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A comparison of clustering methods for biogeography with
fossil datasets
Matthew J Vavrek

Cluster analysis is one of the most commonly used methods in palaeoecological studies,
particularly in studies investigating biogeographic patterns. Although a number of different
clustering methods are widely used, the approach and underlying assumptions of many of
these methods are quite different. For example, methods may be hierarchical or non-
hierarchical in their approaches, and may use Euclidean distance or non-Euclidean indices
to cluster the data. In order to assess the effectiveness of the different clustering methods
as compared to one another, a simulation was designed that could assess each method
over a range of both cluster distinctiveness and sampling intensity. Additionally, a non-
hierarchical, non-Euclidean, iterative clustering method implemented in the R Statistical
Language is described. This method, Non-Euclidean Relational Clustering (NERC), creates
distinct clusters by dividing the data set in order to maximize the average similarity within
each cluster, identifying clusters in which each data point is on average more similar to
those within its own group than to those in any other group. While all the methods
performed well with clearly differentiated and well-sampled datasets, when data are less
than ideal the linkage methods perform poorly compared to non-Euclidean based k-means
and the NERC method. Based on this analysis, Unweighted Pair Group Method with
Arithmetic Mean and neighbor joining methods are less reliable with incomplete datasets
like those found in palaeobiological analyses, and the k-means and NERC methods should
be used in their place.
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9 Abstract
10 Cluster analysis is one of the most commonly used methods in palaeoecological studies, 

11 particularly in studies investigating biogeographic patterns. Although a number of different 

12 clustering methods are widely used, the approach and underlying assumptions of many of these 

13 methods are quite different. For example, methods may be hierarchical or non-hierarchical in 

14 their approaches, and may use Euclidean distance or non-Euclidean indices to cluster the data. In 

15 order to assess the effectiveness of the different clustering methods as compared to one another, 

16 a simulation was designed that could assess each method over a range of both cluster 

17 distinctiveness and sampling intensity. Additionally, a non-hierarchical, non-Euclidean, iterative 

18 clustering method implemented in the R Statistical Language is described. This method, Non-

19 Euclidean Relational Clustering (NERC), creates distinct clusters by dividing the data set in 

20 order to maximize the average similarity within each cluster, identifying clusters in which each 

21 data point is on average more similar to those within its own group than to those in any other 

22 group. While all the methods performed well with clearly differentiated and well-sampled 

23 datasets, when data are less than ideal the linkage methods perform poorly compared to non-

24 Euclidean based k-means and the NERC method. Based on this analysis, Unweighted Pair Group 

25 Method with Arithmetic Mean and neighbor joining methods are less reliable with incomplete 
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26 datasets like those found in palaeobiological analyses, and the k-means and NERC methods 

27 should be used in their place.

28

29 Keywords: Adjusted Rand Index, biogeography, cluster analysis, ecological similarity, 

30 palaeoecology

31

32 Introduction
33 Clustering, defined as “a classificatory method which optimizes intra-group 

34 homogeneity” (Lance and Williams, 1967), is one of the most frequently used forms of 

35 multivariate analysis in palaeoecology (Hammer et al., 2001). One of the areas in which cluster 

36 analysis is commonly used is studying patterns of biogeography amongst species assemblages. 

37 Cluster analysis has been used in palaeoecological studies on groups as diverse as vertebrates 

38 (Shubin and Sues, 1991; Holtz, Jr. et al., 2004; Fröbisch, 2009; Gates et al., 2010; Noto and 

39 Grossman, 2010; Donohue et al., 2013), invertebrates (Schwimmer, 1975; Clapham and James, 

40 2008), foraminifera (Collins, 1993) and plants (LePage et al., 2003), and assemblages spanning 

41 the Ediacaran (Clapham et al., 2003) to the Pleistocene (Wolfe, 2000). With the rise of large 

42 datasets of fossil species occurrences [e.g. Paleobiology Database, MioMAP (Carrasco et al. 

