerch and Mezini].538

4.2 Related work539

Although crash bucketing facilitates manual debugging of individual faults, crash540

buckets are much more beneficial as the input to other methods in software engi-541

neering. Lerch and Mezini [Lerch and Mezini] originally applied their technique542

to the field of deduplicating bug, not crash, reports; Khomh et al. [Khomh et al.]543

used crash buckets to triage bugs: prioritizing developer effort on the most crucial544

bugs. Seo and Kim [Seo and Kim] leveraged crash buckets to predict “recurring545

crashes”—i.e., bugs that were “fixed” but had to be fixed again in a later revi-546

sion. Crash buckets may also serve as input to crash localization [Liu and Han,547

Wang et al., Wu et al.] and crash visualization [Kim et al., Dang et al.].548
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4.3 Future Work549

The results in this paper indicate that there may be a large number of improve-550

ments that could be made to the relatively high-performance tf–idf-based crash551

deduplication methods.552

Many stack comparison methods [Modani et al., Glerum et al., Dhaliwal et al.,553

Wang et al.], take into account the position that each frame is on the stack, giving554

more weight to the frames near the top of the stack and less weight to frames on555

the bottom of the stack, or consider stacks that have similar frames in a similar556

order. The best-performing method of crash deduplication presented in this paper557

completely disregards information about the order of the stack. It is likely that558

a technique based on tf–idf that also incorporates information about the order of559

frames on the stack would outperform all of the methods evaluated in this paper.560

This could be achieved by giving words that appear in the top of the stack more561

weight when computing tf–idf or by re-ranking the top results produced by tf–idf562

according to stack similarity before choosing a bucket to place a crash in. Neither563

of these extensions would cause the method to be unable to scale.564

The tokenization techniques evaluated in this paper are extremely primitive.565

They are merely regular expressions that break up words based on certain types of566

characters such as spaces, symbols, uppercase letters, lowercase letters and num-567

bers. Advanced tokenization techniques, such as the ones found in Guerrouj et568

al. [12] and Hill et al. [13], would likely outperform the basic techniques that have569

been evaluated in this paper.570

As shown in figure 3, crash reports often contain a multitude of data apart571

from the stack trace itself. This paper only measured the performance of tf–idf572

when using only the stack trace or the entire crash report. Some fields in the crash573

report may be more important to obtaining a high performance than others. For574

example, Architecture (the computer architecture on which the crash occurred)575

might be more valuable for deduplication than CrashCounter (the number of576

times that a crash has occurred on that computer) or vice-versa, but this has not577

been studied in the context of information retrieval.578

We would like to extend information retrieval techniques with more sophisti-579

cated normalization. We want to investigate any effects that stack normalization,580

as first proposed by Brodie et al. [Brodie et al.], would have on our tf–idf ap-581

proach.582

It would be valuable to measure the effectiveness of using the buckets produced583

by the CamelC technique as input to other methods, such as those that perform584

bug triaging [Khomh et al.] and crash localization [Wu et al.].585

5 CONCLUSION586

The results in this paper indicate that off-the-shelf tf–idf-based information re-587

trieval tools can bucket crash reports in a completely unsupervised, large-scale588

setting when compared to variety of other previously proposed algorithms. Based589

on these results, a developer, such as Ada, should choose a tf–idf-based crash590

deduplication method with tokenization that fits their dataset, and intermediate591
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new-bucket threshold. They should update this threshold based on feedback from592

developers, volunteers, or employees that work with the stack traces directly. A593

tf–idf approach that used the entire crash report and stack trace, tokenized using594

camel-case had the best F1-score on the Ubuntu Launchpad crash reports used in595

this work. In addition, there is a lot of room for improvements to these techniques.596

This conclusion is surprising in light of the fact that the tf–idf-based techniques597

evaluated disregard information that is often considered to be essential to stack598

traces, such as the order of the frames in the stack.599

Finally the research questions can be answered:600

RQ1: tf–idf-based methods are effective, industrial-scale methods of crash re-
port bucketing.
RQ2: New-bucket thresholds and tokenization strategies can be tuned to in-
crease precision and recall.

601
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Figure 2. PartyCrasher within a development context
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Binary package hint: evolution-exchange

I just start Evolution, wait about 2 minutes, and then evolution-exchange crashed

ProblemType: Crash

Architecture: i386

CrashCounter: 1

Date: Tue Jul 17 10:09:50 2007

DistroRelease: Ubuntu 7.10

ExecutablePath: /usr/lib/evolution/2.12/evolution-exchange-storage

NonfreeKernelModules: vmnet vmmon

Package: evolution-exchange 2.11.5-0ubuntu1

PackageArchitecture: i386

ProcCmdline: /usr/lib/evolution/2.12/evolution-exchange-storage --oaf-activate-i

ProcCwd: /

ProcEnviron:

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games

LANG=en_US.UTF-8

SHELL=/bin/bash

Signal: 11

SourcePackage: evolution-exchange

Title: evolution-exchange-storage crashed with SIGSEGV in soup_connection_discon

Uname: Linux encahl 2.6.20-15-generic #2 SMP Sun Apr 15 07:36:31 UTC 2007 i686 G

UserGroups: adm admin audio cdrom dialout dip floppy kqemu lpadmin netdev plugde

#0 0xb71e8d92 in soup_connection_disconnect () from /usr/lib/libsoup-2.2.so.8

#1 0xb71e8dfd in ?? () from /usr/lib/libsoup-2.2.so.8

#2 0x080e5a48 in ?? ()

#3 0xb6eaf678 in ?? () from /usr/lib/libgobject-2.0.so.0

#4 0xbfd613e8 in ?? ()

#5 0xb6e8b179 in g_cclosure_marshal_VOID__VOID ()

from /usr/lib/libgobject-2.0.so.0

Backtrace stopped: frame did not save the PC

Figure 3. An example crash report, including stack.
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Figure 4. BCubed (top) and Purity-metric (bottom) scores for various methods
of crash report deduplication.
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Figure 5. Number of buckets created as a function of number of crashes seen.
The line labelled Ubuntu indicates the number of groups crashes that were
marked as duplicates of each other by Ubuntu developers or volunteers.
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Figure 6. BCubed scores for the Lerch method of crash report deduplication at
various new-bucket thresholds T .
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Figure 7. Number of buckets created as a function of number of crashes seen for
the Lerch method of crash report deduplication at various new-bucket thresholds
T . The line labelled Ubuntu indicates the number of groups crashes that were
marked as duplicates of each other by Ubuntu developers or volunteers.
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Figure 8. Precision/Recall plot showing the trade-off between BCubed precision
and recall as the new-bucket threshold T is adjusted. BCubed F1-score is also
listed in the plot.
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Figure 9. Purity-metric scores for the Lerch method of crash report
deduplication at various new-bucket thresholds T .
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Figure 10. BCubed scores for the Lerch method of crash report deduplication
with Lerch’s tokenization technique replaced by a variety of other techniques.
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Figure 11. Purity-metric scores for the tf–idf-based methods of crash report
deduplication with various tokenization strategies.
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