43 2005), FAUNMAP (Graham and Lundelius, Jr. 2010), NOW (Fortelius 2015); see Uhen et al., 

44 2013 for recent review] with hundreds or thousands of records, semi-automated methods such as 

45 clustering are becoming more and more necessary to find underlying patterns in these highly 

46 complex collections. As the use of cluster analysis in palaeobiology has steadily expanded, so 

47 too have the types of methods used. Although the underlying purpose of these methods is the 

48 same (i.e. to delimit different groups from one another), their approaches and assumptions are 

49 often quite different. For example, some cluster analysis methods (e.g. Unweighted Pair Group 

50 Method with Arithmetic Mean/UPGMA, neighbour–joining) use a hierarchical approach to 

51 grouping data (James and McCulloch, 1990; Shi, 1993). 

52 Other common methods include partitioning techniques, such as c-means or k-means, 

53 which may try to optimize groups by minimizing relative distances based on a chosen index 

54 (Hartigan and Wong, 1979). Although clustering methods may be widely used, their 

55 effectiveness relative to one another is less well known, in particular with the often sparse 
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56 datasets used in palaeobiological studies. In order to examine the relative efficacy of these 

57 different clustering methods with species occurrence data, a dataset where the ”true” clustering 

58 relationship is known is required. To generate multiple simulated datasets with established 

59 clustering relationships, I created an R function which could create a species occurrence database 

60 that could then be used to test the efficiency of the methods over a large number of trials. 

61 In addition to the analysis of the various clustering methods commonly used, I also 

62 describe here an R function for a non-Euclidean, non-hierarchical clustering method termed here 

63 Non-Euclidean Relational Clustering (NERC), an iterative method that uses agglomerative 

64 clustering with post-clustering optimization. The efficacy of this function is tested in comparison 

65 to the more traditional methods.

66

67 Materials and Methods

68 The NERC Function

69 The NERC Function The algorithm’s execution can be broken down into three distinct 

70 steps [after Lance and Williams (1967)]: the initialization of clusters; the allocation of new 

71 elements to a cluster; and finally an iterative reallocation process whereby the clusters are 

72 optimized. The first step, initialization of the clusters, begins by sampling a number of elements 

73 equal to the requested number of final clusters. Each of these selected samples is assigned 

74 randomly to a different initial cluster. In the second step, the function searches for the greatest 

75 similarity (smallest value in a dissimilarity matrix) between any unassigned sample and any 

76 assigned sample. The unassigned sample with the highest similarity is assigned to the same 

77 group as that which it shares the greatest similarity, similar to Single Linkage Clustering 

78 Analysis (Gower and Ross, 1969). This process then repeats, until all samples are assigned to a 

79 cluster. At the end of the second step, if any group has only one member the process restarts 

80 from the first step. 

81 As a final step, an optimization of the clusters is performed. To begin, each individual 

82 sample within the entire set is assessed for its average similarity to every cluster. The similarity 

83 is based on the average pairwise distance from a sample to every member of a cluster (excluding 

84 the sample itself in the case of the cluster it had been assigned to). If a sample has a greater 
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85 similarity to another cluster other than the one it has been assigned to, the optimization routine 

86 will reassign the sample to the cluster that it had the most similarity to. If more than one sample 

87 is in a suboptimal cluster, only one sample, chosen at random, will be reassigned at a time. After 

88 a sample has been reassigned, the average pairwise distances will be calculated again before 

89 another sample is reassigned (if necessary). If all the samples are in the cluster with which they 

90 have the greatest average similarity then the cycle is complete. At present, an upper limit of 1000 

91 reassignments has been set so as to avoid an infinite loop if there is no solution where every 

92 sample is in its optimal grouping. The process will find a local, but not necessarily global, 

93 optimum by minimizing the overall dissimilarity within clusters. Because the method is heuristic 

94 in nature, it is best to repeat the clustering process many times.

95

96 Implementation of NERC

97 The R Statistical Language (R Development Core Team, 2012) was used to implement the 

98 NERC function. The R Language is cross platform, Open Source and free to use, and is widely 

99 used in statistical research, making it easy to extend with new functions and packages. The 

100 package fossil (Vavrek, 2011) with all of the functions discussed in this paper is available 

101 through the Comprehensive R Archive Network (CRAN) at http://cran.r-

102 project.org/web/packages/fossil/. All data analysis and figure creation was done using R v3.2.1 

103 on a Mac OS X 10.10 system. For a full copy of the R code used in the calculations and figures, 

104 please consult the Supplementary Materials.

105 The R implementation of the NERC function has one required and three optional 

106 arguments, and takes the form:

107
108 rclust(dist, clusters = 2, rand = 1000, counter = FALSE)

109

110 The only required argument is a distance or dissimilarity matrix (the dist argument), either as a 

111 full matrix or lower triangle. The first optional argument (clusters) is the number of groups to be 

112 created. The number of groups used must be a positive integer equal to or greater than 2 but no 

113 greater than 1/2 the total number of samples. The minimum value represents the smallest number 

114 of clusters without placing all samples within one group, and the maximum value prevents 
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115 clusters of one. The default value for the number of clusters is set to 2. The second optional 

116 argument gives the number of times the clustering process should be run. Because the method 

117 should be run many times to have a better chance of finding the global optimal solution, this 

118 option has a default value of 1000. The last optional argument (counter) specifies whether to 

119 print the current run. Note that at this point the R function returns only the result with the 

120 smallest average within group distances overall.

121

122 Data Simulation and Comparisons

123 In order to test the efficacy of NERC in comparison to several other cluster methods, I 

124 also created a simple function to simulate a species abundance data set. This function, called 

125 sim.occ(), creates a matrix of sites (columns) and species (rows) with a known clustering 

126 solution. The number of species, localities, regions (clusters), sample size and proportion of 

127 regional endemicity can all be adjusted. Each specific ’region’ in the simulated set contains a 

128 number of ’cosmopolitan’ species that are found in every region, as well as ’endemic’ species 

129 that are found in only that particular region. To obtain a sample for a single locality, a 

130 randomized log-normal distribution is applied to the total possible species pool for a given 

131 region; the parameters are set so that any given locality will have several abundant species, a 

132 large number of less common species, and some species which are not present. A log-normal 

133 distribution was used as it is one of the most common species abundance distributions found in 

134 empirical samples of modern habitats (Preston 1962; Gaston and Blackburn 2000; Magurran 

135 2004). For every sample a new randomized log-normal distribution was created from the parent 

136 region species pool. The average number of specimens can be varied to simulate different 

137 sampling intensities. The full R code for the function can be found within the fossil package.

138 The simulated data was clustered using 6 different combinations of methods and input 

139 matrices: single linkage, complete linkage, UPGMA, k-means on a db-RDA ordination using 

140 both Euclidean and a non-Euclidean distance measure, and NERC. For those methods that 

141 provide hierarchical clusters, discrete clusters were made using the cutree function. The db-RDA 

142 ordination was performed using the capscale function in the vegan (Oksanen et al., 2011) 

143 package.

144 Most functions used require a distance matrix as input, rather than raw species values. In 
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145 order to convert the occurrence matrices to dissimilarity matrices, the ecol.dist() function was 

146 used, with the Sørensen (sometimes called Dice) dissimilarity index used to calculate pairwise 

147 dissimilarities. The Sørensen dissimilarity index was used because it is one of the most 

148 commonly used indicices, and is regarded as one of the most effective presence/absence 

149 dissimilarity measures (Southwood and Henderson 2000; Magurran 2004). Although the 

150 sim.occ() function did create abundance-based occurrence matrices, the use of the Sørensen 

151 dissimilarity index is presence/absence based, in effect converting the data. Although discarding 

152 abundance data is not generally recommended in actual analyses, presence/absence data is 

153 typically more common in palaeontological datasets, so using the Sorenson dissimilarity index 

154 created a more realistic scenario.

155 The six methods were tested to see how well they performed both with varying levels of 

156 endemicity (or differentiation between clusters; Fig. 1) as well as with varying levels of sampling 

157 intensity. A simulated occurrence matrix was created 1000 times for each level of differentiation 

158 or sampling intensity, and then clustered to obtain averaged performance values for all five 

159 clustering methods. Each of the simulations consisted of 30 samples from 3 different endemic 

160 regions, for a total of 90 samples to be used in the cluster analysis. Because of the parallel nature 

161 of this simulation, the multicore (Urbanek, 2011), foreach (Revolution Analytics, 2011b), and 

162 doMC (Revolution Analytics, 2011a) parallel computing packages for R were also used. The 

163 visualization of cluster distinctiveness in Fig. 1 was created using the NMDS function provided 

164 by the ecodist package (Goslee and Urban, 2007).

165 For the simulated biogeographic datasets, the “true” clustering was known, and so the 

166 results of each clustering method could be compared to this a priori grouping. The Rand Index 

167 (Rand, 1971; Hubert and Arabie, 1985) is method to compare two clustering outcomes and 

168 calculates an index of similarity, with a value of 1 being a perfect match. The original formula 

169 for this index, however, had a lower bound that fluctuated, depending on group sizes and 

170 numbers (Hubert and Arabie, 1985). A modification of this original formula, given by Hubert 

171 and Arabie (1985), scaled the value so that the greatest mathematically possible difference would 

172 always be 0, with the upper bound still set to 1. This modification is referred to as the Adjusted 

173 Rand Index (ARI). In the fossil package, both functions are provided, although only the ARI is 

174 used to calculate the effectiveness of the clustering methods in this paper.

175
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176 Results
177 Overall, the NERC and non-Euclidean k-means methods were the most effective at 

178 recovering the original groupings across the different levels of regional endemicity (Fig. 2), with 

179 the NERC slightly outperforming the non-Euclidean k-means. Using a Euclidean distance metric 

180 for the k-means method, even when the rest of the method and dataset are kept the same, led to a 

181 notable reduction in performance. Complete linkage and UPGMA were readily able to recover 

182 the correct clusters when the groups were relatively distinct. However, when the simulated 

183 clusters were less distinct their effectiveness quickly declined. Single linkage clustering was least 

184 effective and, produced unreliable results even at levels where all the other methods easily found 

185 the proper clustering arrangement.

186 For the differing levels of sampling intensity (Fig. 3), the NERC method and non-

187 Euclidean k-means methods were again the most effective at recovering an accurate signal, 

188 although in this instance the k-means was slightly more effective. Overall, complete linkage and 

189 UPGMA gave accurate results when sampling intensity was high, but their performance was 

190 very poor with sparsely sampled data. Single linkage was again the least effective of all the 

191 methods tested.

192

193 Discussion
194 All cluster methods performed well when clusters were very distinct and sampling 

195 intensity was high. However, in cases where biogeographic clusters were less distinct or 

196 sampling was poor, the db-RDA/k-means and the NERC methods were best able to recover the 

197 original clusters compared to the other tested clustering methods. Among the other clustering 

198 methods, single linkage performed the poorest of any of the methods. The notably poor 

199 performance of the single linkage method was likely the result of individual samples that were 

200 extremely distant from all others placed at the base of the tree, and because I applied a strict tree 

201 cutting method with the hierarchical methods to obtain discrete clusters, the tree cutting method 

202 then identified this single distant sample as an individual cluster. However, the treatment of 

203 outliers is challenging in all clustering approaches, and their exclusion may not be possible or 

204 desirable. A similar situation, where outliers have an undue influence on group composition, is 
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205 likely why complete linkage and UPGMA are also less effective than k-means or NERC.

206 These hierarchical methods are well suited to applications such as phenetic analyses or 

207 phylogenetics, where a single ancestor (theoretically) gives rise to multiple descendants. 

208 However, this one-to-many structure often translates poorly to species occurrence data sets like 

209 those commonly used in biogeographic studies, where individual lineages may be operating in 

210 parallel and independently (Brown, 1999). Individual species may originate in different locations 

211 and disperse by various methods to new regions (Brown, 1999), leading to a more reticulate, 

212 many-to-many relationship. In this case, a method that does not enforce a hierarchy may better 

213 represent the relationships present.

214 Further, species occurrence data is typically non-Euclidean in nature. Whereas all the 

215 cells in a phylogenetic data matrix represent a directly observed value, in a species occurrence 

216 matrix any cell that has a zero value may be due to either the species not occurring in that area or 

217 incomplete sampling, two possibilities that may be indistinguishable from one another. To deal 

218 with incomplete sampling, most species occurrence data sets are converted into a distance 

219 matrix, where the species composition of each sample is compared to every other sample using 

220 an index of similarity (or dissimilarity); yet, while most of these measures provide some measure 

221 of distance, these distances are not necessarily Euclidean (Gower and Legendre, 1986). The 

222 benefit of using non-Euclidean measures over Euclidean distances is readily observable in this 

223 study, with the non-Euclidean based k-means outperforming the Euclidean based k-means. 

224 Although for this study, the Sørensen dissimilarity index was used, the choice of which 

225 non-Euclidean dissimilarity index to use is not necessarily straightforward (e.g. Shi 1993; 

226 Magurran 2004; Alroy 2015). By some counts, dozens of different dissimilarity indices have 

227 been proposed in the literature (Hubálek 1982; Pielou 1984; Shi 1993), although only a handful 

228 of these have entered into common use (Magurran 2004). While alternative methods, such as a 

229 recent modification to the Forbes metric (Alroy 2015), have been proposed as replacements to 

230 more traditional dissimilarity metrics, the choice of measure is a separate question to the issue in 

231 the present study. Although using other dissimilarity measures may have changed the individual 

232 effectiveness of the different clustering methods, the relative performance of the clustering 

233 methods to each other is unlikely to change, as even with different measures the problems of 

234 outliers and hierarchical/non-hierarchical methods would persist.

235 Both poor differentiation between clusters and inadequate sampling are common 
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236 problems with palaeobiological data. No method is entirely immune to either of these issues, but 

237 overall, based on these simulations, k-means and NERC give more reliable and accurate results 

238 when data are less than robust. Using these methods still does make one strong assumption about 

239 the underlying data - namely, that true divisions within the data exist. Unfortunately, with the 

240 often muddled and noisy nature of biogeographic data, this assumption is also the hardest to 

241 objectively determine.
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337 Figure captions
338 Figure 1. Visualization of the changing endemicity of clusters (i.e. distinctiveness) and how it 

339 alters the clustering of sites in an NMDS plot for the simulated biogeographic data sets. ’e’ is the 

340 proportion of all species that are endemic to only one biogeographic region. A higher proportion 

341 of endemics results in more distinctive clusters, while a lower proportion of endemics results in 

342 less distinctive clusters.

343

344 Figure 2. Response of various clustering methods to the distinctiveness of clusters as given by 

345 the proportion of endemics (i.e. a higher endemicity creates more highly differentiated clusters). 

346 The values for each method at any given level of endemicity is the average Adjusted Rand Index 

347 comparing the known solution and the calculated solution over 1000 simulations.

348

349 Figure 3. Accuracy of various clustering methods in response to changing levels of sampling 

350 intensity (coverage). Overall, as sampling intensity decreases (to the right), clustering becomes 

351 less reliable. The values for each method at any given level of sampling is the average Adjusted 

352 Rand Index comparing the known solution and the calculated solution over 1000 simulations.
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Figure 1(on next page)

Variation in group distinctiveness for simulated data.

Visualization of the changing endemicity of clusters (i.e. distinctiveness) and how it alters the

clustering of sites in an NMDS plot for the simulated biogeographic data sets. 'e' is the

proportion of all species that are endemic to only one biogeographic region. A higher

proportion of endemics results in more distinctive clusters, while a lower proportion of

endemics results in less distinctive clusters.
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Figure 2(on next page)

Comparison of cluster methods with varying group distinctiveness.

Response of various clustering methods to the distinctiveness of clusters as given by the

proportion of endemics (i.e. a higher endemicity creates more highly differentiated clusters).

The values for each method at any given level of endemicity is the average Adjusted Rand

Index comparing the known solution and the calculated solution over 1000 simulations.
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Figure 3(on next page)

Comparison of cluster methods with varying sampling intensity.

Accuracy of various clustering methods in response to changing levels of sampling intensity

(coverage). Overall, as sampling intensity decreases (to the right), clustering becomes less

reliable. The values for each method at any given level of sampling is the average Adjusted

Rand Index comparing the known solution and the calculated solution over 1000 simulations.
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